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Abstract

Polar decompositions of normal matrices in indefinite inner product
spaces are studied. The main result of this paper provides sufficient condi-
tions for a normal operator in a Krein space to admit a polar decomposi-
tion. As an application of this result, we show that any normal matrix in
a finite dimensional indefinite inner product space admits a polar decom-
position which answers affirmatively an open question formulated in [2].
Furthermore, necessary and sufficient conditions are given for normal ma-
trices to admit a polar decomposition or to admit a polar decomposition
with commuting factors.

1 Introduction

Let H be a (complex) Hilbert space, and let H be a (bounded) selfadjoint operator
on H, which is boundedly invertible. The operator H defines a Krein space
structure on H, via the indefinite inner product

[x, y] = 〈Hx, y〉, x, y ∈ H,

where 〈·, ·〉 is the Hilbert inner product in H. All operators in the paper are
assumed to be linear and bounded. We denote by L(H) the Banach algebra of
bounded linear operators on H. The adjoint of an operator X ∈ L(H) with
respect to 〈·, ·〉 will be denoted by X∗.
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An operator X ∈ L(H) is said to be an H-isometry if [Xx,Xy] = [x, y] for
all x, y ∈ H, and is called H-selfadjoint if [Xx, y] = [x,Xy] for all x, y ∈ H. An
operator X ∈ L(H) is called H-normal if

XX [∗] = X [∗]X,

where X [∗] is the adjoint of X with respect to the indefinite inner product [·, ·].
Given a (linear bounded) operator X on H, a decomposition of the form

X = UA,

where U is an invertible H-isometry (in other words, U is H-unitary) and A is H-
selfadjoint, is called an H-polar decomposition of X. An analogous decomposition
of the form X = AU will be called a right H-polar decomposition for X.

In the context of positive definite inner products, polar decompositions (which
are usually taken with the additional requirement that A be positive semidefinite
and the relaxation that U need be a partial isometry only instead of an invertible
one) are a basic tool of operator theory. In context of indefinite inner products,
they have been studied extensively in recent years (see, e.g., [4, 2, 3, 16, 13]), in
particular, in connection with matrix computations [7, 8].

Remark 1 An operator X ∈ L(H) admits an H-polar decomposition if and only
if it admits a right H-polar decomposition. This follows easily from the fact that
X = UA = (UAU−1)U .

Our main result, Theorem 4, is stated and proved in the next section. In par-
ticular, it follows from Theorem 4 that for a finite dimensional H every H-normal
operator admits an H-polar decomposition, thereby settling in the affirmative an
open question formulated in [2]. In Sections 3 and 4 we apply the main result
to other properties that H-normal operators may have in connection with H-
polar decompositions, assuming that H is finite dimensional. In particular, we
provide necessary and sufficient conditions for normal matrices to admit a polar
decomposition or to admit a polar decomposition with commuting factors.

2 The main result

In this section, we will provide sufficient conditions for an H-normal operator to
admit an H-polar decomposition. The proof of the main result will be based on
the following decomposition that is of interest in itself.

Lemma 2 Let X ∈ L(H), and let QKer X be the orthogonal (in the Hilbert space
sense) projection onto Ker X. Assume that the operator

QKer XHQKer X |Ker X : Ker X −→ Ker X (1)

2



has closed range. Then there exists an invertible operator P ∈ L(H), a Hilbert
space orthogonal decomposition

H = H0 ⊕H1 ⊕H2 ⊕ H̃0 (2)

and a Hilbert space isomorphism H14 : H0 → H̃0, such that

Ker (P−1XP ) = H0 ⊕H1, (3)

and with respect to decomposition (2), P−1XP , P ∗HP , and P−1X [∗]P have the
following block operator matrix forms:

P−1XP =




0 0 X13 X14

0 0 X23 X24

0 0 X33 X34

0 0 X43 X44


, P ∗HP =




0 0 0 H14

0 H22 0 0
0 0 H33 0

H∗
14 0 0 0


, (4)

and

P−1X [∗]P =




H−∗
14 X∗

44H
∗
14 H−∗

14 X∗
24H22 H−∗

14 X∗
34H33 H−∗

14 X∗
14H14

0 0 0 0
H−1

33 X∗
43H

∗
14 H−1

33 X∗
23H22 H−1

33 X∗
33H33 H−1

33 X∗
13H14

0 0 0 0


, (5)

where H−∗
14 := (H∗

14)
−1. Moreover, if X is H-normal, then X23 = 0, X43 = 0, and

X33 is H33-normal.

