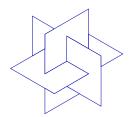
Sesquiliear versus bilinear -

what is the real scalar product?

Christian Mehl Institut für Mathematik Technische Universität Berlin

Structured perturbations and distance problems in matrix computations

Bedlewo, March 26-30, 2007



Work supported by DFG Research Center $\rm MATHEON$ – Mathematics for key technologies

The motivation

Perturbation analysis of symplectic matrices

Motivation: perturbation analysis for symplectic matrices;

Definition: $S \in \mathbb{C}^{2n \times 2n}$ is called **symplectic** if

$$S^*JS = J$$
, where $J = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$.

- the spectrum of symplectic matrices is symmetric with the respect to the unit circle: if λ is an eigenvalue, then so is $\overline{\lambda}^{-1}$;
- the pairing degenerates for unimodular eigenvalues (i.e., eigenvalues on the unit circle);
- unimodular eigenvalues have **signs** as additional invariants;

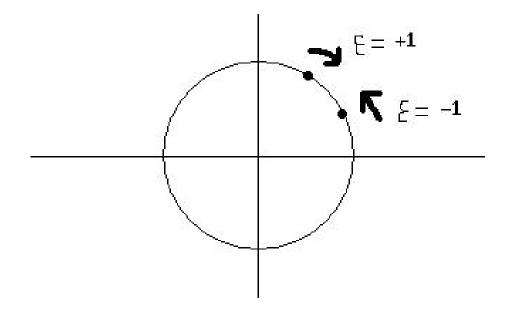
Perturbation analysis of symplectic matrices

Example:

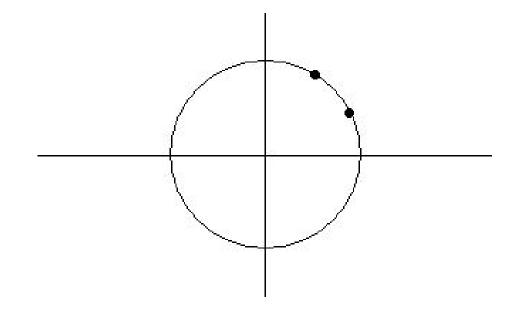
$$S_1 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad S_2 = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}, \quad J = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

- S_1 and S_2 are similar as matrices (viewed as unstructured matrices)
- S₁ and S₂ are not similar via a symplectic similarity transformation (viewed as structured matrices);
- we say the eigenvalue 1 of S_1 has sign $\varepsilon = +1$ and the eigenvalue 1 of S_2 has sign $\varepsilon = -1$;

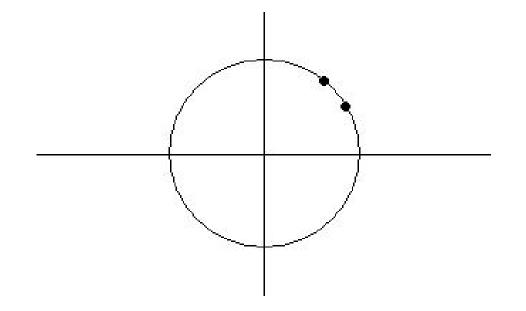
Signs are crucial in the investigation of structured perturbations!



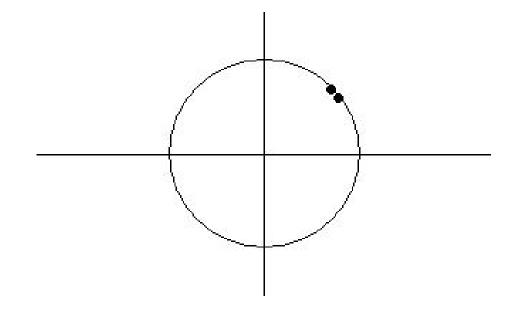
- let $S \in \mathbb{C}^{2n \times 2n}$ be symplectic;
- let S have two close unimodular eigenvalues with opposite signs;
- if S is perturbed and the two eigenvalues meet, they generically form a Jordan block; then they may split off as a pair of nonunimodular reciprocal eigenvalues;



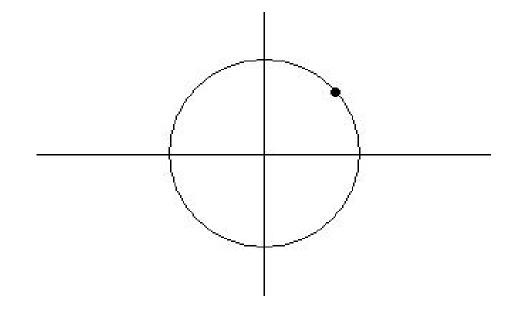
- let $S \in \mathbb{C}^{2n \times 2n}$ be symplectic;
- let S have two close unimodular eigenvalues with opposite signs;
- if S is perturbed and the two eigenvalues meet, they generically form a Jordan block; then they may split off as a pair of nonunimodular reciprocal eigenvalues;



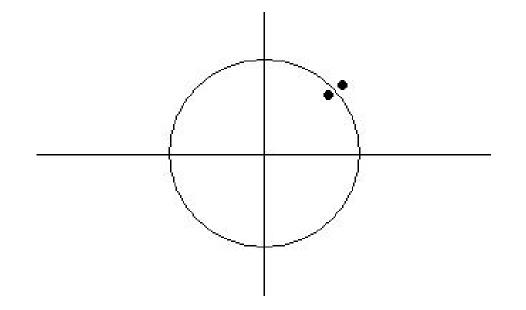
- let $S \in \mathbb{C}^{2n \times 2n}$ be symplectic;
- let S have two close unimodular eigenvalues with opposite signs;
- if S is perturbed and the two eigenvalues meet, they generically form a Jordan block; then they may split off as a pair of nonunimodular reciprocal eigenvalues;



