
The canonical generalized Polar decomposition

Christian Mehl
Institut für Mathematik

TU Berlin
Germany

joint work with Nick Higham and Françoise Tisseur

Householder Symposium XVIII, Tahoe City,
15.6.2011



Polar decompositions

Reminder: Polar decomposition of A ∈ Fm×n, m ≥ n, F ∈ {R,C}:

A = U ·H

1) U ∈ Fm×n has orthonormal columns;

2) H ∈ Fn×n is selfadjoint (H∗ = H) and positive semidefinite;

• decomposition always exists;

• H = (A∗A)1/2 is uniquely determined;

• U is uniquely determined iff rank(A) = n.

(A∗A)1/2 denotes the unique positive semidefinite square root of A∗A.



Canonical polar decompositions

Aim: make also U being unique by relaxing the condition of having ortho-
normal columns.

Definition: U ∈ Fm×n, m ≥ n, is a partial isometry if ‖Ux‖2 = ‖x‖2
for all x ∈ range U ∗.

• U is a partial isometry ⇐⇒ UU ∗U = U ⇐⇒ U+ = U ∗.

• U+ denotes the Moore-Penrose generalized inverse of U , i.e., the unique
matrix U+ ∈ Fn×m satisfying

(1) UU+U = U, (2) U+UU+ = U+,
(3) (UU+)∗ = UU+, (4) (U+U)∗ = U+U.



Canonical polar decompositions

Canonical polar decomposition of A ∈ Fm×n, m ≥ n:

A = U ·H

1) U ∈ Fm×n is a partial isometry;

2) H ∈ Fn×n is selfadjoint (H∗ = H) and positive semidefinite;

3) range (U ∗) = range (H);

• decomposition always exists;

• H = (A∗A)1/2 is uniquely determined;

• U is uniquely determined by range (U ∗) = range (H).



Canonical polar decompositions

Example: Let A ∈ Fm×n, m ≥ n, and let

A = P

[
Σr 0
0 0

]
Q∗

be an SVD of A, where Σr ∈ Fr×r is invertible.

1) All polar decompositions A = UH of A have the forms

H = (A∗A)1/2 and U = P

[
Ir 0
0 W

]
Q∗ ∈ Fm×n,

where W has orthonormal columns.

2) The canonical polar decomposition A = UH of A is given by

H = (A∗A)1/2 and U = P

[
Ir 0
0 0

]
Q∗ ∈ Fm×n.



Generalized polar decompositions

Aim: Generalize the concept of polar decomposition to spaces with a bili-
near/sesquilinear form.

•M ∈ Fn×n invertible defines a nondegenerate bilinear (F = R), resp.
sesquilinear (F = C) form (scalar product) on Fn:

〈x, y〉M := x∗My for all x, y ∈ Fn;

• We say that 〈·, ·〉M is orthosymmetric, i.e.,

–MT = ±M if F = R;

–M ∗ = αM for some α ∈ C, |α| = 1 if F = C.



Generalized polar decompositions

The adjoint of A ∈ Fn×n with respect to 〈·, ·〉M is the unique matrix
A? ∈ Fn×n satisfying

〈x,Ay〉M = 〈A?x, y〉M for all x, y ∈ Fn

If 〈·, ·〉M is orthosymmetric, we have (A?)? = A for all A ∈ Fn×n.

Matrices with symmetries w.r.t. 〈·, ·〉M :

adjoint

H M-selfadjoint H? = H H∗M = MH

S M-skew-adjoint S? = −S S∗M = −MS

U M-unitary U? = U−1 U ∗MU = M



Generalized polar decompositions

Generalized polar decomposition of A ∈ Fn×n with σ(A) ⊆ C \ R≤0
A = W · S

1) W ∈ Fn×n is M -unitary;

2) S ∈ Fn×n is M -selfadjoint and σ(S) ⊆ C+;

• decomposition exists if (A?)? = A (guaranteed in the orthosymmetric
case);

• S uniquely determined by spectral properties;

• notation:
C+: open right half plane
R<0: open negative real axis



Generalized polar decompositions

Generalized polar decomposition of A ∈ Fn×n with σ(A) ⊆ C \ R≤0
A = W · S

1) W ∈ Fn×n is M -unitary;

2) S ∈ Fn×n is M -selfadjoint and σ(S) ⊆ C+;

Some history:

• Higham, Mackey, Mackey, Tisseur 2005: definition as above;

• Bolshakov, van der Mee, Ran, Reichstein, Rodman 1997:
Hermitian scalar products, no assumptions on spectrum of S;



Generalized polar decompositions

Generalized polar decomposition of A ∈ Fn×n with σ(A) ⊆ C \ R≤0
A = W · S

1) W ∈ Fn×n is M -unitary;

2) S ∈ Fn×n is M -selfadjoint and σ(S) ⊆ C+;

Question: Can we extend the concept to more general matrices?
(A singular, A rectangular?)