Proof. Let H = G0 ⊕ G1 where G0 = Ker X and G1 = (Ker X)⊥. Then with
respect to this decomposition, X and H have the forms

X =

[
0 X̂12

0 X̂22

]
, H =

[
Ĥ11 Ĥ12

Ĥ∗
12 Ĥ22

]
.

By the hypothesis, Ĥ11 has closed range, so we may further orthogonally decom-
pose G0 = H0 ⊕ H1 such that with respect to the decomposition H0 ⊕ H1 ⊕ G1

the operators X and H have the forms

X =




0 0 X̂13

0 0 X̂23

0 0 X̂33


, H =




0 0 H13

0 H22 H23

H∗
13 H∗

23 Ĥ33


,
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where H22 : H1 → H1 is invertible. Then setting

P1 :=




I 0 0
0 I −H−1

22 H23

0 0 I




implies

P−1
1 XP1 =




0 0 X̂13

0 0 X̂23 + H−1
22 H23X̂33

0 0 X̂33


, P ∗

1 HP1 =




0 0 H13

0 H22 0
H∗

13 0 H̃33


.

Since H is invertible, we obtain that H13 is right invertible. Let H2 = Ker H13,
H̃0 = (Ker H13)

⊥, and decompose G1 = H2 ⊕ H̃0. Then there exist invertible
operators S : H0 → H0 and T : G1 → G1 such that S∗H13T =

[
0 H14

]
, where

H14 : H0 → H̃0 is a Hilbert space isomorphism. Setting P2 = P1 · (S ⊕ IH1
⊕ T ),

we get

P−1
2 XP2 =




0 0 X̃13 X̃14

0 0 X̃23 X̃24

0 0 X̃33 X̃34

0 0 X̃43 X̃44


, P ∗

2 HP2 =




0 0 0 H14

0 H22 0 0
0 0 H33 H34

H∗
14 0 H∗

34 H44


.

Finally, setting

P := P1P2




I 0 −(H∗
14)

−1H∗
34 −1

2
(H∗

14)
−1H44

0 I 0 0
0 0 I 0
0 0 0 I


 ,

we obtain that P−1XP and P ∗HP have the form as in (4). A straightforward
computation shows that P−1X [∗]P has the form (5). Furthermore,

P−1X [∗]XP =




0 0 ∗ ∗
0 0 0 0
0 0 ∗ ∗
0 0 0 0


.

Now, let X be H-normal, i.e., P−1XX [∗]P = P−1X [∗]XP . This implies that the
first two operator columns of P−1XX [∗]P are zero, i.e.,




X13

X23

X33

X43



[

H−1
33 X∗

43H
∗
14 H−1

33 X∗
23H22

]
= 0. (6)
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Observe that the first operator matrix in (6) has zero kernel, because of (3). This
implies X43 = 0 and X23 = 0. Then comparing the blocks in the (3, 3)-positions
of P−1XX [∗]P and P−1X [∗]XP , we obtain X33H

−1
33 X∗

33H33 = H−1
33 X∗

33H33X33,
i.e., X33 is H33-normal.

Next, we state a lemma that is of a general nature. We say that a point
λ ∈ σ(X), X ∈ L(H), is an eigenvalue of finite type if λ is an isolated point
of the spectrum σ(X) and the spectral projection (2πi)−1

∫
|ξ|=ε

(ξI − X)−1dξ,

where ε > 0 is sufficiently small, has finite rank. It is easy to see (by using the
decomposition of H as a direct sum of two X-invariant subspaces so that X −λI

is invertible on one of them, and X − λI is nilpotent on the other) that if λ is
an eigenvalue of finite type of X, and if M is an X-invariant subspace such that
λ ∈ σ(X|M), then λ is an eigenvalue of finite type of the restriction X|M.

Lemma 3 Let X ∈ L(H) be such that 0 is an eigenvalue of finite type of X.
Then we have that dim Ker X = dim Ker X [∗].