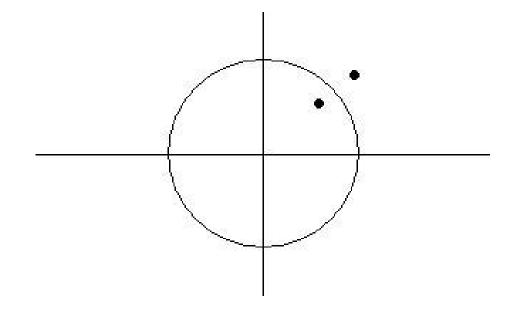
- let $S \in \mathbb{C}^{2n \times 2n}$ be symplectic;
- let S have two close unimodular eigenvalues with opposite signs;
- if S is perturbed and the two eigenvalues meet, they generically form a Jordan block; then they may split off as a pair of nonunimodular reciprocal eigenvalues;



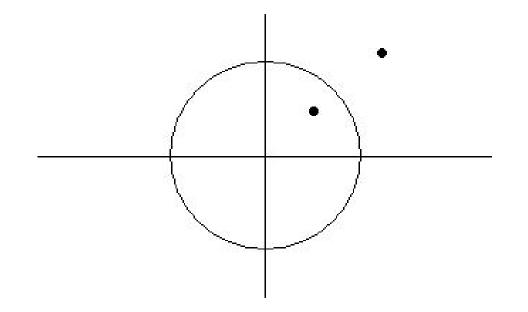
- let $S \in \mathbb{C}^{2n \times 2n}$ be symplectic;
- let S have two close unimodular eigenvalues with opposite signs;
- if S is perturbed and the two eigenvalues meet, they generically form a Jordan block; then they may split off as a pair of nonunimodular reciprocal eigenvalues;



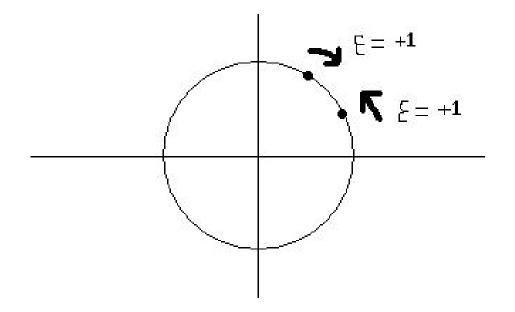
- let $S \in \mathbb{C}^{2n \times 2n}$ be symplectic;
- let S have two close unimodular eigenvalues with opposite signs;
- if S is perturbed and the two eigenvalues meet, they generically form a Jordan block; then they may split off as a pair of nonunimodular reciprocal eigenvalues;



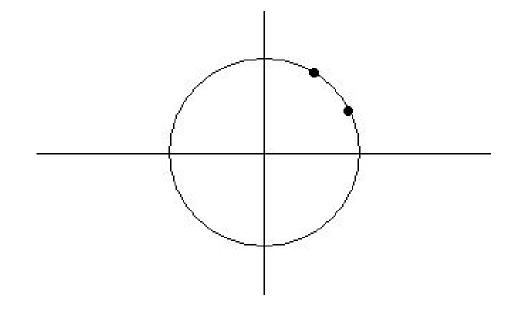
- let $S \in \mathbb{C}^{2n \times 2n}$ be symplectic;
- let S have two close unimodular eigenvalues with opposite signs;
- if S is perturbed and the two eigenvalues meet, they generically form a Jordan block; then they may split off as a pair of nonunimodular reciprocal eigenvalues;



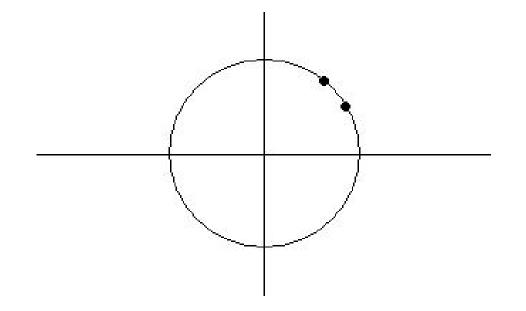
- let $S \in \mathbb{C}^{2n \times 2n}$ be symplectic;
- let S have two close unimodular eigenvalues with opposite signs;
- if S is perturbed and the two eigenvalues meet, they generically form a Jordan block; then they may split off as a pair of nonunimodular reciprocal eigenvalues;



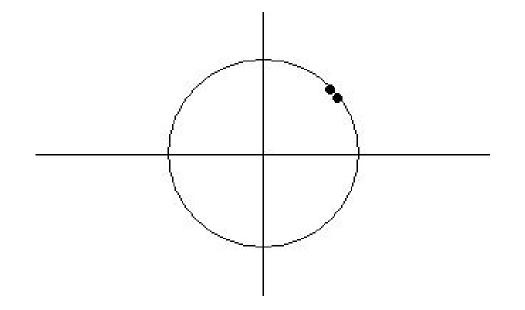
- let $S \in \mathbb{C}^{2n \times 2n}$ be symplectic;
- let S have two close unimodular eigenvalues with equal signs;
- if S is perturbed and the two eigenvalues meet, they *cannot* form a Jordan block, and they *must* remain on the unit circle;



