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The Singular Value Decomposition

Theorem: Let A ∈ Cm×n. Then there exist unitary matrices U ∈ Cm×m

and V ∈ Cn×n such that

U ∗AV =

[
Σ 0
0 0

]
=


σ1 0 0

. . .
...

0 σr 0
0 . . . 0 0


where σ1 ≥ · · · ≥ σr > 0. The parameters σ1, . . . , σr are uniquely defined
and are called the (nonzero) singular values of A.
Moreover,

AA∗ =

[
Σ2 0
0 0

]
m×m

and A∗A =

[
Σ2 0
0 0

]
n×n



The Singular Value Decomposition

Aspects: of the singular value decomposition:

• allows computation of the polar decomposition;

• displays eigenvalues of the Hermitian matrices AA∗ and A∗A;

• allows numerical computation of the rank of a matrix;

• allows construction of optimal low-rank approximations;

• useful tool in Numerical Linear Algebra;
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Generalized Singular Value Decompositions

Problem: Given A ∈ Cm×n, compute a canonical form that displays

• the Jordan canonical form of A[∗]A and AA[∗], where A[∗] = H−1A∗H is
the adjoint with respect to a Hermitian sesquilinear form [·, ·] = (H·, ·);
(A[∗]A and AA[∗] are selfadjoint with respect to [·, ·]);

• the Jordan canonical form of ATA and AAT ;
(these are complex symmetric matrices);

• the Jordan canonical form of A[T ]A and AA[T ], where A[T ] is the adjoint
with respect to a complex symmetric or complex skew-symmetric bilinear
form [·, ·];



Generalized Singular Value Decompositions

General formulation of the problem: let A ∈ Cm×n and ? ∈ {∗, T};
• allow two inner products given by G ∈ Cm×m and Ĝ ∈ Cn×n;

• compute a canonical form for the triple (A,G, Ĝ) via

(ACF, GCF, ĜCF) = (Y ?AX,X?GX, Y ?ĜY ), where X, Y are nonsingular;

• let this form display the eigenvalues of

– the matrix Ĥ = Ĝ−1A?G−1A;

– the matrix H = G−1AĜ−1A?;

This makes sense, because

Y −1ĤY = Ĝ−1
CF A

?
CFG

−1
CF ACF and X−1HX = G−1

CF ACFĜ
−1
CF A

?
CF
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Then G = H−1, Ĝ = H, ? = ∗: ; forms for A[∗]A = Ĥ and AA[∗] =
HHH−1;



Generalized Singular Value Decompositions

General formulation of the problem: let A ∈ Cm×n and ? ∈ {∗, T};
• allow two inner products given by G ∈ Cm×m and Ĝ ∈ Cn×n;
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– the matrix Ĥ = Ĝ−1A?G−1A;
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Generalized Singular Value Decompositions

Different cases:

G Ĝ Ĥ = Ĝ−1A?G−1A H = G−1AĜ−1A?

1) Hermitian Hermitian Ĝ-selfadjoint G-selfadjoint

2) symmetric symmetric Ĝ-selfadjoint G-selfadjoint

3) symmetric skew-symmetric Ĝ-skewadjoint G-skewadjoint

4) skew-symmetric skew-symmetric Ĝ-selfadjoint G-selfadjoint
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The nonsingular case

Assumption: A ∈ Cn×n is nonsingular (and thus so are H and Ĥ)

• Standard SVD: U ∗AV = Σ ∈ Cn×n ⇒ V ∗A∗AV = U ∗AA∗U = Σ2.
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Theorem: Let Ĝ be complex symmetric and let Ĥ be Ĝ-selfadjoint and
nonsingular. Then there exists a unique square root S of Ĥ satisfying

σ(S) ⊆ {z ∈ C \ {0} : arg(z) ∈ [0, π)}.

This square root is a polynomial in Ĥ and is therefore Ĝ-selfadjoint.
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The nonsingular case

Assumption: A ∈ Cn×n is nonsingular (and thus so are H and Ĥ)

• Standard SVD: U ∗AV = Σ ∈ Cn×n ⇒ V ∗A∗AV = U ∗AA∗U = Σ2.

