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The Singular Value Decomposition |

Theorem: Let A € C™*". Then there exist unitary matrices U € C™*™
and V € C"" such that

01 010
2210 : ;
av=[20] 2|
010 o
0 ... 00|
where 01 > --- > o, > 0. The parameters o1, ..., 0, are uniquely defined
and are called the (nonzero) singular values of A.

Moreover,
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The Singular Value Decomposition |

Aspects: of the singular value decomposition:

e allows computation of the polar decomposition;

e displays eigenvalues of the Hermitian matrices AA* and A* A;
e allows numerical computation of the rank of a matrix;

e allows construction of optimal low-rank approximations;

e useful tool in Numerical Linear Algebra;
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Generalized Singular Value Decompositions |

Problem: Given A € C™*", compute a canonical form that displays

e the Jordan canonical form of A"/ A and AA® where A = H1A*H is
the adjoint with respect to a Hermitian sesquilinear form |-, -] = (H-, -);
(A A and AAY are selfadjoint with respect to [, ]);

e the Jordan canonical form of AT A and AA”"

(these are complex symmetric matrices);

e the Jordan canonical form of A7l A and AAT! where ATl is the adjoint

with respect to a complex symmetric or complex skew-symmetric bilinear
form |-, -];



Generalized Singular Value Decompositions |

General formulation of the problem: let A € C™*" and x € {x, T}
e allow two inner products given by G € C"*" and G € C™*™;
e compute a canonical form for the triple (A, G, é) via
(Acr, Ger, Ger) = (Y*AX, X*GX,Y*GY), where X,Y are nonsingular;
e let this form display the eigenvalues of

— the matrix H = G lA*G L A:
— the matrix H = G_lAé_lA*;

This makes sense, because

YT'HY = GALG A and XTVHX = Gl ARG AL,
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General formulation of the problem: let A € C™*" and x € {x, T}
e allow two inner products given by G € C"*" and G € C™*™;
e compute a canonical form for the triple (A, G, é) via
(Acr, Ger, Ger) = (Y*AX, X*GX,Y*GY), where X,Y are nonsingular;
e let this form display the eigenvalues of

— the matrix H = G lA*G L A:
— the matrix H = G_lAé_lA*;

Then G = 1, G:],*:T:f\»formsforﬂ:ATAandH:AAT.
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Different cases:

G G H=GT1AG A H=GTAG A"
1) Hermitian Hermitian (G-selfadjoint (G-selfadjoint
2)|  symmetric symmetric (z-selfadjoint (z-selfadjoint
3)| symmetric | skew-symmetric| (-skewadjoint (G-skewadjoint
4) | skew-symmetric | skew-symmetric G—selfadjoint (G-selfadjoint
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Assumption: A € C"*" is nonsingular (and thus so are H and 7:()

e Standard SVD: U*AV =% € C™" = V*A*AV = U*AA*U = Y2

e Idea: start with a square root S of H = G'_lATG_lA;

Theorem: Let G be complex symmetric and let H be éf—selfadjoint and
nonsingular. Then there exists a unique square root S of H satisfying

o(S) C{z e C\ {0} :arg(z) € [0,m)}.

This square root is a polynomial in H and is therefore é—selfadjoint.
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The nonsingular case |

Assumption: A € C"*" is nonsingular (and thus so are H and 7:()

e Standard SVD: U*AV =% € C™" = V*A*AV = U*AA*U = Y2

e Idea: start with a square root S of H = G'_lATG_lA;

e observe: ‘H and H are similar:

1AT,G 14 and H = G1 G ;AT,

(Flanders 1951 AB and BA have the same nonzero elementary divisors)
e then (H; G) and (H,G) have the same canonical forms;

e construct X, Y such that X '"HX = (Y'HY)T and XTGX =
YTQY and show that X7 AY is basically X !SX



The nonsingular case |

Theorem: Let A € C™*" be nonsingular and let G, G € C"™" be complex
symmetric and nonsingular. Then there exist nonsingular matrices X,Y €

C" " such that

XTAY = Jq(m) ®- - ® T, (1), 01
X"GX = Ry @& R, , Re=| .-
YIGY = Ry @@ R, L

where p; € C\ {0}, argp; € [0,7), and §; € N for j = 1,...,m.
Moreover, for the G—symmetrlc matrix H = G ATG 1A and for the G-
symmetric matrix H = G AG AT we have that

YTHY = J2(m) @ ® T2 (1im),
XTHY = T3 ()" @ T2 (1)



The singular case |

Now: A € C™" may be singular (and so may be H and 7:()

Problems:

e a square root of H and/or H need not exist

e H and H need not be similar:
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The singular case |

Theorem: Let A € C"™*" and let G € C™*™ and G € C" " be symmetric
and nonsingular. Then there exist nonsingular matrices X € C™*" and
e C"" such that

XTAY = A, @A .0 DA,
XTGX = Gns D Gz)l DD Gz,ka
YIGY = Gy ® Gy @ ® Gy

Moreover, for the é’—selfadjoint matriz< H =G 1ATG 1A € C™" and for
the G-selfadjoint matrix H = G~1AG 1Al € C™ ™ we have that

YYHY = Hps® Moy @ - @ He,
X '"HX = Hyp®H. D - D H.y,

where A, H,s and H,, are nonsingular and ...
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... either

AN AN

1) Az = Omgxngr Goj = Imgy Gej = Ingy Haj = 0py Hzj = Oy
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.. Or

for some p e N ...

d 2px2p

2p><2p)
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.. Or
0
[0
ﬂz’j —
| 0

p+1xp
1 0]
-1
0
= pXp

for somep e N ...

p+1xp+1

- p+1xp+1

pXp
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.. Or

for somep e N ...