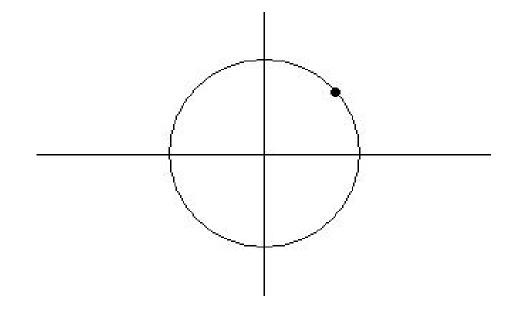
- let $S \in \mathbb{C}^{2n \times 2n}$ be symplectic;
- let S have two close unimodular eigenvalues with equal signs;
- if S is perturbed and the two eigenvalues meet, they *cannot* form a Jordan block, and they *must* remain on the unit circle;



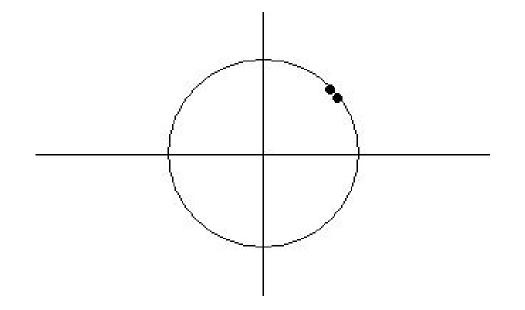
- let $S \in \mathbb{C}^{2n \times 2n}$ be symplectic;
- let S have two close unimodular eigenvalues with equal signs;
- if S is perturbed and the two eigenvalues meet, they *cannot* form a Jordan block, and they *must* remain on the unit circle;



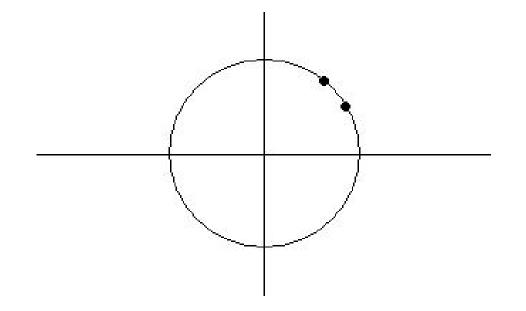
- let $S \in \mathbb{C}^{2n \times 2n}$ be symplectic;
- let S have two close unimodular eigenvalues with equal signs;
- if S is perturbed and the two eigenvalues meet, they *cannot* form a Jordan block, and they *must* remain on the unit circle;



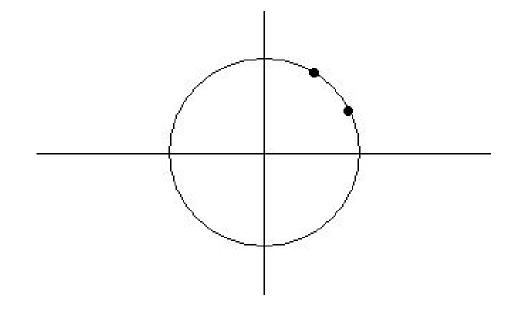
- let $S \in \mathbb{C}^{2n \times 2n}$ be symplectic;
- let S have two close unimodular eigenvalues with equal signs;
- if S is perturbed and the two eigenvalues meet, they *cannot* form a Jordan block, and they *must* remain on the unit circle;



- let $S \in \mathbb{C}^{2n \times 2n}$ be symplectic;
- let S have two close unimodular eigenvalues with equal signs;
- if S is perturbed and the two eigenvalues meet, they *cannot* form a Jordan block, and they *must* remain on the unit circle;



- let $S \in \mathbb{C}^{2n \times 2n}$ be symplectic;
- let S have two close unimodular eigenvalues with equal signs;
- if S is perturbed and the two eigenvalues meet, they *cannot* form a Jordan block, and they *must* remain on the unit circle;



- let $S \in \mathbb{C}^{2n \times 2n}$ be symplectic;
- let S have two close unimodular eigenvalues with equal signs;
- if S is perturbed and the two eigenvalues meet, they *cannot* form a Jordan block, and they *must* remain on the unit circle;

Sesquilinear vesus bilinear

Canonical forms are crucial in the investigation of these signs!

 $J = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$ can be interpreted as a matrix that either induces a sesquilinear form or a bilinear form.

• sesquilinear form:

unimodular eigenvalues of symplectic matrices $(S^*JS = J)$ have signs;

• bilinear form:

unimodular eigenvalues of symplectic matrices $(S^T J S = J)$ do **not** have signs;

Question: How does the real case fit in here? Or, more presicely ...

The question

Indefinite inner products:

1) $H = \pm H^T$ invertible defines a (skew-)symmetric bilinearform on \mathbb{C}^n : $[x, y]_H := y^T H x$ for all $x, y \in \mathbb{C}^n$

2) $H = \pm H^*$ invertible defines a (skew-)Hermitian sesquilinearform on \mathbb{C}^n : $[x, y]_H := y^* H x$ for all $x, y \in \mathbb{C}^n$

Restricted to \mathbb{R}^n and for $H \in \mathbb{R}^{n \times n}$ both inner products are identical, so:

Question: What is the real scalar product? $y^T Hx$ or $y^* Hx$?

The adjoint: For $X \in \mathbb{F}^{n \times n}$ let X^* be the matrix satisfying

 $[v, Xw]_H = [X^*v, w]_H$ for all $v, w \in \mathbb{F}^n$.

We have $X^{\star} = H^{-1}X^{T}H$ resp. $X^{\star} = H^{-1}X^{*}H$.

