The canonical generalized Polar decomposition

Christian Mehl
Institut für Mathematik
TU Berlin
Germany

joint work with Nick Higham and Françoise Tisseur

Householder Symposium XVIII, Tahoe City, 15.6.2011

Polar decompositions

Reminder: Polar decomposition of $A \in \mathbb{F}^{m \times n}$, $m \geq n$, $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$:

$$A = U \cdot H$$

- 1) $U \in \mathbb{F}^{m \times n}$ has orthonormal columns;
- 2) $H \in \mathbb{F}^{n \times n}$ is selfadjoint $(H^* = H)$ and positive semidefinite;

- decomposition always exists;
- $H = (A^*A)^{1/2}$ is uniquely determined;
- U is uniquely determined iff $\operatorname{rank}(A) = n$.

 $(A^*A)^{1/2}$ denotes the unique positive semidefinite square root of A^*A .

Canonical polar decompositions

 \mathbf{Aim} : make also U being unique by relaxing the condition of having orthonormal columns.

Definition: $U \in \mathbb{F}^{m \times n}$, $m \ge n$, is a partial isometry if $||Ux||_2 = ||x||_2$ for all $x \in \text{range } U^*$.

- U is a partial isometry $\iff UU^*U = U \iff U^+ = U^*$.
- ullet U^+ denotes the Moore-Penrose generalized inverse of U, i.e., the unique matrix $U^+\in\mathbb{F}^{n\times m}$ satisfying
 - (1) $UU^+U = U$, (2) $U^+UU^+ = U^+$,
 - (3) $(UU^+)^* = UU^+, \quad (4) \quad (U^+U)^* = U^+U.$

Canonical polar decompositions

Canonical polar decomposition of $A \in \mathbb{F}^{m \times n}$, $m \geq n$:

$$A = U \cdot H$$

- 1) $U \in \mathbb{F}^{m \times n}$ is a partial isometry;
- 2) $H \in \mathbb{F}^{n \times n}$ is selfadjoint $(H^* = H)$ and positive semidefinite;
- 3) range (U^*) = range (H);

- decomposition always exists;
- $H = (A^*A)^{1/2}$ is uniquely determined;
- U is uniquely determined by range $(U^*) = \text{range } (H)$.

Canonical polar decompositions

Example: Let $A \in \mathbb{F}^{m \times n}$, $m \geq n$, and let

$$A = P \begin{bmatrix} \Sigma_r & 0 \\ 0 & 0 \end{bmatrix} Q^*$$

be an SVD of A, where $\Sigma_r \in \mathbb{F}^{r \times r}$ is invertible.

1) All polar decompositions A = UH of A have the forms

$$H=(A^*A)^{1/2} \quad \text{and} \quad U=P\left[egin{array}{cc} I_r & 0 \ 0 & W \end{array}
ight]Q^*\in\mathbb{F}^{m imes n},$$

where W has orthonormal columns.

2) The canonical polar decomposition A=UH of A is given by

$$H=(A^*A)^{1/2}$$
 and $U=P\left[egin{array}{cc} I_r & 0 \ 0 & 0 \end{array}
ight]Q^*\in\mathbb{F}^{m imes n}.$

Aim: Generalize the concept of polar decomposition to spaces with a bilinear/sesquilinear form.

• $M \in \mathbb{F}^{n \times n}$ invertible defines a nondegenerate bilinear ($\mathbb{F} = \mathbb{R}$), resp. sesquilinear ($\mathbb{F} = \mathbb{C}$) form (scalar product) on \mathbb{F}^n :

$$\langle x, y \rangle_M := x^* M y$$
 for all $x, y \in \mathbb{F}^n$;

- We say that $\langle \cdot, \cdot \rangle_M$ is **orthosymmetric**, i.e.,
 - $-M^T = \pm M$ if $\mathbb{F} = \mathbb{R}$;
 - $-M^* = \alpha M$ for some $\alpha \in \mathbb{C}$, $|\alpha| = 1$ if $\mathbb{F} = \mathbb{C}$.