Generalized polar decompositions

Generalized polar decomposition of A ∈ Fn×n with σ(A) ⊆ C \ R<0

A = W · S

1) W ∈ Fn×n is M -unitary;

2) S ∈ Fn×n is M -selfadjoint and σ(S) ⊆ C+ ∪ {0};

Problems:

1) the generalized polar decomposition need not exist;

2) if it exists, even the selfadjoint factor need not be unique;



Problems

Problem 1: generalized polar decompositions need not exist:
If A = WS were a generalized polar decomposition then

A?A = S?W?WS = SW−1WS = S2

Example:

A =

[
0 1/2
0 1/2

]
, M =

[
0 1
1 0

]
⇒ A? =

[
1/2 1/2
0 0

]

A?A =

[
0 1
0 0

]
?
= S2

A[∗]A does not have a square root let alone an M -selfadjoint one.



Problems

Problem 2: generalized polar decompositions need not be unique (not even
the selfadjoint factor):

Example:

A =

[
0 0
0 1

]
, M =

[
0 1
1 0

]

A =

[
0 1
1 0

] [
0 1
0 0

]
=

[
0 −1
−1 0

] [
0 −1
0 0

]
These are two different generalized polar decompositions with two distinct
selfadjoint polar factors.



Problems

Theorem: Let 〈·, ·〉M be orthosymmetric. Then A ∈ Fn×n has a generalized
polar decomposition A = WS with a unique selfadjoint polar factor if and
only if

1) A?A has no negative real eigenvalues;

2) if zero is an eigenvalue of A?A, then it is semisimple;

3) Ker A?A = Ker A.

Question: Can we make the generalized polar decomposition unique by
relaxing the condition that W be M -unitary?



Canonical generalized polar decomposition

Definition: W ∈ Fn×n is called a partial M-isometry if WW?W = W .

• W partial isometry⇒ 〈Wx,Wy〉M = 〈x, y〉M for all x, y ∈ range (W?)

• 〈Wx,Wy〉M = 〈x, y〉M for all x, y ∈ range (W?) 6⇒W partial isometry

Example:

W =

[
1 0
0 0

]
, M =

[
0 1
1 0

]
⇒ W? =

[
0 0
0 1

]
.

Then 〈Wx,Wy〉M = 〈x, y〉M = 0 for all x, y ∈ range (W?) = span

([
0
1

])
,

but 0 = WW?W 6= W



Canonical generalized polar decomposition

Canonical generalized polar decomposition of A ∈ Fn×n, where
〈·, ·〉M is orthosymmetric:

A = W · S
1) W ∈ Fn×n is a partial M -isometry;

2) S ∈ Fn×n is M -selfadjoint and σ(S) ⊆ C+ ∪ {0};
3) range (W?) = range (S);

Theorem: Let 〈·, ·〉M be orthosymmetric. Then A ∈ Fn×n has a unique
canonical generalized polar decomposition A = WS if and only if

1) A?A has no negative real eigenvalues;

2) if zero is an eigenvalue of A?A, then it is semisimple;

3) Ker A?A = Ker A.



Computational considerations

Theorem: Let A ∈ Fn×n have a unique canonical generalized polar decom-
position A = WS. Let g be any scalar function of the form g(x) = xh(x2)
such that

1) the iteration Xk+1 = g(Xk) converges to sign(X0) with order of con-
vergence p whenever sign(X0) is defined,

2) g(0) = 0,

3) for sesquilinear forms, g(X?) = g(X)? for all X ∈ Cn×n in the domain
of g.

Then the iteration

Yk+1 = Ykh(Y ?k Yk), Y0 = A

converges to W with order of convergence p.



Computational considerations

Example: The iteration

Sk+1 = 2Sk(I + S2
k)
−1, S0 = S

which converges quadratically to sign(S);

leads to the iteration

Xk+1 = 2Xk

(
I + X?kXk

)−1
, X0 = A

which converges quadratically to W , when a unique canonical generalized
polar decomposition A = WS exists;

S can be computed via S = W?A.



Computational considerations

Example: A =


3 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 , M =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 .
The iteration

Xk+1 = 2Xk

(
I + X?kXk

)−1
, X0 = A

produces iterates with the following relative differences:

iterate ‖Xk −Xk−1‖1/‖Xk‖1
X1 5.00e-1
X2 5.56e-2
X3 1.73e-3
X4 1.50e-6
X5 1.13e-12
X6 1.05e-16



Conclusions

• concept of generalized polar decomposition can be generalized to the
singular case;

• the concept of canonical polar decomposition can be generalized to or-
thosymmetric scalar products;

• the concept can even be generalized to rectangular matrices;

• the uniqueness of the decomposition allows to use well-known matrix
iterations for the computation of the decomposition.



Thank you for your attention!