Structured matrices in indefinite inner products:

structured matrix	adjoint	$y^T H x$	y^*Hx
A H-selfadjoint	$A^{\star} = A$	$A^T H = H A$	$A^*H = HA$
S H-skew-adjoint	$S^{\star} = -S$	$S^T H = -HS$	$S^*H = -HS$
U H-unitary	$U^{\star} = U^{-1}$	$U^T H U = H$	$U^*HU = H$

Spectral symmetries:

structured matrix	$y^T H x$	y^*Hx	$y^T H x$
field	$\mathbb{F}=\mathbb{C}$	$\mathbb{F}=\mathbb{C}$	$\mathbb{F}=\mathbb{R}$
H-selfadjoints	λ	$\lambda,\overline{\lambda}$	$\lambda,\overline{\lambda}$
H-skew-adjoints	$\lambda, -\lambda$	$\lambda, -\overline{\lambda}$	$\lambda, -\lambda, \overline{\lambda}, -\overline{\lambda}$
H-unitaries	λ, λ^{-1}	$\lambda,\overline{\lambda}^{-1}$	$\lambda, \lambda^{-1}, \overline{\lambda}, \overline{\lambda}^{-1}$

Question: What is the real scalar product? $y^T Hx$ or $y^* Hx$?

Answer: a mixture of $y^T H x$ and $y^* H x$!

Spectral symmetries:

structured matrix	$y^T H x$	y^*Hx	$y^T H x$
field	$\mathbb{F}=\mathbb{C}$	$\mathbb{F}=\mathbb{C}$	$\mathbb{F}=\mathbb{R}$
H-selfadjoints	λ	$\lambda,\overline{\lambda}$	$\lambda,\overline{\lambda}$
H-skew-adjoints	$\lambda,-\lambda$	$\lambda, -\overline{\lambda}$	$\lambda, -\lambda, \overline{\lambda}, -\overline{\lambda}$
<i>H</i> -unitaries	λ,λ^{-1}	$\lambda,\overline{\lambda}^{-1}$	$\lambda, \lambda^{-1}, \overline{\lambda}, \overline{\lambda}^{-1}$

Question: What is the real scalar product? $y^T Hx$ or $y^* Hx$?

Answer: a mixture of $y^T H x$ and $y^* H x!$ (Answer complete?)

Transformations that preserve structure:

- for bilinear forms: $(H, A) \mapsto (P^T H P, P^{-1} A P), P$ invertible;
- for sesquilinear forms: $(H, A) \mapsto (P^*HP, P^{-1}AP), P$ invertible;

$$A \text{ is } \left\{ \begin{array}{l} H\text{-selfadjoint} \\ H\text{-skew-adjoint} \\ H\text{-unitary} \end{array} \right\} \Leftrightarrow P^{-1}AP \text{ is } \left\{ \begin{array}{l} P^*HP\text{-selfadjoint} \\ P^*HP\text{-skew-adjoint} \\ P^*HP\text{-unitary} \end{array} \right\}$$

Here $P^{\star} = P^T$ or $P^{\star} = P^*$, respectively.

Canonical forms for H-selfadjoint, -skew-adjoints, -unitaries are well-known:

- Gohberg/Lancaster/Rodman (1983)
- Sergeichuk (1988)
- Gohberg/Reichstein (1991)
- Lancaster/Rodman (1995)
- Lin/Mehrmann/Xu (1999)
- Faßbender/Mackey/Mackey/Xu (1999)
- Rodman (2006)

in terms of Hermitian or (skew)-symmetric pairs:

- Weierstraß, Kronecker
- Thompson (1976,1991)
- Lancaster/Rodman (2005,2005)

H-Indecomposability:

 $A \in \mathbb{F}^{n \times n}$ is called $H\text{-}decomposable}, if there exists <math display="inline">P \in \mathbb{F}^{n \times n}$ invertible such that

$$P^{-1}AP = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}, \quad P^*HP = \begin{bmatrix} H_1 & 0 \\ 0 & H_2 \end{bmatrix}, \quad A_j, H_j \in \mathbb{F}^{n_j \times n_j}, n_j > 0$$

Otherwise A is called H-indecomposable.

Clear: Any $A \in \mathbb{F}^{n \times n}$ can be decomposed as

 $P^{-1}AP = A_1 \oplus \cdots \oplus A_k, \quad P^*HP = H_1 \oplus \cdots \oplus H_k,$

where each A_j is H_j -indecomposable.

Canonical forms: *H*-selfadjoints

Case 1: $\mathbb{F} = \mathbb{C}$, $H^T = \pm H$ defines a bilinear form;

Let $A \in \mathbb{C}^{n \times n}$ be *H*-indecomposable and *H*-selfadjoint. Then there exists $P \in \mathbb{C}^{n \times n}$ invertible such that

$$P^{-1}AP = \mathcal{J}_n(\lambda) = \begin{bmatrix} \lambda & 1 & 0 \\ \lambda & \ddots & 1 \\ 0 & & \lambda \end{bmatrix}, \quad P^THP = F_n = \begin{bmatrix} 0 & 1 \\ & \ddots & 1 \\ 1 & & 0 \end{bmatrix}$$

Canonical form for *H*-selfadjoints in general:

$$P^{-1}AP = \mathcal{J}_{n_1}(\lambda_1) \oplus \cdots \oplus \mathcal{J}_{n_k}(\lambda_k), \quad P^TAP = F_{n_1} \oplus \cdots \oplus F_{n_k}$$

Canonical forms: *H*-selfadjoints

Case 2: $\mathbb{F} = \mathbb{C}$, $H^* = \pm H$ defines a sesquilinear form;

Let $A \in \mathbb{C}^{n \times n}$ be *H*-indecomposable and *H*-selfadjoint. Then there exists $P \in \mathbb{C}^{n \times n}$ invertible such that either

1)
$$P^{-1}AP = \mathcal{J}_n(\lambda)$$
, and $P^THP = \varepsilon F_n$, where $\lambda \in \mathbb{R}$ and $\varepsilon = \pm 1$; or
2) $P^{-1}AP = \begin{bmatrix} \mathcal{J}_{n/2}(\mu) & 0\\ 0 & \mathcal{J}_{n/2}(\overline{\mu}) \end{bmatrix}$, $P^THP = \begin{bmatrix} F_{n/2} & 0\\ 0 & F_{n/2} \end{bmatrix}$, where $\mu \notin \mathbb{R}$;

additional invariants: signs

$$A = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}, \quad H_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad H_2 = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$

There is no P such that $P^{-1}AP = A$ and $P^*H_1P = H_2$.