Proof. By the assumption the spectral subspace H0 of X corresponding to the
zero eigenvalue is finite dimensional. Write H = H0 ⊕ H⊥

0 , and with respect to
this decomposition write

X =

[
X11 X12

0 X22

]
.

Then σ(X11) = {0} and X22 is invertible. Now dim Ker X [∗] = dim Ker X∗. We
have

Ker X∗ =

{[
x1

x2

] ∣∣∣ x1 ∈ Ker X∗
11, x2 = −(X∗

22)
−1X∗

12x1

}
.

Also dim Ker X∗
11 = dim Ker X11 as H0 is finite dimensional. So

dim Ker X∗ = dim Ker X∗
11 = dim Ker X11 = dim Ker X,

as required.
We are now ready to state our main result.

Theorem 4 Assume that X ∈ L(H) satisfies the following properties:

(a) X is H-normal;

(b) either X is invertible, or 0 is an eigenvalue of X of finite type;

(c) σ(X) does not surround zero, i.e., there exists a continuous path in the
complex plane that connects a sufficiently small neighborhood of zero with
infinity and lies entirely in the resolvent set C \ σ(X).

Assume in addition that one of the following conditions hold:
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(i) Ker X = Ker X [∗];

(ii) H with the indefinite inner product generated by H is a Pontryagin space,
i.e., at least one of the two spectral subspaces of H corresponding to the
positive part of σ(H) and to the negative part of σ(H) is finite dimensional.

Then X admits an H-polar decomposition.

Proof. The proof starts with a general construction that is independent of
whether we assume the additional conditions (i) or (ii) or not.

By Lemma 2 we may assume that

X =




0 0 X13 X14

0 0 0 X24

0 0 X33 X34

0 0 0 X44


, H =




0 0 0 H14

0 H22 0 0
0 0 H33 0

H∗
14 0 0 0


, (7)

with respect to an orthogonal decomposition

H = H0 ⊕H1 ⊕H2 ⊕ H̃0,

where Ker X = H0 ⊕ H1, where X33 is H33-normal, and where H14 : H0 → H̃0

is a Hilbert space isomorphism. (Note that by the hypotheses of the theorem,
clearly the operator (1) has closed range). In the following, we will identify H0

and H̃0 via the isomorphism H14, i.e., we assume without loss of generality that
H0 = H̃0 and H14 = IH0

.
We use induction on the dimension of the spectral subspace of X correspond-

ing to the eigenvalue 0. The base of induction, i.e., the case when X is invertible,
was proved in [13] (note that the finite dimensional proof given in [13] carries
over to the infinite dimensional case using the property (c) of X).

We have

σ(X33) ∪ {0} = σ(X̃), where X̃ :=






0 0 X13

0 0 0
0 0 X33




 .

Moreover, the unbounded component of C \ σ(X̃) contains the unbounded com-
ponent of C \ σ(X) (this is a general property of the spectrum of a restriction of
an operator to its invariant subspace). Thus, the property (c) holds true for X33.

To see that X33 satisfies property (b), we have to show that either X33 is
invertible, or 0 is an eigenvalue of finite type of X33. Assume then that X33 is
not invertible. Since 0 is an eigenvalue of finite type of X, it is also an eigenvalue
of finite type for X restricted to its invariant subspace H0 ⊕H1 ⊕H2. In order
to show that 0 is an eigenvalue of finite type of X33 all we need to show is that

6



dim Ker Xn
33 is uniformly bounded. We have that dim Ker X̃n ≤ dim Ker Xn,

and so dim Ker X̃n is uniformly bounded. Now

X̃n =




0 0 X13X
n−1
33

0 0 0
0 0 Xn

33


 ,

and so
Ker X̃n = H0 ⊕H1 ⊕ Ker Xn−1

33 ,

where the latter equality follows from

Ker

[
X13

X33

]
= {0} (8)

by construction of the form (7). Hence we have that dim Ker Xn−1
33 is uniformly

bounded, and so 0 is an eigenvalue of finite type of X33 whenever X33 is not
invertible.

