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The motivation



Perturbation analysis of symplectic matrices

Motivation: perturbation analysis for symplectic matrices;

Definition: S ∈ C2n×2n is called symplectic if

S∗JS = J, where J =

[
0 In
−In 0

]
.

• the spectrum of symplectic matrices is symmetric with the respect to

the unit circle: if λ is an eigenvalue, then so is λ
−1

;

• the pairing degenerates for unimodular eigenvalues (i.e., eigenvalues on
the unit circle);

• unimodular eigenvalues have signs as additional invariants;



Perturbation analysis of symplectic matrices

Example:

S1 =

[
1 1
0 1

]
, S2 =

[
1 −1
0 1

]
, J =

[
0 1
−1 0

]
• S1 and S2 are similar as matrices (viewed as unstructured matrices)

• S1 and S2 are not similar via a symplectic similarity transformation (view-
ed as structured matrices);

• we say the eigenvalue 1 of S1 has sign ε = +1 and the eigenvalue 1 of
S2 has sign ε = −1;

Signs are crucial in the investigation of structured perturbations!



What happens under structured perturbations?

• let S ∈ C2n×2n be symplectic;

• let S have two close unimodular eigenvalues with opposite signs;

• if S is perturbed and the two eigenvalues meet, they generically form
a Jordan block; then they may split off as a pair of nonunimodular
reciprocal eigenvalues;



What happens under structured perturbations?

• let S ∈ C2n×2n be symplectic;

• let S have two close unimodular eigenvalues with opposite signs;

• if S is perturbed and the two eigenvalues meet, they generically form
a Jordan block; then they may split off as a pair of nonunimodular
reciprocal eigenvalues;



What happens under structured perturbations?

• let S ∈ C2n×2n be symplectic;

• let S have two close unimodular eigenvalues with opposite signs;

• if S is perturbed and the two eigenvalues meet, they generically form
a Jordan block; then they may split off as a pair of nonunimodular
reciprocal eigenvalues;



What happens under structured perturbations?

• let S ∈ C2n×2n be symplectic;

• let S have two close unimodular eigenvalues with opposite signs;

• if S is perturbed and the two eigenvalues meet, they generically form
a Jordan block; then they may split off as a pair of nonunimodular
reciprocal eigenvalues;



What happens under structured perturbations?

• let S ∈ C2n×2n be symplectic;

• let S have two close unimodular eigenvalues with opposite signs;

• if S is perturbed and the two eigenvalues meet, they generically form
a Jordan block; then they may split off as a pair of nonunimodular
reciprocal eigenvalues;



What happens under structured perturbations?

• let S ∈ C2n×2n be symplectic;

• let S have two close unimodular eigenvalues with opposite signs;

• if S is perturbed and the two eigenvalues meet, they generically form
a Jordan block; then they may split off as a pair of nonunimodular
reciprocal eigenvalues;



What happens under structured perturbations?

• let S ∈ C2n×2n be symplectic;

• let S have two close unimodular eigenvalues with opposite signs;

• if S is perturbed and the two eigenvalues meet, they generically form
a Jordan block; then they may split off as a pair of nonunimodular
reciprocal eigenvalues;



What happens under structured perturbations?

• let S ∈ C2n×2n be symplectic;

• let S have two close unimodular eigenvalues with opposite signs;

• if S is perturbed and the two eigenvalues meet, they generically form
a Jordan block; then they may split off as a pair of nonunimodular
reciprocal eigenvalues;



What happens under structured perturbations?

• let S ∈ C2n×2n be symplectic;

• let S have two close unimodular eigenvalues with equal signs;

• if S is perturbed and the two eigenvalues meet, they cannot form a
Jordan block, and they must remain on the unit circle;



What happens under structured perturbations?

• let S ∈ C2n×2n be symplectic;

• let S have two close unimodular eigenvalues with equal signs;

• if S is perturbed and the two eigenvalues meet, they cannot form a
Jordan block, and they must remain on the unit circle;



What happens under structured perturbations?

• let S ∈ C2n×2n be symplectic;

• let S have two close unimodular eigenvalues with equal signs;

• if S is perturbed and the two eigenvalues meet, they cannot form a
Jordan block, and they must remain on the unit circle;



What happens under structured perturbations?