Question: How do we construct canonical forms for real matrices?

Idea: decompose

$$P^{-1}AP = \begin{bmatrix} A_1 & 0\\ 0 & A_2 \end{bmatrix}, \quad P^THP = \begin{bmatrix} H_1 & 0\\ 0 & H_2 \end{bmatrix},$$

where $\sigma(A_1) \subseteq \mathbb{R}$ and $\sigma(A_2) \subseteq \mathbb{C} \setminus \mathbb{R}$.

Problem: How do we display real canonical forms for (A_2, H_2) ?

Question: How do we construct canonical forms for real matrices?

Idea: decompose

$$P^{-1}AP = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}, \quad P^THP = \begin{bmatrix} H_1 & 0 \\ 0 & H_2 \end{bmatrix},$$

where $\sigma(A_1) \subseteq \mathbb{R}$ and $\sigma(A_2) \subseteq \mathbb{C} \setminus \mathbb{R}$.

Solution:
$$\mathbb{C} \sim \mathcal{M}_{\mathbb{C}} := \left\{ \begin{bmatrix} \alpha & \beta \\ -\beta & \alpha \end{bmatrix} : \alpha, \beta \in \mathbb{R} \right\}$$

via the field isomorphism $\phi : \mathbb{C} \to \mathcal{M}_{\mathbb{C}}, \quad (\alpha + i\beta) \mapsto \begin{bmatrix} \alpha & \beta \\ -\beta & \alpha \end{bmatrix}$

Question: How do we construct canonical forms for real matrices?

Real Jordan blocks associated with a pair of conjugate complex eigenvalues:

$$\mathcal{J}_{n}(\alpha,\beta) := \phi(\mathcal{J}_{n}(\alpha+i\beta)) = \begin{bmatrix} \alpha & \beta & 1 & 0 & & 0 \\ -\beta & \alpha & 0 & 1 & & \\ & \alpha & \beta & \ddots & \\ & & -\beta & \alpha & & \\ & & & \ddots & 1 & 0 \\ & & & & 0 & 1 \\ & & & & \alpha & \beta \\ 0 & & & & -\beta & \alpha \end{bmatrix}.$$

Aim: Canonical forms for real H-structured matrices A

Question: Can we find P invertible such that

$$P^{-1}AP = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix} = \begin{bmatrix} A_1 & 0 \\ 0 & \phi(\mathcal{A}_2) \end{bmatrix}, \quad P^THP = \begin{bmatrix} H_1 & 0 \\ 0 & H_2 \end{bmatrix} = \begin{bmatrix} H_1 & 0 \\ 0 & \phi(\mathcal{H}_2) \end{bmatrix},$$

where

- $\sigma(A_1) \subseteq \mathbb{R}$
- A_1 is H_1 -structured
- $\sigma(A_2) \subseteq \mathbb{C} \setminus \mathbb{R}$
- A_2 is H_2 -structured (as a complex matrix)

Example: an *H*-skew-adjoint matrix for $H = H^T$:

$$S = \phi(\mathcal{S}) = \phi\left(\begin{bmatrix} i & 0\\ 0 & i \end{bmatrix}\right) = \begin{bmatrix} 0 & 1 & 0 & 0\\ -1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & -1 & 0 \end{bmatrix}$$

Example: an *H*-skew-adjoint matrix for $H = H^T$:

$$S = \phi(\mathcal{S}) = \phi\left(\left[\begin{array}{ccc} i & 0\\ 0 & i\end{array}\right]\right) = \left[\begin{array}{cccc} 0 & 1 & 0 & 0\\ -1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & -1 & 0\end{array}\right]$$

S is H-skew-adjoint ($-S^TH = HS$) for any H having the form

$$H = \begin{bmatrix} h_1 & 0 & h_3 & h_4 \\ 0 & h_1 & -h_4 & h_3 \\ h_3 & -h_4 & h_2 & 0 \\ h_4 & h_3 & 0 & h_2 \end{bmatrix}$$

Example: an *H*-skew-adjoint matrix for $H = H^T$:

$$S = \phi(\mathcal{S}) = \phi\left(\left[\begin{array}{ccc} i & 0\\ 0 & i\end{array}\right]\right) = \left[\begin{array}{cccc} 0 & 1 & 0 & 0\\ -1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & -1 & 0\end{array}\right]$$

S is H-skew-adjoint ($-S^TH = HS$) for any H having the form

$$H = \begin{bmatrix} h_1 & 0 & h_3 & h_4 \\ 0 & h_1 & -h_4 & h_3 \\ h_3 & -h_4 & h_2 & 0 \\ h_4 & h_3 & 0 & h_2 \end{bmatrix} = \phi \left(\begin{bmatrix} h_1 & h_3 + ih_4 \\ h_3 - ih_4 & h_2 \end{bmatrix} \right)$$

Example: an *H*-skew-adjoint matrix for $H = H^T$:

$$S = \phi(\mathcal{S}) = \phi\left(\left[\begin{array}{ccc} i & 0\\ 0 & i\end{array}\right]\right) = \left[\begin{array}{cccc} 0 & 1 & 0 & 0\\ -1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & -1 & 0\end{array}\right]$$