• Idea: start with a square root S of Ĥ = Ĝ−1ATG−1A;

• observe: H and Ĥ are similar:

Ĥ = Ĝ−1AT︸ ︷︷ ︸
A

G−1A︸ ︷︷ ︸
B

and H = G−1A︸ ︷︷ ︸
B

Ĝ−1AT︸ ︷︷ ︸
A

(Flanders 1951: AB and BA have the same nonzero elementary divisors)

• then (H;G) and (Ĥ, Ĝ) have the same canonical forms;

• construct X, Y such that X−1HX = (Y −1ĤY )T and XTGX =
Y T ĜY and show that XTAY is basically X−1SX



The nonsingular case

Theorem: Let A ∈ Cn×n be nonsingular and let G, Ĝ ∈ Cn×n be complex
symmetric and nonsingular. Then there exist nonsingular matrices X, Y ∈
Cn×n such that

XTAY = Jξ1(µ1) ⊕ · · ·⊕ Jξm(µm),
XTGX = Rξ1 ⊕ · · ·⊕ Rξm,

Y T ĜY = Rξ1 ⊕ · · ·⊕ Rξm,
, Rξ =

 0 1

. .
.

1 0


ξ×ξ

where µj ∈ C \ {0}, arg µj ∈ [0, π), and ξj ∈ N for j = 1, . . . ,m.

Moreover, for the Ĝ-symmetric matrix Ĥ = Ĝ−1ATG−1A and for the G-
symmetric matrix H = G−1AĜ−1AT we have that

Y −1ĤY = J 2
ξ1

(µ1) ⊕ · · ·⊕ J 2
ξm

(µm),

X−1HX = J 2
ξ1

(µ1)
T⊕ · · ·⊕J 2

ξm
(µm)T .



The singular case

Now: A ∈ Cm×n may be singular (and so may be H and Ĥ)

Problems:

• a square root of H and/or Ĥ need not exist

• H and Ĥ need not be similar;



The singular case

Now: A ∈ Cm×n may be singular (and so may be H and Ĥ)

Example

A =


0 0 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 , G =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , Ĝ =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



H = Ĝ−1ATG−1A =


0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , Ĥ = G−1AĜ−1AT =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 .



The singular case

Theorem: Let A ∈ Cm×n and let G ∈ Cm×m and Ĝ ∈ Cn×n be symmetric
and nonsingular. Then there exist nonsingular matrices X ∈ Cm×m and
∈ Cn×n such that

XTAY = Ans ⊕ Az,1 ⊕ · · · ⊕ Az,k,

XTGX = Gns ⊕Gz,1 ⊕ · · · ⊕Gz,k,

Y T ĜY = Ĝns ⊕ Ĝz,1 ⊕ · · · ⊕ Ĝz,k.

Moreover, for the Ĝ-selfadjoint matrix Ĥ = Ĝ−1AT Ĝ−1A ∈ Cn×n and for
the G-selfadjoint matrix H = G−1AĜ−1AT ∈ Cm×m we have that

Y −1ĤY = Ĥns ⊕ Ĥz,1 ⊕ · · · ⊕ Ĥz,k,

X−1HX = Hns ⊕Hz,1 ⊕ · · · ⊕ Hz,k,

where Ans, Ĥns and Hns are nonsingular and ...



The singular case

... either

1) Az,j = 0m0×n0, Gz,j = Im0, Ĝz,j = In0, Ĥz,j = 0n0, Hz,j = 0m0

. . .



The singular case

... or

2) Az,j =


0 1 0
. . .

. . .

. . . 1
0 0


2p×2p

, Gz,j = Ĝz,j =

 0 1
. .
.

1 0


2p×2p

,

Ĥz,j =


0 1 0
. . .

. . .

. . . 1
0 0


2

2p×2p

, Hz,j =




0 1 0
. . .

. . .

. . . 1
0 0


2

2p×2p


T

for some p ∈ N . . .



The singular case

... or

3) Az,j =

[
0
Ip

]
p+1×p

, Gz,j =

 0 1
. .
.

1 0


p+1×p+1

, Ĝz,j =

 0 1
. .
.

1 0


p×p

Ĥz,j =


0 1 0
. . .

. . .

. . . 1
0 0


p×p

, Hz,j =


0 1 0
. . .

. . .

. . . 1
0 0


T

p+1×p+1

for some p ∈ N . . .



The singular case

... or

4)Az,j =
[

0 Ip
]
p×p+1

,Gz,j =

 0 1
. .
.

1 0


p×p

, Ĝz,j =

 0 1
. .
.

1 0


p+1×p+1

Ĥz,j =


0 1 0
. . .

. . .

. . . 1
0 0


p+1×p+1

, Hz,j =


0 1 0
. . .

. . .

. . . 1
0 0


T

p×p

for some p ∈ N . . .



The singular case

Uniqueness: The canonical form is unique up to permutation of blocks.

