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Abstract

Canonical forms for matrix triples (4, G, G), where A is arbitrary rectangular and G,
G are either real symmetric or skew symmetric, or complex Hermitian or skew Hermitian,
are derived. These forms generalize classical product Schur forms as well as singular value
decompositions. An new proof for the complex case is given, where there is no need to
distinguish whether G and G are Hermitian or skew Hermitian. This proof is independent
from the results in [1], where a similar canonical form has been obtained for the complex
case, and it allows generalization to the real case. Here, the three cases, i.e., that G and
G are both symmetric, both skew symmetric or one each, are treated separately.

Keywords Matrix triples, indefinite inner product, structured SVD, canonical form, Hamil-
tonian matrix, skew-Hamiltonian matrix
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1 Introduction

Let F denote either the complex field C or the real field R. Consider a triple of matrices
(A, G, G’) with A € F™" G € F™*™ and G € F**", where G and G are nonsingular and
either Hermitian or skew-Hermitian (in the complex case) or symmetric or skew-symmetric
(in the real case). In this paper we derive canonical forms (Acg, Ger, éCF) under the trans-
formation

(ACF7GCF7GCF) = (X*A)/, )(>|<va7 Y*GAY), (1.1)

with nonsingular matrices X € F"™*™ and Y € F"*". (Here A* denotes the conjugate
transpose of a matrix A if F = C or the transpose if F = R.)

The canonical form for the complex case is already known and has appeared in [1], although
uniqueness of the canonical form had not been considered there. The real case, however, has
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only been investigated in [25] so far for the special case that

0 In -
G—[_Im 0] and G=1,

and in [26] where a numerical method was derived for this case.

In this paper, based on stair-case-like decompositions, we give a new and independent proof
of the canonical form in the complex case. These stair-case decompositions have analogues
in the real case which allow a generalization of the results for the complex case to cover the
real case as well.

The difficulties encountered in the treatment of the real case in full generality stem from
the fact that one has to distinguish the cases that G and G are either both symmetric, or both
skew-symmetric, or that one is symmetric and the other skew-symmetric. In the complex case,
in contrast, there is no need to distinguish between Hermitian and skew-Hermitian matrices
G and G, because multiplication with the imaginary unit » easily converts an Hermitian
matrix into a skew-Hermitian matrix and vice versa. A corresponding transformation can
be performed on the canonical form so that all cases are covered by presenting the canonical
form for the case that G and G are both Hermitian.

A third case besides the real case and the complex case with Hermitian and skew-Hermitian
G and G is obtained if one assumes that G and G are complex symmetric or complex skew-
symmetric and if one replaces the conjugate transpose in (1.1) by the transpose. This case
has been investigated in [18]. So together with this paper the complete set of canonical forms
for real and complex matrix triples of the form (1.1) is available.

The study of the described canonical forms is motivated by the goal of unifying the solution
procedures for eigenvalue problems associated with structured matrices from Lie and Jordan
algebras related to indefinite inner products, [3, 7, 20, 21]. Consider for example a signature
matric

X = [ Igl _?Vl ] , T 4+ v = m.
A matrix H € C™*™ is called Xy, ., -Hermitian if (X7, ,, H)* = Xx , H, e, if Xr , H is
Hermitian. The matrix X, ,,H then possesses a factorization Xy, ,, H = AX,, ,, A*, where
Xy s 1S another signature matrix and A € R™*" with n = 73 4+ 1. This means that H has

a factorization
H=Yr,AY, A"

If, for the triple (A, Xx, 11, Xry.0,), We can determine a suitable canonical form
(Acr, Ger, Ger) = (X*AY, X* Sy 1, X,V 50,1, Y),
then this will allow us to determine the eigenstructure of H, because
X VHX = (X* 20, 0, X) T HXAY) (Y S0y V) LY A X)) = Gt Ak Gt Al

Simultaneously the eigenstructure for the Xy, ,,-Hermitian matrix H = Sy, ., A* X, 1, A, is
obtained, because Y 13, ,, A* X, AY = Gt AL GGLA.