S is H-skew-adjoint $(-S^T H = HS)$ for any H having the form

$$H = \begin{bmatrix} h_1 & 0 & h_3 & h_4 \\ 0 & h_1 & -h_4 & h_3 \\ h_3 & -h_4 & h_2 & 0 \\ h_4 & h_3 & 0 & h_2 \end{bmatrix} = \phi \left(\begin{bmatrix} h_1 & h_3 + ih_4 \\ h_3 - ih_4 & h_2 \end{bmatrix} \right)$$

Observation: \mathcal{H} is Hermitian and \mathcal{S} is \mathcal{H} -skew-adjoint: $\mathcal{S}^*\mathcal{H} = -\mathcal{HS}$

Theorem: Let $H \in \mathbb{R}^{n \times n}$ be invertible (skew-)symmetric and let $S \in \mathbb{R}^{n \times n}$ be *H*-skew-adjoint. Then there exists $P \in \mathbb{R}^{n \times n}$ invertible such that

$$P^{-1}SP = \begin{bmatrix} S_1 & 0\\ 0 & \phi(\mathcal{S}_2) \end{bmatrix}, \quad P^THP = \begin{bmatrix} H_1 & 0\\ 0 & \phi(\mathcal{H}_2) \end{bmatrix},$$

where

σ(S₁) ⊆ ℝ and σ(S₂) ⊆ ℂ \ ℝ;
 H₂ is (skew-)Hermitian and S₂ is H₂-skew-adjoint: S₂*H₂ = -H₂S₂.

Theorem: Let $H \in \mathbb{R}^{n \times n}$ be invertible (skew-)symmetric and let $S \in \mathbb{R}^{n \times n}$ be *H*-skew-adjoint. Then there exists $P \in \mathbb{R}^{n \times n}$ invertible such that

$$P^{-1}SP = \begin{bmatrix} S_1 & 0\\ 0 & \phi(\mathcal{S}_2) \end{bmatrix}, \quad P^THP = \begin{bmatrix} H_1 & 0\\ 0 & \phi(\mathcal{H}_2) \end{bmatrix},$$

where

1) $\sigma(S_1) \subseteq \mathbb{R}$ and $\sigma(S_2) \subseteq \mathbb{C} \setminus \mathbb{R}$; 2) \mathcal{H}_2 is (skew-)Hermitian and S_2 is \mathcal{H}_2 -skew-adjoint: $S_2^*\mathcal{H}_2 = -\mathcal{H}_2S_2$.

Question: What is the real scalar product? $y^T Hx$ or $y^* Hx$?

Answer: $y^*Hx!$

Theorem: Let $H \in \mathbb{R}^{n \times n}$ be invertible (skew-)symmetric and let $S \in \mathbb{R}^{n \times n}$ be *H*-skew-adjoint. Then there exists $P \in \mathbb{R}^{n \times n}$ invertible such that

$$P^{-1}SP = \begin{bmatrix} S_1 & 0\\ 0 & \phi(\mathcal{S}_2) \end{bmatrix}, \quad P^THP = \begin{bmatrix} H_1 & 0\\ 0 & \phi(\mathcal{H}_2) \end{bmatrix},$$

where

1) $\sigma(S_1) \subseteq \mathbb{R}$ and $\sigma(S_2) \subseteq \mathbb{C} \setminus \mathbb{R}$; 2) \mathcal{H}_2 is (skew-)Hermitian and S_2 is \mathcal{H}_2 -skew-adjoint: $S_2^*\mathcal{H}_2 = -\mathcal{H}_2S_2$.

Question: What is the real scalar product? $y^T Hx$ or $y^* Hx$?

Answer: $y^*Hx!$ (Answer complete?)

Example: an *H*-selfadjoint matrix for $H = H^T$:

$$A = \phi(\mathcal{A}) = \phi\left(\begin{bmatrix} i & 0\\ 0 & i \end{bmatrix}\right) = \begin{bmatrix} 0 & 1 & 0 & 0\\ -1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & -1 & 0 \end{bmatrix}$$

Example: an *H*-selfadjoint matrix for $H = H^T$:

$$A = \phi(\mathcal{A}) = \phi\left(\begin{bmatrix} i & 0\\ 0 & i \end{bmatrix}\right) = \begin{bmatrix} 0 & 1 & 0 & 0\\ -1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & -1 & 0 \end{bmatrix}$$

A is H-selfadjoint $(A^T H = HA)$ for any H having the form

$$H = \begin{bmatrix} h_1 & h_2 & h_3 & h_4 \\ h_2 & -h_1 & h_4 & -h_3 \\ h_3 & h_4 & h_5 & h_6 \\ h_4 & -h_3 & h_6 & -h_5 \end{bmatrix}$$

Example: an *H*-selfadjoint matrix for $H = H^T$:

$$A = \phi(\mathcal{A}) = \phi\left(\begin{bmatrix} i & 0\\ 0 & i \end{bmatrix}\right) = \begin{bmatrix} 0 & 1 & 0 & 0\\ -1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & -1 & 0 \end{bmatrix}$$

A is H-selfadjoint $(A^T H = HA)$ for any H having the form

$$(I_2 \otimes F_2)H = \begin{bmatrix} h_2 & -h_1 & h_4 & -h_3 \\ h_1 & h_2 & h_3 & h_4 \\ h_4 & -h_3 & h_6 & -h_5 \\ h_3 & h_4 & h_5 & h_6 \end{bmatrix}$$