• let S ∈ C2n×2n be symplectic;

• let S have two close unimodular eigenvalues with equal signs;

• if S is perturbed and the two eigenvalues meet, they cannot form a
Jordan block, and they must remain on the unit circle;



What happens under structured perturbations?

• let S ∈ C2n×2n be symplectic;

• let S have two close unimodular eigenvalues with equal signs;

• if S is perturbed and the two eigenvalues meet, they cannot form a
Jordan block, and they must remain on the unit circle;



What happens under structured perturbations?

• let S ∈ C2n×2n be symplectic;

• let S have two close unimodular eigenvalues with equal signs;

• if S is perturbed and the two eigenvalues meet, they cannot form a
Jordan block, and they must remain on the unit circle;



What happens under structured perturbations?

• let S ∈ C2n×2n be symplectic;

• let S have two close unimodular eigenvalues with equal signs;

• if S is perturbed and the two eigenvalues meet, they cannot form a
Jordan block, and they must remain on the unit circle;



What happens under structured perturbations?

• let S ∈ C2n×2n be symplectic;

• let S have two close unimodular eigenvalues with equal signs;

• if S is perturbed and the two eigenvalues meet, they cannot form a
Jordan block, and they must remain on the unit circle;



Sesquilinear vesus bilinear

Canonical forms are crucial in the investigation of these signs!

J =

[
0 In
−In 0

]
can be interpreted as a matrix that either induces a ses-

quilinear form or a bilinear form.

• sesquilinear form:
unimodular eigenvalues of symplectic matrices (S∗JS = J) have signs;

• bilinear form:
unimodular eigenvalues of symplectic matrices (STJS = J) do not
have signs;

Question: How does the real case fit in here? Or, more presicely ...



The question



Indefinite inner products

Indefinite inner products:

1) H = ±HT invertible defines a (skew-)symmetric bilinearform on Cn:

[x, y]H := yTHx for all x, y ∈ Cn

2) H = ±H∗ invertible defines a (skew-)Hermitian sesquilinearform on Cn:

[x, y]H := y∗Hx for all x, y ∈ Cn

Restricted to Rn and for H ∈ Rn×n both inner products are identical, so:

Question: What is the real scalar product? yTHx or y∗Hx?



Indefinite inner products

The adjoint: For X ∈ Fn×n let X? be the matrix satisfying

[v,Xw]H = [X?v, w]H for all v, w ∈ Fn.

We have X? = H−1XTH resp. X? = H−1X∗H.

Structured matrices in indefinite inner products:

structured matrix adjoint yTHx y∗Hx

A H-selfadjoint A? = A ATH = HA A∗H = HA

S H-skew-adjoint S? = −S STH = −HS S∗H = −HS
U H-unitary U ? = U−1 UTHU = H U ∗HU = H



Indefinite inner products

Spectral symmetries:

structured matrix yTHx y∗Hx yTHx

field F = C F = C F = R
H-selfadjoints λ λ, λ λ, λ

H-skew-adjoints λ,−λ λ,−λ λ,−λ, λ,−λ
H-unitaries λ, λ−1 λ, λ

−1
λ, λ−1, λ, λ

−1

Question: What is the real scalar product? yTHx or y∗Hx?

Answer: a mixture of yTHx and y∗Hx!
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Canonical forms



Canonical forms

Transformations that preserve structure:

• for bilinear forms: (H,A) 7→ (P THP, P−1AP ), P invertible;

• for sesquilinear forms: (H,A) 7→ (P ∗HP, P−1AP ), P invertible;

A is

H-selfadjoint
H-skew-adjoint
H-unitary

⇔ P−1AP is

 P ?HP -selfadjoint
P ?HP -skew-adjoint
P ?HP -unitary


Here P ? = P T or P ? = P ∗, respectively.



