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The motivation



Perturbation analysis of symplectic matrices |

Motivation: perturbation analysis for symplectic matrices;

Definition: S € C?"*?" is called symplectic if

R U
S*JS = J, WhereJ—[_InO].

e the spectrum of symplectic matrices is symmetric with the respect to
o : : : el |
the unit circle: if X\ is an eigenvalue, then sois A ;

e the pairing degenerates for unimodular eigenvalues (i.e., eigenvalues on
the unit circle);

e unimodular eigenvalues have signs as additional invariants;



Perturbation analysis of symplectic matrices |

Example:

11 1 -1 0 1
I CH RS (YRR R T

e S and .S are similar as matrices (viewed as unstructured matrices)

e S and S5 are not similar via a symplectic similarity transformation (view-
ed as structured matrices);

e we say the eigenvalue 1 of S; has sign € = +1 and the eigenvalue 1 of
Sy has sign ¢ = —1;

Signs are crucial in the investigation of structured perturbations!



What happens under structured perturbations? |

o let S € C?*?" be symplectic;
e let S have two close unimodular eigenvalues with opposite signs;

e if S is perturbed and the two eigenvalues meet, they generically form
a Jordan block; then they may split off as a pair of nonunimodular
reciprocal eigenvalues;
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What happens under structured perturbations? |
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=

o let S € C?*?" be symplectic;
e let S have two close unimodular eigenvalues with equal signs;

e if S is perturbed and the two eigenvalues meet, they cannot form a
Jordan block, and they must remain on the unit circle;
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o let S € C?*?" be symplectic;
e let S have two close unimodular eigenvalues with equal signs;

e if S is perturbed and the two eigenvalues meet, they cannot form a
Jordan block, and they must remain on the unit circle;



Sesquilinear vesus bilinear |

Canonical forms are crucial in the investigation of these signs!

0 I . . : .
J = [ 7 On] can be interpreted as a matrix that either induces a ses-
—in

quilinear form or a bilinear form.

e sesquilinear form:
unimodular eigenvalues of symplectic matrices (S*J.S = J) have signs;

e bilinear form:
unimodular eigenvalues of symplectic matrices (STJS = J) do not
have signs;

Question: How does the real case fit in here? Or, more presicely ...



The question



Indefinite inner products |

Indefinite inner products:

1) H = =H" invertible defines a (skew-)symmetric bilinearform on C":

(x,ylg =y ' Hx forall z,y € C"

2) H = £ H* invertible defines a (skew-)Hermitian sesquilinearform on C":

z,ylg =y "Hx forall x,y € C"

Restricted to R" and for H € R™" both inner products are identical, so:

Question: What is the real scalar product? y' Hx or y*Hz?



Indefinite inner products |

The adjoint: For X € F"*" let X* be the matrix satisfying

v, Xw|g = [ X™v,w|y forall v,w € F".

We have X* = H ' X" H resp. X* = H'X*H.

Structured matrices in indefinite inner products:

structured matrix | adjoint y' ' Hx vy Hzx
A H-selfadjoint A*=A | A'H=HA | AAH=HA
S H-skew-adjoint | S* =-S5 |STH=-HS|S*H=—-HS
U H-unitary U=U' U'HU=H | U'HU = H




Indefinite inner products |

Spectral symmetries:

structured matrix y ' Hx vy Hx yI' Hx
field F=C F=C F=R
H-selfadjoints A A A A
H-skew-adjoints A, —A A, —A A=A =
H-unitaries A A A, X AL, X

Question: What is the real scalar product? y' Hz or y*Hx?

Answer: a mixture of y! Hx and y*Hz!



Indefinite inner products |

Spectral symmetries:

structured matrix y ' Hx vy Hx yI' Hx
field F=C F=C F=R
H-selfadjoints A A A A
H-skew-adjoints A, —A A, —A A=A =
H-unitaries A A A, X AL, X

Question: What is the real scalar product? y' Hz or y*Hx?

Answer: a mixture of y! Hz and y*Hx! (Answer complete?)



Canonical forms



Canonical forms |

Transformations that preserve structure:

e for bilinear forms: (H,A) — (PTHP, P"'AP), P invertible;
o for sesquilinear forms: (H, A) — (P*HP, P~*AP), P invertible;

H-selfadjoint P*H P-selfadjoint
Ais{ H-skew-adjoint » < P 1AP is{ P*H P-skew-adjoint
H-unitary P*H P-unitary

Here P* = P! or P* = P*, respectively.