If (ii) is satisfied, i.e., if H with the indefinite inner product generated by H is a
Pontryagin space, then also H2 with the indefinite inner product generated by H33

is a Pontryagin space. On the other hand, if (i) is satisfied, i.e., Ker X = Ker X [∗],
then we obtain X24 = 0 and X44 = 0, and

X [∗]X =




0 0 X∗
34H33X33 X∗

34H33X34

0 0 0 0

0 0 X
[∗]
33 X33 X

[∗]
33 X34

0 0 0 0


 ,

XX [∗] =




0 0 X13X
[∗]
33 X13H

−1
33 X∗

13

0 0 0 0

0 0 X33X
[∗]
33 X33H

−1
33 X∗

13

0 0 0 0


 .

Assume that x ∈ Ker X33. Then

XX [∗]
[

0 0 x 0
]T

= X [∗]X
[

0 0 x 0
]T

= 0

which implies [
X13

X33

]
X

[∗]
33 x = 0.

Because of (8), we obtain X
[∗]
33 x = 0 and Ker X33 ⊆ Ker X

[∗]
33 . The other inclusion

follows analogously. So, Ker X = Ker X [∗] implies that Ker X33 = Ker X
[∗]
33 .

Hence, X33 satisfies all assumptions of the theorem. By the induction hy-
pothesis, X33 admits an H33-polar decomposition and by Remark 1 also a right
H-polar decomposition X33 = A33U33, where U33 is an invertible H33-isometry,
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and A33 is H33-selfadjoint. In the following, we construct an H-polar decompo-
sition for X. This will be done in five steps.

1. First, we show that there exists α real such that the operator L − αM is
invertible, where

L = H33A33 and M = (U−1
33 )∗X∗

13X13U
−1
33

are selfadjoint operators. For this purpose, observe that H−1
33 LU33 = X33 is

Fredholm, and therefore so is L. Denote by QKer L the orthogonal projection onto
the finite dimensional subspace Ker L. We claim that

Ker (QKer LM |Ker L) = {0}. (9)

To this end note that Ker X13 ∩ Ker X33 = {0} by (8), and hence

Ker M ∩ Ker L = {0}. (10)

Let x be such that Lx = 0, QKer LMx = 0. Then

〈Mx, x〉 = 〈Mx,QKer Lx〉 = 〈QKer LMx, x〉 = 0,

thus Mx = 0 (because M is positive semidefinite), and x = 0 in view of (10).
This proves the claim (9). Now, with respect to the orthogonal decomposition
H2 = Ker L ⊕ (Ker L)⊥, we have

L − αM =

[
−αM1 −αM2

−αM∗
2 L1 − αM3

]
, α ∈ R,

where L1 and M1 (because of (9) and the Fredholmness of L) are invertible. Using
Schur complements we obtain that L− αM is invertible if and only if α 6= 0 and
the operator

L1 + α(−M3 + M∗
2 M−1

1 M2)

is invertible. Clearly, such α’s exist.

2. We construct an H-selfadjoint polar factor for X. For this, let α 6= 0,
α ∈ R, be such that L − αM is invertible. Then set

A13 := X13U
−1
33 , A14 := α−1Iq, A34 := H−1

33 A∗
13 = H−1

33

(
U−1

33

)∗
X∗

13,

and

A :=




0 0 A13 A14

0 0 0 0
0 0 A33 A34

0 0 0 0


.
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Then a straightforward computation shows that A is H-selfadjoint.

3. Next, we show A2 = X [∗]X. Indeed, we obtain from the identities

A13A33 = X13U
−1
33 A33 = X13H

−1
33 H33U

−1
33 A33 = X13H

−1
33 U∗

33H33A33

= X13H
−1
33 U∗

33A
∗
33H33 = X13H

−1
33 X∗

33H33,

A13A34 = X13U
−1
33 H−1

33 (U ∗
33)

−1X∗
13 = X13H

−1
33 X∗

13,

A2
33 = A33H

−1
33 A∗

33H33 = X33U
−1
33 H−1

33 (U ∗
33)

−1X∗
33H33 = X33H

−1
33 X∗

33H33,

A33A34 = X33U
−1
33 H−1

33 (U ∗
33)

−1X∗
13 = X33H

−1
33 X∗

13,

that

A2 =




0 0 A13A33 A13A34

0 0 0 0
0 0 A2

33 A33A34

0 0 0 0




=




0 0 X13H
−1
33 X∗

33H33 X13H
−1
33 X∗

13

0 0 0 0
0 0 X33H

−1
33 X∗

33H33 X33H
−1
33 X∗

13

0 0 0 0




= XX [∗] = X [∗]X.