Canonical forms

Canonical forms for H-selfadjoint, -skew-adjoints, -unitaries are well-known:

• Gohberg/Lancaster/Rodman (1983)

• Sergeichuk (1988)

• Gohberg/Reichstein (1991)

• Lancaster/Rodman (1995)

• Lin/Mehrmann/Xu (1999)

• Faßbender/Mackey/Mackey/Xu (1999)

• Rodman (2006)

in terms of Hermitian or (skew)-symmetric pairs:

• Weierstraß, Kronecker

• Thompson (1976,1991)

• Lancaster/Rodman (2005,2005)



Canonical forms

H-Indecomposability:

A ∈ Fn×n is called H-decomposable, if there exists P ∈ Fn×n invertible
such that

P−1AP =

[
A1 0
0 A2

]
, P ?HP =

[
H1 0
0 H2

]
, Aj, Hj ∈ Fnj×nj, nj > 0

Otherwise A is called H-indecomposable.

Clear: Any A ∈ Fn×n can be decomposed as

P−1AP = A1 ⊕ · · · ⊕ Ak, P ?HP = H1 ⊕ · · · ⊕Hk,

where each Aj is Hj-indecomposable.



Canonical forms: H-selfadjoints

Case 1: F = C, HT = ±H defines a bilinear form;

Let A ∈ Cn×n be H-indecomposable and H-selfadjoint. Then there exists
P ∈ Cn×n invertible such that

P−1AP = Jn(λ) =


λ 1 0
λ
. . .
. . . 1

0 λ

 , P THP = Fn =

 0 1
. .
.

1 0

 .

Canonical form for H-selfadjoints in general:

P−1AP = Jn1(λ1)⊕ · · · ⊕ Jnk(λk), P TAP = Fn1 ⊕ · · · ⊕ Fnk



Canonical forms: H-selfadjoints

Case 2: F = C, H∗ = ±H defines a sesquilinear form;

Let A ∈ Cn×n be H-indecomposable and H-selfadjoint. Then there exists
P ∈ Cn×n invertible such that either

1) P−1AP = Jn(λ), and P THP = εFn, where λ ∈ R and ε = ±1; or

2) P−1AP =

[
Jn/2(µ) 0

0 Jn/2(µ)

]
, P THP =

[
Fn/2 0

0 Fn/2

]
, where µ 6∈ R;

additional invariants: signs

A =

[
2 1
0 2

]
, H1 =

[
0 1
1 0

]
, H2 =

[
0 −1
−1 0

]
There is no P such that P−1AP = A and P ∗H1P = H2.



Canonical forms: real matrices

Question: How do we construct canonical forms for real matrices?

Idea: decompose

P−1AP =

[
A1 0
0 A2

]
, P THP =

[
H1 0
0 H2

]
,

where σ(A1) ⊆ R and σ(A2) ⊆ C \ R.

Problem: How do we display real canonical forms for (A2, H2)?



Canonical forms: real matrices

Question: How do we construct canonical forms for real matrices?

Idea: decompose

P−1AP =

[
A1 0
0 A2

]
, P THP =

[
H1 0
0 H2

]
,

where σ(A1) ⊆ R and σ(A2) ⊆ C \ R.

Solution: C ∼MC :=

{[
α β
−β α

]
: α, β ∈ R

}
via the field isomorphism φ : C→MC, (α + iβ) 7→

[
α β
−β α

]



Canonical forms: real matrices

Question: How do we construct canonical forms for real matrices?

Real Jordan blocks associated with a pair of conjugate complex eigenva-
lues:

Jn(α, β) := φ(Jn(α + iβ)) =



α β 1 0 0
−β α 0 1

α β
. . .

−β α
. . . 1 0

0 1
α β

0 −β α


.



Canonical forms: real matrices

Aim: Canonical forms for real H-structured matrices A

Question: Can we find P invertible such that

P−1AP =

[
A1 0
0 A2

]
=

[
A1 0
0 φ(A2)

]
, P THP =

[
H1 0
0 H2

]
=

[
H1 0
0 φ(H2)

]
,

where

• σ(A1) ⊆ R

• A1 is H1-structured

• σ(A2) ⊆ C \ R

• A2 is H2-structured (as a complex matrix)



Canonical forms: real matrices

Example: an H-skew-adjoint matrix for H = HT :

S = φ(S) = φ

([
i 0
0 i

])
=


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0





Canonical forms: real matrices

Example: an H-skew-adjoint matrix for H = HT :

S = φ(S) = φ

([
i 0
0 i

])
=


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


S is H-skew-adjoint (−STH = HS) for any H having the form

H =


h1 0 h3 h4

0 h1 −h4 h3

h3 −h4 h2 0
h4 h3 0 h2





Canonical forms: real matrices

Example: an H-skew-adjoint matrix for H = HT :