Example: an *H*-selfadjoint matrix for $H = H^T$:

$$A = \phi(\mathcal{A}) = \phi\left(\begin{bmatrix} i & 0\\ 0 & i \end{bmatrix}\right) = \begin{bmatrix} 0 & 1 & 0 & 0\\ -1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & -1 & 0 \end{bmatrix}$$

A is H-selfadjoint $(A^T H = HA)$ for any H having the form

$$(I_2 \otimes F_2)H = \begin{bmatrix} h_2 & -h_1 & h_4 & -h_3 \\ h_1 & h_2 & h_3 & h_4 \\ h_4 & -h_3 & h_6 & -h_5 \\ h_3 & h_4 & h_5 & h_6 \end{bmatrix} = \phi \left(\begin{bmatrix} h_2 - ih_1 & h_4 - ih_3 \\ h_4 - ih_3 & h_2 - ih_1 \end{bmatrix} \right)$$

Example: an *H*-selfadjoint matrix for $H = H^T$:

$$A = \phi(\mathcal{A}) = \phi\left(\begin{bmatrix} i & 0\\ 0 & i \end{bmatrix}\right) = \begin{bmatrix} 0 & 1 & 0 & 0\\ -1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & -1 & 0 \end{bmatrix}$$

A is H-selfadjoint $(A^T H = HA)$ for any H having the form

$$(I_2 \otimes F_2)H = \begin{bmatrix} h_2 & -h_1 & h_4 & -h_3 \\ h_1 & h_2 & h_3 & h_4 \\ h_4 & -h_3 & h_6 & -h_5 \\ h_3 & h_4 & h_5 & h_6 \end{bmatrix} = \phi \left(\begin{bmatrix} h_2 - ih_1 & h_4 - ih_3 \\ h_4 - ih_3 & h_2 - ih_1 \end{bmatrix} \right)$$

Observation: \mathcal{H} is symmetric and \mathcal{A} is \mathcal{H} -selfadjoint: $\mathcal{A}^T \mathcal{H} = \mathcal{H} \mathcal{A}$

Theorem: Let $H \in \mathbb{R}^{n \times n}$ be invertible (skew-)symmetric and let $A \in \mathbb{R}^{n \times n}$ be *H*-selfadjoint. Then there exists $P \in \mathbb{R}^{n \times n}$ invertible such that

$$P^{-1}AP = \begin{bmatrix} A_1 & 0 \\ 0 & \phi(\mathcal{A}_2) \end{bmatrix}, \quad P^THP = \begin{bmatrix} H_1 & 0 \\ 0 & (I_m \otimes F_2)\phi(\mathcal{H}_2) \end{bmatrix},$$

where

1) $\sigma(A_1) \subseteq \mathbb{R}$ and $\sigma(\mathcal{A}_2) \subseteq \mathbb{C} \setminus \mathbb{R}$; 2) \mathcal{H}_2 is (skew-)symmetric and \mathcal{A}_2 is \mathcal{H}_2 -selfadjoint: $\mathcal{A}_2^T \mathcal{H}_2 = \mathcal{H}_2 \mathcal{A}_2$.

Theorem: Let $H \in \mathbb{R}^{n \times n}$ be invertible (skew-)symmetric and let $A \in \mathbb{R}^{n \times n}$ be *H*-selfadjoint. Then there exists $P \in \mathbb{R}^{n \times n}$ invertible such that

$$P^{-1}AP = \begin{bmatrix} A_1 & 0 \\ 0 & \phi(\mathcal{A}_2) \end{bmatrix}, \quad P^THP = \begin{bmatrix} H_1 & 0 \\ 0 & (I_m \otimes F_2)\phi(\mathcal{H}_2) \end{bmatrix},$$

where

1)
$$\sigma(A_1) \subseteq \mathbb{R}$$
 and $\sigma(\mathcal{A}_2) \subseteq \mathbb{C} \setminus \mathbb{R}$;
2) \mathcal{H}_2 is (skew-)symmetric and \mathcal{A}_2 is \mathcal{H}_2 -selfadjoint: $\mathcal{A}_2^T \mathcal{H}_2 = \mathcal{H}_2 \mathcal{A}_2$.

Question: What is the real scalar product? $y^T Hx$ or $y^* Hx$?

Answer: $y^T H x!$

Theorem: Let $H \in \mathbb{R}^{n \times n}$ be invertible (skew-)symmetric and let $A \in \mathbb{R}^{n \times n}$ be *H*-selfadjoint. Then there exists $P \in \mathbb{R}^{n \times n}$ invertible such that

$$P^{-1}AP = \begin{bmatrix} A_1 & 0 \\ 0 & \phi(\mathcal{A}_2) \end{bmatrix}, \quad P^THP = \begin{bmatrix} H_1 & 0 \\ 0 & (I_m \otimes F_2)\phi(\mathcal{H}_2) \end{bmatrix},$$

where

1)
$$\sigma(A_1) \subseteq \mathbb{R}$$
 and $\sigma(\mathcal{A}_2) \subseteq \mathbb{C} \setminus \mathbb{R}$;
2) \mathcal{H}_2 is (skew-)symmetric and \mathcal{A}_2 is \mathcal{H}_2 -selfadjoint: $\mathcal{A}_2^T \mathcal{H}_2 = \mathcal{H}_2 \mathcal{A}_2$.

Question: What is the real scalar product? $y^T Hx$ or $y^* Hx$?

Answer: $y^T H x!$ (Answer complete?)

The background

Definition:

- A matrix $N \in \mathbb{F}^{n \times n}$ is called *H*-normal if $N^*N = NN^*$.
- A matrix $X \in \mathbb{F}^{n \times n}$ is called **polynomially** *H*-normal if there exists a polynomial $p \in \mathbb{F}[t]$ such that $X^* = p(X)$.