4. Finally, we show Ker X = Ker A. From the construction, it is clear that

Ker X ⊆ Ker A. For the other implication, let v =
[

a b c d
]T

∈ Ker A.
Then

0 = A13c + A14d = X13U
−1
33 c + α−1d =⇒ d = −αX13U

−1
33 c.

Moreover,

0 = A33c + A34d = A33c − αH−1
33

(
U−1

33

)∗
X∗

13X13U
−1
33 c.

The choice of α implies c = 0 and thus, we also obtain d = 0. Hence, v ∈ Ker X.
Thus, we constructed an H-selfadjoint operator A that satisfies A2 = X [∗]X

and Ker X = Ker A. Since X is Fredholm of index zero, it is easy to see that
X [∗]X and therefore also A are Fredholm operators of index zero. Define the
operator U0 on the range of A by U0x = Xy, where y is such that x = Ay. It is
a standard exercise to check that U0 is a well-defined H-isometry on the range of
A, and the range of U0 coincides with the range of X. Moreover, since A and X

have generalized inverses and Ker A = Ker X, it follows that U0 is bounded and
‖U0x‖ ≥ ε‖x‖, x ∈ Range A, where the positive constant ε is independent of x.
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5. Extension of U0 to an invertible H-isometry. This is where the assumptions
(i) or (ii) come in that have not been used so far. First we consider the case where
H is a Pontryagin space. By Lemma 3 we have dim Ker X = dim Ker X [∗], so

codim Range A = dim(Range A)[⊥] = dim Ker A[∗] = dim Ker A = dim Ker X

= dim Ker X [∗] = dim(Range X)[⊥] = codim Range X.

Then we can use [16, Theorem 2.5] to show that in case H is a Pontryagin space
with respect to the indefinite scalar product generated by H, U0 can be extended
to an invertible H-isometry. This proves the theorem in case (ii) holds true.

Next, we consider the case that Ker X = Ker X [∗]. Then we have the equali-
ties

(Range A)[⊥] = Ker A[∗] = Ker A = Ker X = Ker X [∗] = (Range X)[⊥], (11)

and so we have that Range A = Range X. In particular we have

H0 ⊕H1 = Ker X = (Range A)[⊥] = H−1(Range A)⊥

which implies (Range A)⊥ = H̃0 ⊕H1 and Range A = H0 ⊕H2. Because of (11),
the isotropic part of Range A (which is the finite dimensional space H0) is the
same as the isotropic part of Range X. Choose a 〈·, ·〉-orthonormal set of vectors
{e1, · · · , en} that form a basis for H0. Moreover, the 〈·, ·〉-orthogonal complement
of H0 in Range A (which is H2) is an H-nondegenerate subspace. Choose a basis

{f1, · · · , fn} of H̃0 that is skewly linked to {e1, · · · , en}, that is, [ei, fj] = δij

and [fi, fj] = 0. (For details on construction of skewly linked bases see, e.g.,
[10, 16, 3]; although it is assumed there that the indefinite inner product space
is a Pontryagin space, the construction goes through without change for finite
dimensional subspaces of Krein spaces.) Then Range A⊕ H̃0 = Range X ⊕ H̃0 is
H-nondegenerate.

We start by showing that U0 maps H0 into itself. Indeed, for x0 ∈ H0 we have
that U0x0 is H-orthogonal to the whole of Range X, and hence is in H0. So, if
we write U0 with respect to the decomposition H0 ⊕H2 of Range A = Range X

as a two by two block operator matrix, we have

U0 =

[
U11 U12

0 U22

]
,

Clearly, since U0 is one-to-one and maps onto Range X, it follows that U0 and
therefore also U11 and U22 are invertible maps.