The **adjoint** of $A \in \mathbb{F}^{n \times n}$ with respect to $\langle \cdot, \cdot \rangle_M$ is the unique matrix $A^{\star} \in \mathbb{F}^{n \times n}$ satisfying

$$\langle x, Ay \rangle_M = \langle A^*x, y \rangle_M$$
 for all $x, y \in \mathbb{F}^n$

If $\langle \cdot, \cdot \rangle_M$ is orthosymmetric, we have $(A^*)^* = A$ for all $A \in \mathbb{F}^{n \times n}$.

Matrices with symmetries w.r.t. $\langle \cdot, \cdot \rangle_M$:

	adjoint	
$H\ M$ -selfadjoint	$H^* = H$	$H^*M = MH$
S M -skew-adjoint	$S^* = -S$	$S^*M = -MS$
$U\ M$ -unitary	$U^* = U^{-1}$	$U^*MU=M$

Generalized polar decomposition of $A \in \mathbb{F}^{n \times n}$ with $\sigma(A) \subseteq \mathbb{C} \setminus \mathbb{R}_{\leq 0}$

$$A = W \cdot S$$

- 1) $W \in \mathbb{F}^{n \times n}$ is M-unitary;
- 2) $S \in \mathbb{F}^{n \times n}$ is M-selfadjoint and $\sigma(S) \subseteq \mathbb{C}_+$;

- decomposition exists if $(A^*)^* = A$ (guaranteed in the orthosymmetric case);
- S uniquely determined by spectral properties;
- notation:

 \mathbb{C}_+ : open right half plane

 $\mathbb{R}_{<0}$: open negative real axis

Generalized polar decomposition of $A \in \mathbb{F}^{n \times n}$ with $\sigma(A) \subseteq \mathbb{C} \setminus \mathbb{R}_{\leq 0}$

$$A = W \cdot S$$

- 1) $W \in \mathbb{F}^{n \times n}$ is M-unitary;
- 2) $S \in \mathbb{F}^{n \times n}$ is M-selfadjoint and $\sigma(S) \subseteq \mathbb{C}_+$;

Some history:

- Higham, Mackey, Mackey, Tisseur 2005: definition as above;
- \bullet Bolshakov, van der Mee, Ran, Reichstein, Rodman 1997: Hermitian scalar products, no assumptions on spectrum of S;

Generalized polar decomposition of $A \in \mathbb{F}^{n \times n}$ with $\sigma(A) \subseteq \mathbb{C} \setminus \mathbb{R}_{\leq 0}$

$$A = W \cdot S$$

- 1) $W \in \mathbb{F}^{n \times n}$ is M-unitary;
- 2) $S \in \mathbb{F}^{n \times n}$ is M-selfadjoint and $\sigma(S) \subseteq \mathbb{C}_+$;

Question: Can we extend the concept to more general matrices? (A singular, A rectangular?)

Generalized polar decomposition of $A \in \mathbb{F}^{n \times n}$ with $\sigma(A) \subseteq \mathbb{C} \setminus \mathbb{R}_{<0}$

$$A = W \cdot S$$

- 1) $W \in \mathbb{F}^{n \times n}$ is M-unitary;
- 2) $S \in \mathbb{F}^{n \times n}$ is M-selfadjoint and $\sigma(S) \subseteq \mathbb{C}_+ \cup \{0\}$;

Problems:

- 1) the generalized polar decomposition need not exist;
- 2) if it exists, even the selfadjoint factor need not be unique;

Problems

Problem 1: generalized polar decompositions need not exist: If A = WS were a generalized polar decomposition then

$$A^{\star}A = S^{\star}W^{\star}WS = SW^{-1}WS = S^2$$

Example:

$$A = \begin{bmatrix} 0 & 1/2 \\ 0 & 1/2 \end{bmatrix}, \quad M = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \Rightarrow \quad A^* = \begin{bmatrix} 1/2 & 1/2 \\ 0 & 0 \end{bmatrix}$$
$$A^*A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \stackrel{?}{=} S^2$$

 $A^{[*]}A$ does not have a square root let alone an M-selfadjoint one.

Problems

Problem 2: generalized polar decompositions need not be unique (not even the selfadjoint factor):

Example:

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \quad M = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$$

These are two different generalized polar decompositions with two distinct selfadjoint polar factors.