S = φ(S) = φ

([
i 0
0 i

])
=


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


S is H-skew-adjoint (−STH = HS) for any H having the form

H =


h1 0 h3 h4

0 h1 −h4 h3

h3 −h4 h2 0
h4 h3 0 h2

 = φ

([
h1 h3 + ih4

h3 − ih4 h2

])



Canonical forms: real matrices

Example: an H-skew-adjoint matrix for H = HT :

S = φ(S) = φ

([
i 0
0 i

])
=


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


S is H-skew-adjoint (−STH = HS) for any H having the form

H =


h1 0 h3 h4

0 h1 −h4 h3

h3 −h4 h2 0
h4 h3 0 h2

 = φ

([
h1 h3 + ih4

h3 − ih4 h2

])

Observation: H is Hermitian and S is H-skew-adjoint: S∗H = −HS



Canonical forms: real matrices

Theorem: Let H ∈ Rn×n be invertible (skew-)symmetric and let S ∈ Rn×n

be H-skew-adjoint. Then there exists P ∈ Rn×n invertible such that

P−1SP =

[
S1 0
0 φ(S2)

]
, P THP =

[
H1 0
0 φ(H2)

]
,

where

1) σ(S1) ⊆ R and σ(S2) ⊆ C \ R;

2) H2 is (skew-)Hermitian and S2 is H2-skew-adjoint: S∗2H2 = −H2S2.



Canonical forms: real matrices
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1) σ(S1) ⊆ R and σ(S2) ⊆ C \ R;

2) H2 is (skew-)Hermitian and S2 is H2-skew-adjoint: S∗2H2 = −H2S2.

Question: What is the real scalar product? yTHx or y∗Hx?

Answer: y∗Hx!



Canonical forms: real matrices
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Question: What is the real scalar product? yTHx or y∗Hx?

Answer: y∗Hx! (Answer complete?)



Canonical forms: real matrices

Example: an H-selfadjoint matrix for H = HT :

A = φ(A) = φ

([
i 0
0 i

])
=


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0





Canonical forms: real matrices

Example: an H-selfadjoint matrix for H = HT :

A = φ(A) = φ

([
i 0
0 i

])
=


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


A is H-selfadjoint (ATH = HA) for any H having the form

H =


h1 h2 h3 h4

h2 −h1 h4 −h3

h3 h4 h5 h6

h4 −h3 h6 −h5





Canonical forms: real matrices

Example: an H-selfadjoint matrix for H = HT :

A = φ(A) = φ

([
i 0
0 i

])
=


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


A is H-selfadjoint (ATH = HA) for any H having the form

(I2 ⊗ F2)H =


h2 −h1 h4 −h3

h1 h2 h3 h4

h4 −h3 h6 −h5

h3 h4 h5 h6





Canonical forms: real matrices

Example: an H-selfadjoint matrix for H = HT :

A = φ(A) = φ

([
i 0
0 i

])
=


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


A is H-selfadjoint (ATH = HA) for any H having the form

(I2 ⊗ F2)H =


h2 −h1 h4 −h3

h1 h2 h3 h4

h4 −h3 h6 −h5

h3 h4 h5 h6

 = φ

([
h2 − ih1 h4 − ih3

h4 − ih3 h2 − ih1

])



Canonical forms: real matrices

Example: an H-selfadjoint matrix for H = HT :

A = φ(A) = φ

([
i 0
0 i

])
=


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


A is H-selfadjoint (ATH = HA) for any H having the form

(I2 ⊗ F2)H =


h2 −h1 h4 −h3

h1 h2 h3 h4

h4 −h3 h6 −h5

h3 h4 h5 h6

 = φ

([
h2 − ih1 h4 − ih3

h4 − ih3 h2 − ih1

])

Observation: H is symmetric and A is H-selfadjoint: ATH = HA



Canonical forms: real matrices

Theorem: LetH ∈ Rn×n be invertible (skew-)symmetric and letA ∈ Rn×n

be H-selfadjoint. Then there exists P ∈ Rn×n invertible such that

P−1AP =

[
A1 0
0 φ(A2)

]
, P THP =

[
H1 0
0 (Im ⊗ F2)φ(H2)

]
,

where

1) σ(A1) ⊆ R and σ(A2) ⊆ C \ R;

2) H2 is (skew-)symmetric and A2 is H2-selfadjoint: AT2H2 = H2A2.
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Question: What is the real scalar product? yTHx or y∗Hx?