With respect to the decomposition H0 ⊕H2 ⊕H̃0 we have for H the following
form (where we choose the basis in H0 and in H̃0 as above)

H =




0 0 I

0 H33 0
I 0 0


 .
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We shall define Ũ0 : Range A ⊕ H̃0 → Range X ⊕ H̃0 as the following 3 × 3
block operator matrix

Ũ0 =




U11 U12 U13

0 U22 U23

0 0 U33


 ,

where U13 := −1
2
U12H

−1
22 U∗

12(U
∗
11)

−1, and U23 := −U22H
−1
22 U∗

12(U
∗
11)

−1, and finally

U33 := (U ∗
11)

−1. Computing Ũ∗
0 HŨ0 on H0 ⊕H1 ⊕ H̃0 we have that it equals to




0 0 I

0 H33 U∗
12(U

∗
11)

−1 + U ∗
22H33U23

I U∗
23H33U22 + U−1

11 U12 U∗
13(U

∗
11)

−1 + U−1
11 U13 + U ∗

23H33U23


 . (12)

We see from the definition of U23 that the (2, 3)-entry of the operator matrix (12)
is zero. Next,

U∗
23H33U23 = U−1

11 U12H
−1
33 U∗

12(U
∗
11)

−1.

Thus, from the definition of U13 we see that also the (3, 3)-entry of (12) is zero.

Hence Ũ0 is indeed an H-isometry. The fact that Ũ0 is one-to-one and maps onto
Range X ⊕ H̃0 follows easily from the invertibility of U11, U22, and U33.

Now using [1, Theorem VI.4.4] we see that Ũ0 can be extended to an H-unitary
operator on the whole space H. This concludes the proof.

3 Applications of the main result

For the remainder of the paper, we assume that H is finite dimensional, and
identify L(H) with C

n×n, the algebra of n×n complex matrices. Then Theorem 4
has some important corollaries. First of all, it answers affirmatively the question
posed in [2] whether each H-normal matrix allows an H-polar decomposition.

Corollary 5 Let X ∈ C
n×n be H-normal. Then X admits an H-polar decompo-

sition.

Corollary 5 was known to be correct for invertible H-normal matrices and
for some special cases of singular H-normal matrices (see [2, 12, 11, 13]). The
result for the general case is new. The next corollary gives a criterion for the
existence of H-polar decompositions in terms of well-known canonical forms
of pairs (A,H), where A is H-selfadjoint, under transformations of the form
(A,H) 7→ (P−1AP, P ∗HP ), where P is invertible, see, for example, [6].

Corollary 6 Let X ∈ C
n×n. Then X admits an H-polar decomposition if and

only if (X [∗]X,H) and (XX [∗], H) have the same canonical form.
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Proof. If X = UA is a polar decomposition, then

XX [∗] = UAA[∗]U [∗] = UA2U−1 and X [∗]X = A[∗]U [∗]UA = A2,

i.e., (XX [∗], H) and (X [∗]X,H) have the same canonical forms, because U is H-
unitary. On the other hand, if (XX [∗], H) and (X [∗]X,H) have the same canonical
forms, then there exists an H-unitary matrix U such that UXX [∗]U−1 = X [∗]X.
Then X̃ = UX is H-normal, since

X̃ [∗]X̃ = X [∗]X = UXX [∗]U−1 = X̃X̃ [∗].

By Corollary 5 X̃ admits an H-polar decomposition X̃ = V A, where V is H-
unitary and A is H-selfadjoint. Then X = (U−1V )A is an H-polar decomposition
for X.

Thus, up to multiplication by an H-unitary matrix from the left, H-normal
matrices are the only matrices that admit H-polar decompositions. Corollary 6
has been conjectured in [12, 11], where also a proof has been given for the case
that X is invertible or that the eigenvalue zero of X [∗]X has equal algebraic and
geometric multiplicities.

Theorem 4 also answers a question on sums of squares of H-selfadjoint ma-
trices that has been posed in [14]. In general, the set {A2 : A is H-selfadjoint}
(where H is fixed) is not convex, in contrast to the convexity of the cone of pos-
itive semidefinite matrices with respect to the Euclidean inner product, as the
following example shows: Let

H =

[
0 1
1 0

]
, A1 =

[
0 2

−2 0

]
, A2 =

[
1 1
0 1

]
, A2

1 + A2
2 =

[
−3 2

0 −3

]
.