Idea of proof:

• reduction to a staircase-like form;

• extract the part of A corresponding to the nonsingular parts of H and
Ĥ and apply the theorem for the nonsingular case;

• extract the other blocks from the remaining part
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The singular values: ∗ and T case

Special case: G = Im, Ĝ = In. The singular values of A ∈ Cm×n are:

*-case: σ1, . . . , σmin(m,n) ≥ 0 (related to the eigenvalues of A∗A and AA∗);

T-case: Jξ1(µ1), ..., 0m0×n0, J2p1(0), ...,

[
0
Iq1

]
, ... ,

[
0 Ir1

]
, ...,

where arg(µj) ∈ [0, π) and the “values” are related to the Jordan blocks of
ATA and AAT .

Uniqueness: Singular values are unique both in the ∗-case and T -case!



Generalized Singular Value Decompositions

Different cases:

G Ĝ Ĥ = Ĝ−1A?G−1A H = G−1AĜ−1A?

1) Hermitian Hermitian Ĝ-selfadjoint G-selfadjoint

2) symmetric symmetric Ĝ-selfadjoint G-selfadjoint

3) symmetric skew-symmetric Ĝ-skewadjoint G-skewadjoint

4) skew-symmetric skew-symmetric Ĝ-selfadjoint G-selfadjoint

• 1) Bolshakov/Reichstein 1995

• 2)–4) this talk
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The nonsingular case

Assumption: A ∈ Cn×n is nonsingular (and thus so are H and Ĥ)

• Problem: squares of Ĝ-selfadjoints and Ĝ-skewadjoint are always Ĝ-
selfadjoint

⇒ Ĥ does not have a G-structured square root
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The nonsingular case

Assumption: A ∈ Cn×n is nonsingular (and thus so are H and Ĥ)

• Problem: squares of Ĝ-selfadjoints and Ĝ-skewadjoint are always Ĝ-
selfadjoint

⇒ Ĥ does not have a G-structured square root

• Solution: take the Ĝ-selfadjoint forth root of Ĥ2 instead;

• continue as in the case of G, Ĝ being both symmetric;

• in the general case (A ∈ Cm×n) do a staircase-like reduction.



The general case

Theorem: Let A ∈ Cm×2n, let G ∈ Cm×m be symmetric nonsingular,
and let Ĝ ∈ C2n×2n be skew-symmetric and nonsingular. Then there exist
nonsingular matrices X ∈ Cm×m and ∈ C2n×2n such that

XTAY = Ans,1 ⊕ · · · ⊕ Ans,` ⊕ Az,1 ⊕ · · · ⊕ Az,k,

XTGX = Gns,1 ⊕ · · · ⊕Gns,` ⊕Gz,1 ⊕ · · · ⊕Gz,k,

Y T ĜY = Ĝns,1 ⊕ · · · ⊕ Ĝns,` ⊕ Ĝz,1 ⊕ · · · ⊕ Ĝz,k.

Moreover, for the Ĝ-skewadjoint matrix Ĥ = Ĝ−1AT Ĝ−1A ∈ C2n×2n and
for the G-skewadjoint matrix H = G−1AĜ−1AT ∈ Cm×m we have that

Y −1ĤY = Ĥns,1 ⊕ · · · ⊕ Ĥns,` ⊕ Ĥz,1 ⊕ · · · ⊕ Ĥz,k,

X−1HX = Hns,1 ⊕ · · · ⊕ Hns,` ⊕Hz,1 ⊕ · · · ⊕ Hz,k,

where ...



The general case

... the “singular values” of A are of the forms

1) Ans,j =

[
Jξ(µ) 0

0 Jξ(µ)

]
, Gns,j =

[
0 Rξ

Rξ 0

]
, Ĝns,j =

[
0 Rξ

−Rξ 0

]
,

where µ 6= 0, arg(µ) ∈ [0, π/2) and

Ĥ =

[
−J 2

ξ (µ) 0

0 J 2
ξ (µ)

]
, H =

[
J 2
ξ (µ) 0

0 −J 2
ξ (µ)

]T



The general case

... the “singular values” of A are of the forms

2) Az,j = 0m0×2n0, Gz,j = Im0, Ĝz,j =

[
0 In0

−In0 0

]
,

Ĥz,j = 0n0, Hz,j = 0m0



The general case

... the “singular values” of A are of the forms

3) Az,j = J2p(0), Gz,j =

[
0 Rp

Rp 0

]
, Ĝz,j =

[
0 Rp

−Rp 0

]

and Ĥz,j =

[
−Ip 0

0 Ip

]
J 2

2p(0), Hz,j =

[
−Ip+1 0

0 Ip−1

]
J 2

2p(0)T ,

for some p ∈ N . . .