Canonical forms |

Canonical forms for H-selfadjoint, -skew-adjoints, -unitaries are well-known:
e Gohberg/Lancaster/Rodman (1983)
e Sergeichuk (1988)
e Gohberg/Reichstein (1991)
e Lancaster/Rodman (1995)
e Lin/Mehrmann/Xu (1999)
e FaBbender/Mackey/Mackey/Xu (1999)
e Rodman (2006)

in terms of Hermitian or (skew)-symmetric pairs:

e Weierstral3, Kronecker
e Thompson (1976,1991)
e Lancaster/Rodman (2005,2005)



Canonical forms |

H-Indecomposability:

A € F"" is called H-decomposable, if there exists P € F"*" invertible
such that

A1 0 Hy 0
0 A, 0 Hs

Otherwise A is called //-indecomposable.

P1AP = [ ] : P*HP = [ ] : Aj,Hj EFnjxnj,nj > ()

Clear: Any A € F"*" can be decomposed as
PlAP=A®---® A, PHP=H,®---& H,,

where each A; is Hj-indecomposable.



Canonical forms: H-selfadjoints |

Case 1: F = C, H! = + H defines a bilinear form:

Let A € C"" be H-indecomposable and H-selfadjoint. Then there exists
P € C"" invertible such that

‘A1 0] TR
pAP=gN=| . |, PPTHP=F,=|
. i 10

Canonical form for H-selfadjoints in general:

PrAP=J, (M) @ @ T (\), PAP=F,® --&F,



Canonical forms: H-selfadjoints |

Case 2: F = C, H* = &+ H defines a sesquilinear form;

Let A € C"" be H-indecomposable and H-selfadjoint. Then there exists
P € C" " invertible such that either

1) P7YAP = J,()\), and PPHP = ¢F),, where A € R and € = £1; or

2) PlAp = |Y7/2 PTHp — |"" h R:
) [ 0 Jn/z(m]’ [ 0 Fn/J’W ere it & R;

additional invariants: signs

2 1 0 1 0 —1
A=[ia) m=[a] e[ 5]

There is no P such that P"'AP = A and P*H,P = H,.



Canonical forms: real matrices |

Question: How do we construct canonical forms for real matrices?

Idea: decompose

A 0
0 A,

where o(A;) C R and o(As) C C\ R.

PlAP = [

R

0 Ho

Problem: How do we display real canonical forms for (Ay, Hy)?



Canonical forms: real matrices |

Question: How do we construct canonical forms for real matrices?

Idea: decompose

A 0
0 A,

where o(A;) C R and o(As) C C\ R.

PlAP = [

R

0 Ho

Solution: C ~ M ::{[—&ﬁ g] :a,BER}

| - | | a
via the field isomorphism ¢ : C — M(Cv (a+1if8) — [ —3 oz]



Canonical forms: real matrices |

Question: How do we construct canonical forms for real matrices?

Real Jordan blocks associated with a pair of conjugate complex eigenva-
lues:

a B 1 0 0
—0a 0 1
a [ .
-3 «a
jn(a76> qub(jn(()é—l—iﬁ)): L0 :
0 1
a [
U -0 a




Canonical forms: real matrices |

Aim: Canonical forms for real H-structured matrices A

Question: Can we find P invertible such that

1 o Ay 0 o Ay 0 T o H{ 0 o Hq 0
P AP_[O AJ‘[O ¢<A2>]’ PHP_[O Hgl_lo gb(Hg)]’

where
e0(A) CR
o Ay is Hy-structured
eo(Ay) CC\R

o A, is Hy-structured (as a complex matrix)



Canonical forms: real matrices |

Example: an H-skew-adjoint matrix for H = H'"

s-oo-o((32)- |3
0




Canonical forms: real matrices |

Example: an H-skew-adjoint matrix for H = H'"

01 0 0]

1 0 —10 0 0

S‘¢(8)_¢<[01D_ 000 1

0 0-10]

S is H-skew-adjoint (—ST H = HS) for any H having the form

h1 0 hg hg
0 h —hy by
H = hs —hy hy O
| hy hg 0 hy




Canonical forms: real matrices |

Example: an H-skew-adjoint matrix for H = H'"

01 0 0]
1 0 —10 0 0
S‘¢(8)_¢<[01D_ 000 1
0 0-10]
S is H-skew-adjoint (—ST H = HS) for any H having the form
(h1 0 hg hg
7 0 hi —hy hs _ hl. hs + 1hy
h3 —h4 hg 0 h3—2h4 hg
| hy hg 0 hy




Canonical forms: real matrices |

Example: an H-skew-adjoint matrix for H = H'"