Then A2
1 + A2

2 is not a square of any H-selfadjoint matrix, since A2
1 + A2

2 has
only one Jordan block associated with the eigenvalue −3. This contradicts the
conditions for the existence of an H-selfadjoint square root, see Theorem 3.1 in
[15]. Instead, we have the following result.

Corollary 7 If A1 and A2 are two commuting H-selfadjoint matrices, then there
exist an H-selfadjoint matrix A such that A2

1 + A2
2 = A2.

Proof. Let X = A1 + iA2. Then X is H-normal, because X and X [∗] = A1− iA2

commute. By Corollary 5, X admits an H-polar decomposition X = UA, where
U is H-unitary and A is H-selfadjoint. This implies A2

1 + A2
2 = X [∗]X = A2.

4 Polar decompositions with commuting factors

Again, we assume that H is finite dimensional, and identify L(H) with C
n×n,

the algebra of n× n complex matrices. It is well known that a normal matrix X

12



(normal with respect to the standard inner product) allows a polar decomposition
X = UA with commuting factors, see [5], for example. The question arises
whether this is still true for indefinite inner products. In [13], it has been shown
by a Lie group theoretical argument that nonsingular H-normal matrices allow
an H-polar decomposition with commuting factors. (For a different proof of this
fact, see [12].) On the other hand, there exist singular H-normal matrices that
do not allow such H-polar decompositions. The following example is borrowed
from [13].

Example 8 Let

X =

[
0 0
0 i

]
, H =

[
0 1
1 0

]
.

Then X is H-normal. In fact, X [∗]X = XX [∗] = 0. It is straightforward to check
that all H-polar decompositions X = UA of X are described by the formulas

U =

[
0 ix

ix−1 y

]
, A =

[
0 x

0 0

]
,

where x 6= 0 and y are arbitrary real numbers. Clearly, U and A do not commute
for any values of the parameters x and y.

In the following, we will give necessary and sufficient conditions for the ex-
istence of H-polar decompositions with commuting factors. The proof will be
based on the following result on particular square roots of H-unitary matrices.

Theorem 9 Let V ∈ C
n×n be H-unitary and let M ∈ C

n×n be such that M and
V commute. Then there exists an H-unitary matrix U ∈ C

n×n such that U 2 = V

and MU = UM .

Proof. First, assume that there are no eigenvalues of V on the negative real
line (including zero). Let Γ be a simple (i.e., without self-intersections) closed
rectifiable contour in the complex plane such that Γ is symmetric with respect
to the real axis, the eigenvalues of V are inside Γ, and the negative real axis
(−∞, 0] is outside Γ. Let f : C \ (−∞, 0] → C be the branch of the square root
that assigns to z ∈ C \ (−∞, 0] the solution c of c2 = z that has positive real
part. Then f is analytic on Γ and analytic in the interior of Γ and hence, the
matrix f(V ) given by the functional calculus

f(V ) =
1

2πi

∫

Γ

f(z)(zI − V )−1dz (13)

is well defined. From the fact that V is H-unitary, we obtain the formula

H(zI−V )−1 =
(
(zI−V )H−1

)−1

=
(
H−1(zI− (V ∗)−1)

)−1

= (zI− (V ∗)−1)−1H.

13



This implies Hf(V ) = f((V ∗)−1)H. Since f(z−1) = f(z)−1, we obtain that
f(V −1) = f(V )−1, see [9, Corollary 6.2.10].

We then obtain from f(z) = f(z), the symmetry of Γ with respect to the real
axis, and the general fact that f(MT ) = f(M)T , that

f
(
(V ∗)−1

)
=
(
f(V )∗

)−1

.

This implies that U := f(V ) is H-unitary. Clearly, U 2 = V and UM = MU . For
the case that there are negative eigenvalues of V , there exists 0 ≤ θ < 2π such
that the ray reiθ (r > 0) does not contain an eigenvalue of V . Then Ṽ = ei(π−θ)V

is still H-unitary, satisfies MṼ = Ṽ M , and does not have negative eigenvalues.
Hence, there exists an H-unitary matrix Ũ such that Ũ2 = Ṽ and MŨ = ŨM .
Then U = ei(θ−π)/2Ũ is an H-unitary square root of V satisfying MU = UM .

The following result provides necessary and sufficient conditions for the exis-
tence of polar decompositions with commuting factors.