Answer: yTHx!
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The background



Normal matrices

Definition:

• A matrix N ∈ Fn×n is called H-normal if N ?N = NN ?.

• A matrix X ∈ Fn×n is called polynomially H-normal if there exists
a polynomial p ∈ F[t] such that X? = p(X).

• p is unique if it is of minimal degree and normalized.

• H pos. definite: N is H-normal ⇔ N is polynomially H-normal

• H indefinite: X is H-normal ⇐ X is polynomially H-normal
6⇒

• canonical forms are not available for H-normal matrices, but for poly-
nomially H-normal matrices (M. 2006)



Normal matrices

Definition:

• A matrix N ∈ Fn×n is called H-normal if N ?N = NN ?.

• A matrix X ∈ Fn×n is called polynomially H-normal if there exists
a polynomial p ∈ F[t] such that X? = p(X).

Examples:

• H-selfadjoint matrices are polynomially H-normal with p(t) = t;

• H-skew-adjoint matrices are polynomially H-normal with p(t) = −t;
• H-unitary matrices are polynomially H-normal (U−1 = p(U)).



Normal matrices

Spectral symmetries:

structured matrix yTHx y∗Hx yTHx

field F = C F = C F = R
H-selfadjoints λ λ, λ λ, λ

H-skew-adjoints λ,−λ λ,−λ λ,−λ, λ,−λ
H-unitaries λ, λ−1 λ, λ

−1
λ, λ−1, λ, λ

−1

polynomially H-normals λ, p(λ) λ, p(λ) λ, p(λ), λ, p(λ)



Normal matrices

Theorem: (Essential decomposition) LetH ∈ Rn×n be (skew-)symmetric
and let X ∈ Rn×n be polynomially H-normal (X? = p(X)). Then there
exists P ∈ Rn×n invertible such that

P−1XP =

X1 0 0
0 φ(X2) 0
0 0 φ(X3)

 , P THP =

H1 0 0
0 φ(H2) 0
0 0 (I ⊗ F2)φ(H3)


such that

1) σ(X1) ⊆ R; and X1 is polynomially H1-normal;

2) σ(X2) ⊆ {λ ∈ C \ R : p(λ) 6= λ},
H2 is (skew-)Hermitian and X2 is polynomially H2-normal;

3) σ(X3) ⊆ {λ ∈ C \ R : p(λ) = λ},
H3 is (skew-)symmetric and X3 is polynomially H3-normal;



Normal matrices

Observation:

• For H-selfadjoints, we have p(t) = t, so we always have p(λ) = λ;
⇒ the blocks X2,H2 in the essential decompositions do not appear;

• For H-skew-adjoints, we have p(t) = −t, so we have p(λ) = λ iff λ = 0,
but this value is real;
⇒ the blocks X3,H3 in the essential decompositions do not appear;

• For H-unitaries, we have p(λ) = λ−1 for all eigenvalues λ, so p(λ) = λ
iff λ = ±1, but those values are real;
⇒ the blocks X3,H3 in the essential decompositions do not appear;



The answer



Conclusions

Question: What is the real scalar product? yTHx or y∗Hx?



Conclusions

Question: What is the real scalar product? yTHx or y∗Hx?

Answer: Real polynomially H-normal matrices can be decomposed into
three parts:

1) part I (real eigenvalues), where the real scalar product is a mixture of
yTHx and y∗Hx;

2) part II (complex eigenvalues), where the real scalar product is yTHx;

3) part III (complex eigenvalues), where the real scalar product is y∗Hx;
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1) part I (real eigenvalues), where the real scalar product is a mixture of
yTHx and y∗Hx;

2) part II (complex eigenvalues), where the real scalar product is yTHx;

3) part III (complex eigenvalues), where the real scalar product is y∗Hx;

Answer complete?



Conclusions

Question: What is the real scalar product? yTHx or y∗Hx?
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