01 0 0]
1 0 —10 0 0
S‘¢(8)_¢<[01D_ 000 1
0 0-10]
S is H-skew-adjoint (—ST H = HS) for any H having the form
(h1 0 hg hg
7 0 hi —hy hs _ hl. hs + 1hy
h3 —h4 hg 0 h3—2h4 hg
| hy hg 0 hy

Observation: 'H is Hermitian and S is ‘H-skew-adjoint: S*H = —HS



Canonical forms: real matrices |

Theorem: Let H € R"*" be invertible (skew-)symmetric and let S € R™*"
be H-skew-adjoint. Then there exists P € R"*" invertible such that

Sl 0 H1 0 ]

PmSP = [ 0 6(Sy) 0 G(Ha)

[ prap-|

where
1) 0(S1) CR and 0(Sy) C C\ R;
2) Hs is (skew-)Hermitian and Ss is Ho-skew-adjoint: S;Ho = —HoSs.
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Theorem: Let H € R"*" be invertible (skew-)symmetric and let S € R™*"
be H-skew-adjoint. Then there exists P € R"*" invertible such that

Sl 0 H1 0 ]

PmSP = [ 0 6(Sy) 0 G(Ha)

[ prap-|

where
1) 0(S1) CR and 0(Sy) C C\ R;
2) Hs is (skew-)Hermitian and Ss is Ho-skew-adjoint: S;Ho = —HoSs.

Question: What is the real scalar product? y' Hz or y*Hx?

Answer: y*Hx!
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be H-skew-adjoint. Then there exists P € R"*" invertible such that

Sl 0 H1 0 ]

PmSP = [ 0 6(Sy) 0 G(Ha)
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where
1) 0(S1) CR and 0(Sy) C C\ R;
2) Hs is (skew-)Hermitian and Ss is Ho-skew-adjoint: S;Ho = —HoSs.

Question: What is the real scalar product? y' Hz or y*Hx?

Answer: y*Hx! (Answer complete?)



Canonical forms: real matrices |

Example: an H-selfadjoint matrix for H = H'"

s ([11])-|
0

S = O O




Canonical forms: real matrices |

Example: an H-selfadjoint matrix for H = H'"

01 0 0]

1 0 —10 0 0

A_¢(A>_¢<[0z])_ 00 0 1

0 0-10

A is H-selfadjoint (A" H = HA) for any H having the form
hi hy hg hy
| ha —h1 hy —h3
= hs hy hs  he
| hy —hs he —hs




Canonical forms: real matrices |

Example: an H-selfadjoint matrix for H = H'"

01 0 0]
1 0 —10 0 0
A_¢(A>_¢<[0z])_ 00 0 1
0 0-10
A is H-selfadjoint (A" H = HA) for any H having the form
[ hy —hy hy —hs
|l hi he hs hy
e A S
| hs ha hs he




Canonical forms: real matrices |

Example: an H-selfadjoint matrix for H = H'"

s ([11])-|
0

A is H-selfadjoint (A" H = HA) for any H having the form

[ hy —hi hy —hg ]
| P ohe hy hy | ha —ihy hy — ihg

LB =1 5 by —hs _¢<[h4—ih3 hg—z’h1]>

hs hi hs h




Canonical forms: real matrices |

Example: an H-selfadjoint matrix for H = H'"

s ([11])-|
0

A is H-selfadjoint (A" H = HA) for any H having the form

[ hy —hi hy —hg ]
| P ohe hy hy | ha —ihy hy — ihg

LB =1 5 by —hs _¢<[h4—ih3 hg—ih1]>

hs hi hs h

Observation: H is symmetric and A is H-selfadjoint: ATH = H.A



Canonical forms: real matrices |

Theorem: Let H € R™*" be invertible (skew-)symmetric and let A € R"*"
be H-selfadjoint. Then there exists P € R"*" invertible such that

A 0 H, 0 ]

PTIAP = [ 0 B(Ay) 0 (In ® F)g(Ho)

[ prap-]

where
1) 0(A;) CR and o(Ay) C C\ R;
2) H; is (skew-)symmetric and Aj is Hy-selfadjoint: AL Hy = HoAs.



Canonical forms: real matrices |

Theorem: Let H € R™*" be invertible (skew-)symmetric and let A € R"*"
be H-selfadjoint. Then there exists P € R"*" invertible such that

A 0 H, 0 ]

P'AP = [ 0 H(As) 0 (In ® F3)p(Ha)

[ prap-]

where
1) 0(A;) CR and o(Ay) C C\ R;
2) H; is (skew-)symmetric and Aj is Hy-selfadjoint: AL Hy = HoAs.

Question: What is the real scalar product? y' Hz or y*Hx?

Answer: y!' Hz!