- p+1xp+1

1G2,j_
0 1
0

pXp

p+1xp+1
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Uniqueness: The canonical form is unique up to permutation of blocks.

Idea of proof:

e reduction to a staircase-like form;

e extract the part of A corresponding to the nonsingular parts of H and
‘H and apply the theorem for the nonsingular case;

e extract the other blocks from the remaining part
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Example
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The singular case
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The singular values: x and T’ case |

Special case: G = [, G =1, The singular values of A € C"*" are:

*_case: 01, ..., 0min(mn > 0 (related to the eigenvalues of A*A and AA*);
(m,n)

0
T-case: J¢,(11), -y Omgxngr J2p,(0), ..., [I ] ,[O I, }
a0

where arg(y;) € |0, 7) and the “values” are related to the Jordan blocks of
AT A and AAT

Uniqueness: Singular values are unique both in the x-case and T-case!
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The nonsingular case |

Assumption: A € C"™*" is nonsingular (and thus so are H and H)

e Problem: squares of é’—selfadjoints and G-skewadjoint are always G-
selfadjoint

= H does not have a G-structured square root
e Solution: take the G—selfadjoint forth root of 2 instead:
e continue as in the case of G, G being both symmetric;

e in the general case (A € C"*") do a staircase-like reduction.



The general case |

Theorem: Let A € C™*", let G € C™™ be symmetric nonsingular,
and let G € C?"**" be skew-symmetric and nonsingular. Then there exist
nonsingular matrices X € C™ "™ and € C?*"**" such that

XTAY — Ans,l D---D Ans,é s> Az,l DD Az,kv
X'GX = Gu1 @ DGy ®G.1 D DGy,
YIGY = G 1 @ @Gy @G.1 D - B Gy

Moreover, for the é—skewadjoint matrix 7-2 — G IATG 1A € C2%2n gpd
for the G-skewadjoint matrix H = G~ 1AG1 AT € C™ ™ we have that

Y—lf}:[Y — 7:(713,1 DD ﬂns,ﬁ D 7:[2,1 DD ﬂz,ka
X_lHX — Hng)l @ co e EB Hns,g @ Hz,l @ v @ HZ,k’?

where ...
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... the “singular values” of A are of the forms

| Te(p) 0 | 0 R v | 0 R
1) Ans,]_[ 0 %<M)]1 Gns,]— [Rf 0 ]1 Gns,]—[ ’

where 1 #£ 0, arg(u) € [0, 7/2) and

S O OMT
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... the “singular values” of A are of the forms

2 0 I,
2) Az,j = Omox2n07 Gz,j — ]mo, Gz,j = [—[ OO ],

no

N

Hz,j — OTLO) Hz,j — Omo
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... the “singular values” of A are of the forms

0 R 0 R
3) A, = T(0), Gz,j:[Rp p], GZJ:[_RP Op]

. —I. 0 —1 0
and Hz,j:[ 0 Ip]ﬁp(m, Hz,j:[ p ]JSp(O)T,

for some p e N ...



The general case |

... the “singular values” of A are of the forms

0 A 0 R
4) Az,j = [[2p ] , Gz,j = R2p+1, Gz,j = [ —Rp Op]

. —7. 0 I 0
and HZJ‘ = [ Op I ] j2p<0)1 Hz,j — [ Pl ] ‘72p+1<0>T'
p

for some p e N ...



The general case |

... the “singular values” of A are of the forms

0 0
o [ 0 Rogn . [ 0o R,
) Ai=1gg| GZJ_[RQQH 0 ] GZJ“[—RQ 0
I, 0

o ﬂzjj:[—qu) 0 ] Hz’j:[—jqﬂ(()) O(o)r,

for some odd g € N . ..
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... the “singular values” of A are of the forms

6) and 7)  “transposed” versions of 4) and 5)
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The general case |

Theorem: Let A € C¥™2" et G € C2<2m and (G € C2"*2" be skew-
symmetric and nonsingular. Then there exist nonsingular matrices X €
C?mx2m and € C**2" such that

XTAY — Ans,l D---D Ans,é D Az,l DD Az,kv
X'GX = Gu1 @ DGy ®G.1 D DGy,
YIGY = Gps1 @ @Gy ®G.1 D - B Gy

Moreover, for the é—selfadjoint matrix 7f{ — G 1ATG 1A € 220 4pd
for the G-selfadjoint matrix H = G AGtAL € C*"*?™ we have that

Y—lf}:[Y — ﬂn3,1 DD ﬂns,ﬁ QP 7:[2,1 DD ﬂz,ka
X_lHX — Hng)l @ co e EB Hns,g @ Hz,l @ v @ HZ,k’?

where ...
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... the “singular values” of A are of the forms

1) A= [‘750(“) %W)]’

where p #£ 0, arg(u) € [0, ) and

H = [jgo(m QOM)] M= ljf(u) QOu)r

0 R A 0 —R
Gns': 6]1 Gns:[ : ,
2] [_Ré_ O 3J
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... the “singular values” of A are of the forms
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... the “singular values” of A are of the forms

0 R 0 R
3) AZ,] — J2p<0)' GZ,] = [_Rp p ], Gz,] — [_Rp Op]

AN

and szj — 2j22]9<0), Hz,j — ZA3k722p<0)T'

for some p € N and some signature matrices ., S
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... the “singular values” of A are of the forms

o O Rq_|_1 A o O Rq
SN R

O OoOLN o

0
0
0
]q

o ﬂzjj:[m» 0 ] H&j:[@mm O<o>r'

for some g € N ...
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... the “singular values” of A are of the forms

00 I, o RT . [ 0 R
AR R IV RS I

and ., — [«7q+01(0) jqﬁ(())]’ H. = [~7q(0) 00>]T1

for some g € N . ..



Thank you for your attention!