Problems

Theorem: Let $\langle \cdot, \cdot \rangle_M$ be orthosymmetric. Then $A \in \mathbb{F}^{n \times n}$ has a generalized polar decomposition A = WS with a unique selfadjoint polar factor if and only if

- 1) A^*A has no negative real eigenvalues;
- 2) if zero is an eigenvalue of A^*A , then it is semisimple;
- 3) Ker $A^*A = \text{Ker } A$.

Question: Can we make the generalized polar decomposition unique by relaxing the condition that W be M-unitary?

Canonical generalized polar decomposition

Definition: $W \in \mathbb{F}^{n \times n}$ is called a **partial** M-isometry if $WW^*W = W$.

- W partial isometry $\Rightarrow \langle Wx, Wy \rangle_M = \langle x, y \rangle_M$ for all $x, y \in \text{range } (W^*)$
- $\langle Wx, Wy \rangle_M = \langle x, y \rangle_M$ for all $x, y \in \text{range } (W^*) \not\Rightarrow W$ partial isometry

Example:

$$W = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad M = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \Rightarrow W^* = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

Then $\langle Wx, Wy \rangle_M = \langle x, y \rangle_M = 0$ for all $x, y \in \text{range } (W^*) = \text{span } \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)$, but $0 = WW^*W \neq W$

Canonical generalized polar decomposition

Canonical generalized polar decomposition of $A \in \mathbb{F}^{n \times n}$, where $\langle \cdot, \cdot \rangle_M$ is orthosymmetric:

$$A = W \cdot S$$

- 1) $W \in \mathbb{F}^{n \times n}$ is a partial M-isometry;
- 2) $S \in \mathbb{F}^{n \times n}$ is M-selfadjoint and $\sigma(S) \subseteq \mathbb{C}_+ \cup \{0\}$;
- 3) range (W^*) = range (S);

Theorem: Let $\langle \cdot, \cdot \rangle_M$ be orthosymmetric. Then $A \in \mathbb{F}^{n \times n}$ has a unique canonical generalized polar decomposition A = WS if and only if

- 1) A^*A has no negative real eigenvalues;
- 2) if zero is an eigenvalue of A^*A , then it is semisimple;
- 3) Ker $A^*A = \text{Ker } A$.

Computational considerations

Theorem: Let $A \in \mathbb{F}^{n \times n}$ have a unique canonical generalized polar decomposition A = WS. Let g be any scalar function of the form $g(x) = xh(x^2)$ such that

- 1) the iteration $X_{k+1} = g(X_k)$ converges to $sign(X_0)$ with order of convergence p whenever $sign(X_0)$ is defined,
- 2) g(0) = 0,
- 3) for sesquilinear forms, $g(X^*) = g(X)^*$ for all $X \in \mathbb{C}^{n \times n}$ in the domain of g.

Then the iteration

$$Y_{k+1} = Y_k h(Y_k^{\star} Y_k), \qquad Y_0 = A$$

converges to W with order of convergence p.

Computational considerations

Example: The iteration

$$S_{k+1} = 2S_k(I + S_k^2)^{-1}, \quad S_0 = S$$

which converges quadratically to sign(S);

leads to the iteration

$$X_{k+1} = 2X_k (I + X_k^* X_k)^{-1}, \quad X_0 = A$$

which converges quadratically to W, when a unique canonical generalized polar decomposition A=WS exists;

S can be computed via $S = W^*A$.

Computational considerations

The iteration

$$X_{k+1} = 2X_k \left(I + X_k^* X_k \right)^{-1}, \quad X_0 = A$$

produces iterates with the following relative differences:

iterate	$ X_k - X_{k-1} _1 / X_k _1$
X_1	5.00e-1
X_2	5.56e-2
X_3	1.73e-3
X_4	1.50e-6
X_5	1.13e-12
X_6	1.05e-16

Conclusions

- concept of generalized polar decomposition can be generalized to the singular case;
- the concept of canonical polar decomposition can be generalized to orthosymmetric scalar products;
- the concept can even be generalized to rectangular matrices;
- the uniqueness of the decomposition allows to use well-known matrix iterations for the computation of the decomposition.

Thank you for your attention!