Canonical forms: real matrices |

Theorem: Let H € R™*" be invertible (skew-)symmetric and let A € R"*"
be H-selfadjoint. Then there exists P € R"*" invertible such that

A 0 H, 0 ]

P'AP = [ 0 H(As) 0 (In ® F3)p(Ha)

[ prap-]

where
1) 0(A;) CR and o(Ay) C C\ R;
2) H; is (skew-)symmetric and Aj is Hy-selfadjoint: AL Hy = HoAs.

Question: What is the real scalar product? y' Hz or y*Hx?

Answer: y' Hx! (Answer complete?)



The background



Normal matrices |

Definition:
e A matrix N € F"*" s called /{-normal if N*N = NN*.

e A matrix X € """ is called polynomially /H-normal if there exists
a polynomial p € FF|t] such that X* = p(X).

e p is unique if it is of minimal degree and normalized.
e [ pos. definite: N is H-normal < N is polynomially H-normal

e H indefinite: X is H-normal <= X is polynomially H-normal

7

e canonical forms are not available for H-normal matrices, but for poly-
nomially H-normal matrices (M. 2006)



Normal matrices |

Definition:
e A matrix N € F"*" s called /{-normal if N*N = NN*.

e A matrix X € """ is called polynomially /H-normal if there exists
a polynomial p € FF|t] such that X* = p(X).

Examples:
e H-selfadjoint matrices are polynomially H-normal with p(t) = t;
e H-skew-adjoint matrices are polynomially H-normal with p(t) = —t;

e H-unitary matrices are polynomially H-normal (U~ = p(U)).



Normal matrices |

Spectral symmetries:

structured matrix y' Hx y' Hx yI Hx
field F=C F=C F=R
H-selfadjoints A A A
H -skew-adjoints A, —A A=A A=A —A
H-unitaries A A A, X AL, 2
polynomially H-normals | A, p(\) A, p(A) A p(N), A, p(\)




Normal matrices |

Theorem: (Essential decomposition) Let H € R™*" be (skew-)symmetric
and let X € R"" be polynomially H-normal (X* = p(X)). Then there

exists P € R™ " invertible such that

PlXP=

such that

Xy 0
0 ¢(X)
0 0

0
0

P(A3)

Y

P'HP =

H, 0
0 ¢(Hy)
0 0

1) 0(X;1) € R; and X; is polynomially Hi-normal;
2) (X)) C{A € C\R : p(A) # AL,

Hs is (skew-)Hermitian and X} is polynomially Hs-normal;

3) o(X;) C{Ae C\R : p(A) = A},

Hs is (skew-)symmetric and A3 is polynomially H3-normal;




Normal matrices |

Observation:

e For H-selfadjoints, we have p(t) = t, so we always have p(\) = \;
= the blocks X5, H> in the essential decompositions do not appear;

e For H-skew-adjoints, we have p(t) = —t, so we have p(\) = X iff A = 0,
but this value is real:
= the blocks X3, H3 in the essential decompositions do not appear;

e For H-unitaries, we have p(\) = A™! for all eigenvalues ), so p(\) = A
iff A\ = &1, but those values are real:
= the blocks X3, H3 in the essential decompositions do not appear;



The answer



Conclusions |

Question: What is the real scalar product? y' Hz or y*Hx?
Y Y



Conclusions |

Question: What is the real scalar product? y' Hz or y*Hx?

Answer: Real polynomially H-normal matrices can be decomposed into
three parts:

1) part | (real eigenvalues), where the real scalar product is a mixture of
y!'Hx and y*Hz;

2) part Il (complex eigenvalues), where the real scalar product is y! Hz;

3) part Il (complex eigenvalues), where the real scalar product is y*Hx;
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Question: What is the real scalar product? y' Hz or y*Hx?

Answer: Real polynomially H-normal matrices can be decomposed into
three parts:

1) part | (real eigenvalues), where the real scalar product is a mixture of
y!'Hx and y*Hz;

2) part Il (complex eigenvalues), where the real scalar product is y! Hz;

3) part Il (complex eigenvalues), where the real scalar product is y*Hx;

Answer complete?



Conclusions |

Question: What is the real scalar product? y' Hz or y*Hx?

Answer: Real polynomially H-normal matrices can be decomposed into
three parts:

1) part | (real eigenvalues), where the real scalar product is a mixture of
y'Hx and y*Hz;

2) part Il (complex eigenvalues), where the real scalar product is y! Hz;

3) part Il (complex eigenvalues), where the real scalar product is y*Hx;

Answer complete? Yes, from this particular point of view!



Conclusions |
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Thank you for your attention!