- $\bullet~p$ is unique if it is of minimal degree and normalized.
- H pos. definite: N is H-normal $\Leftrightarrow N$ is polynomially H-normal
- H indefinite: X is H-normal $\Leftarrow X$ is polynomially H-normal

 \Rightarrow

• canonical forms are not available for *H*-normal matrices, but for polynomially *H*-normal matrices (M. 2006)

Definition:

- A matrix $N \in \mathbb{F}^{n \times n}$ is called *H*-normal if $N^*N = NN^*$.
- A matrix $X \in \mathbb{F}^{n \times n}$ is called **polynomially** *H*-normal if there exists a polynomial $p \in \mathbb{F}[t]$ such that $X^* = p(X)$.

Examples:

- *H*-selfadjoint matrices are polynomially *H*-normal with p(t) = t;
- *H*-skew-adjoint matrices are polynomially *H*-normal with p(t) = -t;
- *H*-unitary matrices are polynomially *H*-normal $(U^{-1} = p(U))$.

Spectral symmetries:

structured matrix	$y^T H x$	y^*Hx	$y^T H x$
field	$\mathbb{F}=\mathbb{C}$	$\mathbb{F}=\mathbb{C}$	$\mathbb{F}=\mathbb{R}$
H-selfadjoints	λ	$\lambda,\overline{\lambda}$	$\lambda,\overline{\lambda}$
H-skew-adjoints	$\lambda, -\lambda$	$\lambda, -\overline{\lambda}$	$\lambda, -\lambda, \overline{\lambda}, -\overline{\lambda}$
<i>H</i> -unitaries	λ,λ^{-1}	$\lambda,\overline{\lambda}^{-1}$	$\lambda, \lambda^{-1}, \overline{\lambda}, \overline{\lambda}^{-1}$
polynomially H -normals	$\lambda, p(\lambda)$	$\lambda,\overline{p(\lambda)}$	$\overline{\lambda,p(\lambda),\overline{\lambda},\overline{p(\lambda)}}$

Theorem: (Essential decomposition) Let $H \in \mathbb{R}^{n \times n}$ be (skew-)symmetric and let $X \in \mathbb{R}^{n \times n}$ be polynomially H-normal ($X^* = p(X)$). Then there exists $P \in \mathbb{R}^{n \times n}$ invertible such that

$$P^{-1}XP = \begin{bmatrix} X_1 & 0 & 0 \\ 0 & \phi(X_2) & 0 \\ 0 & 0 & \phi(X_3) \end{bmatrix}, \quad P^THP = \begin{bmatrix} H_1 & 0 & 0 \\ 0 & \phi(H_2) & 0 \\ 0 & 0 & (I \otimes F_2)\phi(H_3) \end{bmatrix}$$

such that

 σ(X₁) ⊆ ℝ; and X₁ is polynomially H₁-normal;
 σ(X₂) ⊆ {λ ∈ ℂ \ ℝ : p(λ) ≠ λ}, H₂ is (skew-)Hermitian and X₂ is polynomially H₂-normal;
 σ(X₃) ⊆ {λ ∈ ℂ \ ℝ : p(λ) = λ}, H₃ is (skew-)symmetric and X₃ is polynomially H₃-normal;

Observation:

- For *H*-selfadjoints, we have p(t) = t, so we always have $p(\lambda) = \lambda$; \Rightarrow the blocks $\mathcal{X}_2, \mathcal{H}_2$ in the essential decompositions do not appear;
- For H-skew-adjoints, we have p(t) = −t, so we have p(λ) = λ iff λ = 0, but this value is real;
 ⇒ the blocks X₃, H₃ in the essential decompositions do not appear;
- For *H*-unitaries, we have p(λ) = λ⁻¹ for all eigenvalues λ, so p(λ) = λ iff λ = ±1, but those values are real;
 ⇒ the blocks X₃, H₃ in the essential decompositions do not appear;

The answer

Question: What is the real scalar product? $y^T Hx$ or $y^* Hx$?

Question: What is the real scalar product? $y^T Hx$ or $y^* Hx$?

Answer: Real polynomially H-normal matrices can be decomposed into three parts:

- 1) part I (real eigenvalues), where the real scalar product is a mixture of $y^T H x$ and $y^* H x$;
- 2) part II (complex eigenvalues), where the real scalar product is $y^T H x$;
- 3) part III (complex eigenvalues), where the real scalar product is y^*Hx ;

Question: What is the real scalar product? $y^T Hx$ or $y^* Hx$?

Answer: Real polynomially H-normal matrices can be decomposed into three parts:

- 1) part I (real eigenvalues), where the real scalar product is a mixture of $y^T H x$ and $y^* H x$;
- 2) part II (complex eigenvalues), where the real scalar product is $y^T H x$;
- 3) part III (complex eigenvalues), where the real scalar product is y^*Hx ;

Answer complete?

Question: What is the real scalar product? $y^T Hx$ or $y^* Hx$?

Answer: Real polynomially H-normal matrices can be decomposed into three parts:

- 1) part I (real eigenvalues), where the real scalar product is a mixture of $y^T H x$ and $y^* H x$;
- 2) part II (complex eigenvalues), where the real scalar product is $y^T H x$;
- 3) part III (complex eigenvalues), where the real scalar product is y^*Hx ;

Answer complete? Yes, from this particular point of view!

References:

- C.M. On classification of normal matrices in indefinite inner product spaces. Electron. J. Linear Algebra, 15:50–83, 2006.
- C.M. Essential decomposition of polynomially normal matrices in real indefinite inner product spaces. Electron. J. Linear Algebra, 15:84–106, 2006.

Thank you for your attention!