The general case

... the “singular values” of A are of the forms

4) Az,j =

[
0
I2p

]
, Gz,j = R2p+1, Ĝz,j =

[
0 Rp

−Rp 0

]

and Ĥz,j =

[
−Ip 0

0 Ip

]
J2p(0), Hz,j =

[
Ip+1 0

0 −Ip

]
J2p+1(0)T ,

for some p ∈ N . . .



The general case

... the “singular values” of A are of the forms

5) Az,j =


0 0
0 Iq
0 0
Iq 0

, Gz,j =

[
0 R2q+1

R2q+1 0

]
, Ĝz,j =

[
0 Rq

−Rq 0

]

and Ĥz,j =

[
−Jq(0) 0

0 Jq(0)

]
, Hz,j =

[
−Jq+1(0) 0

0 Jq+1(0)

]T
,

for some odd q ∈ N . . .



The general case

... the “singular values” of A are of the forms

6) and 7) “transposed” versions of 4) and 5)
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The general case

Theorem: Let A ∈ C2m×2n, let G ∈ C2m×2m and Ĝ ∈ C2n×2n be skew-
symmetric and nonsingular. Then there exist nonsingular matrices X ∈
C2m×2m and ∈ C2n×2n such that

XTAY = Ans,1 ⊕ · · · ⊕ Ans,` ⊕ Az,1 ⊕ · · · ⊕ Az,k,

XTGX = Gns,1 ⊕ · · · ⊕Gns,` ⊕Gz,1 ⊕ · · · ⊕Gz,k,

Y T ĜY = Ĝns,1 ⊕ · · · ⊕ Ĝns,` ⊕ Ĝz,1 ⊕ · · · ⊕ Ĝz,k.

Moreover, for the Ĝ-selfadjoint matrix Ĥ = Ĝ−1AT Ĝ−1A ∈ C2n×2n and
for the G-selfadjoint matrix H = G−1AĜ−1AT ∈ C2m×2m we have that

Y −1ĤY = Ĥns,1 ⊕ · · · ⊕ Ĥns,` ⊕ Ĥz,1 ⊕ · · · ⊕ Ĥz,k,

X−1HX = Hns,1 ⊕ · · · ⊕ Hns,` ⊕Hz,1 ⊕ · · · ⊕ Hz,k,

where ...



The general case

... the “singular values” of A are of the forms

1) Ans,j =

[
Jξ(µ) 0

0 Jξ(µ)

]
, Gns,j =

[
0 Rξ

−Rξ 0

]
, Ĝns,j =

[
0 −Rξ

Rξ 0

]
,

where µ 6= 0, arg(µ) ∈ [0, π) and

Ĥ =

[
J 2
ξ (µ) 0

0 J 2
ξ (µ)

]
, H =

[
J 2
ξ (µ) 0

0 J 2
ξ (µ)

]T



The general case

... the “singular values” of A are of the forms

2) Az,j = 0m0×2n0, Gz,j =

[
0 Im0

−Im0 0

]
, Ĝz,j =

[
0 In0

−In0 0

]
,

Ĥz,j = 0n0, Hz,j = 0m0



The general case

... the “singular values” of A are of the forms

3) Az,j = J2p(0), Gz,j =

[
0 Rp

−Rp 0

]
, Ĝz,j =

[
0 Rp

−Rp 0

]

and Ĥz,j = ΣJ 2
2p(0), Hz,j = Σ̂J 2

2p(0)T ,

for some p ∈ N and some signature matrices Σ, Σ̂ ...



The general case

... the “singular values” of A are of the forms

4) Az,j =


0 0
0 Iq
0 0
Iq 0

, Gz,j =

[
0 Rq+1

−Rq+1 0

]
, Ĝz,j =

[
0 Rq

−Rq 0

]

and Ĥz,j =

[
Jq(0) 0

0 Jq(0)

]
, Hz,j =

[
Jq+1(0) 0

0 Jq+1(0)

]T
,

for some q ∈ N . . .



The general case

... the “singular values” of A are of the forms

5) Az,j =

[
0 0 0 Iq
0 Iq 0 0

]
, Gz,j =

[
0 Rq

−Rq 0

]
, Ĝz,j =

[
0 Rq+1

−Rq+1 0

]

and Ĥz,j =

[
Jq+1(0) 0

0 Jq+1(0)

]
, Hz,j =

[
Jq(0) 0

0 Jq(0)

]T
,

for some q ∈ N . . .



Thank you for your attention!