Theorem 10 Let X ∈ C
n×n. Then the following statements are equivalent.

i) X admits an H-polar decomposition with commuting factors.

ii) X is H-normal and Ker (X) = Ker (X [∗]).

iii) There exists an H-unitary matrix V such that X = V X [∗].

Proof. i) ⇒ ii): If X allows an H-polar decomposition X = UA with commuting
factors, then X [∗] = (UA)[∗] = AU−1 = U−1A. But then X is H-normal, because

XX [∗] = UAAU−1 = AU−1UA = X [∗]X.

In addition, we have Ker (X) = Ker (A) = Ker (X [∗]).
ii) ⇒ iii): This is a special case of Witt’s Theorem and coincides with [4,

Lemma 4.1].
iii) ⇒ i): Let V be an H-unitary matrix such that X = V X [∗]. Note that X

and V commute.

XV = V X [∗]V = V (V X [∗])[∗]V = V XV [∗]V = V X.

Then Theorem 9 implies that V has an H-unitary square root U that commutes
with X. Now consider X = UA, where A := U−1X. Clearly, U and A commute.
Furthermore, A is H-selfadjoint, because

(U−1X)[∗] = X [∗]U = V −1XU = V −1UX = U−2UX = U−1X.

Thus X = UA is an H-polar decomposition for X with commuting factors.

14



Note that if X = UA is an H-polar decomposition of X, i.e., U is H-unitary
and A is H-selfadjoint, then

UA = AU ⇐⇒ UX = XU =⇒ XA = AX.

If A is invertible, then XA = AX =⇒ UA = AU , but in general XA = AX 6=⇒
UA = AU as the next two examples show. Thus, the equality XA = AX gives a
commutativity property of H-polar decomposition which is strictly weaker than
commuting factors. Example 8 shows that not every H-normal matrix admits an
H-polar decomposition with this weaker commutativity property.

We conclude the paper with two examples; the second example is borrowed
from [14].

Example 11 Let

X =




0 0 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0




, H =




0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0




.

Then X is H-normal, but Ker (X) 6= Ker (X [∗]). Thus, X cannot have a polar
decomposition with commuting factors by Theorem 10. On the other hand,
consider the matrices

U =




1 0 1 0 −1
2

0 1 0 0 0
0 0 1 0 −1
0 0 0 1 0
0 0 0 0 1




, A =




0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0




.

Then U is H-unitary, A is H-selfadjoint and X = UA. Moreover, A and X

commute, but A and U do not.

Example 12 Let

X =




0 0 1 0 0
0 0 0 r z

0 0 0 1 0
0 0 0 0 0
0 0 0 0 0




, r > 0, z = ±1, H =




0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
1 0 0 0 0
0 1 0 0 0




.

A possible H-polar decomposition X = UA, where U is H-unitary and A is
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H-selfadjoint, is the following:

U =




1 − r
2z

r2

4z
− r4

32
0

0 1 r
2

− 3r3

16z
− r2

8

0 0 1 − r2

2z
− r

2

0 0 0 1 0

0 0 0 r
2z

1




, A =




0 0 1 0 r
2

0 0 0 r
2

z

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0




. (14)

Note that A and X commute; but A and U do not commute. A MAPLE
computation even shows that there does not exist an H-unitary Ũ such that
X = ŨA = AŨ for the special choice of A in as an H-selfadjoint polar factor of
X.

However, note that Ker X = Ker X [∗], i.e., by Theorem 10 there exists an
H-polar decomposition X = Û Â with commuting factors. Indeed, let

Û =




1 − rz
2

r2z
8

−9r4z2

128
− r3z

8

0 1 r
2

0 − r2

8

0 0 1 −3r2z
8

− r
2

0 0 0 1 0

0 0 0 rz
2

1




, Â =




0 0 1 r2z
8

r
2

0 0 0 r
2

z

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0




. (15)

Then Û is H-unitary, Â is H-selfadjoint, and X = Û Â = ÂÛ . It is interesting
to note that a straightforward but tedious MAPLE computation reveals that the
polar factor A is unique up to a sign, i.e., all H-polar decompositions for X with
commuting factors necessarily have the H-selfadjoint polar factor A (or −A) as
in (15).
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