In general, the canonical form (1.1) of the matrix triple (4, G, G) will allow us to simul-
taneously determine the eigenstructures of the two structured matrices

H=GlAG'4*, H=G'4"G A (1.2)



Structured matrices with such product representations cover all the structured matrices from
the Lie and Jordan algebras (see [3]), associated with the sesquilinear forms

<z,y>a=z Gy, < Ty >a= " Gy. (1.3)

Furthermore, the form (1.1) can be interpreted as a generalization of the singular value
decomposition [8] of a matrix A € C™*", i.e., the decomposition

o1 0

Acr = UAV = , oy =>-->0.>0

Oy

0 0

with unitary matrices U, V. Indeed, the SVD can be considered as a canonical form for the
matrix triple (A, Iy, I,) under the transformation

(A, Ln, I) — (Ace, I, In) = (XTAY, X", X, Y*1,,)Y). (1.4)

Here, the equation for the first components of the two matrix triples in (1.4) is the actual
singular value decomposition, while the equations for the second and third components just
force the transformation matrices to be unitary. The canonical form then displays the eigen-
structure of the I,-selfadjoint matrix A*A and the I,,-selfadjoint matrix AA*, because the
nonzero singular values o1, ..., 0, are just the square roots of the nonzero eigenvalues of A*A
and AA*.

When generalizing the concept of the singular value decomposition to analogous factor-
izations for linear maps £ : C* — C™, where the spaces C™* and C™ are equipped with
indefinite inner products given by invertible Hermitian matrices G € C™*™ and G € C"*",
one may consider to apply a transformation A — X*AY to a matrix representation of L,
where X and Y are matrices that are unitary with respect to the sesquilinear forms (1.3),
i.e., where X*GX = G, Y*GQY = G. However, if one allows general changes of bases in the
spaces C™ and C™, i.e., changes that affect the indefinite inner products as well, then this
corresponds exactly to the transformation as in (1.1) and the canonical forms will appear to
be less complicated.

Generalizations of the singular value decomposition in the sense of this paper have been
studied earlier in the literature, probably starting with [9, 10]. The generalized singular
value decomposition defined there corresponds to (1.1) for the case that for all three matrices
Acp, Her = Gg ACFGCFlACF, and Hep 1= G 1A* +Gc L Acr a diagonal representation can
be chosen. The general complex case (allowing also non-diagonal represenations) was then
discussed in [1].

In [14], the canonical forms of the matrices X*/ X and X X were investigated, where
X = H-1XH denotes the adjoint of a matrix X € C"*" with respect to the indefinite
inner product induced by the nonsingular Hermitian matrix H € C"*™. This question is
motivated from the theory of polar decompositions in indefinite inner product spaces. It is
said that a matrix X € C™*" allows an H-polar decomposition, if there exists an H-selfadjoint
matrix B, i.e., a matrix satisfying B*H = HB, and an H-unitary matrix U, i.e., a matrix
satisfying U*HU = H, such that X = UB. It was shown in [19] that X allows an H-polar
decomposition if and only if the two matrices X X and X X have the same canonical forms
as H-selfadjoint matrices. Setting A = X, G = H~!, and G= H, we find that

XHX =G'A4*G'A=H and XX =AG'A*G'=GHG,



and thus, the canonical forms of X X and X X can be read off from the canonical form for
the matrix triple (4, G, G) = (X, H~', H). Consequently, many of the results from [14] can
be recovered from the results in this paper. Recently, the relation of the spectra of X/ X and
X X™ has been investigated in terms of infinite dimensional indefinite inner product spaces
(also known as Krein spaces) in [22].

A canonical form closely related to the form obtained under the transformation (1.1) has
been developed in [12], where transformations of the form

(B,C)— (X 'BY,Y"lCX), BeC™" CecC™™

have been considered. Then a canonical form is constructed that reveals the Jordan structures
of the products BC and CB. In our framework, this corresponds to a canonical form of
the pair of matrices (G_IA,G_lA*) rather than for the triple (A, G, G) When focussing
on matrix triples, our approach is more general, because the canonical form for the pair
(G7'A, @*IA*) can be easily read off from the canonical form for (A,G,@), but not vice
versa. The approach in [12], on the other hand, focusses on different aspects and allows to
consider pairs (B, C') where the ranks of B and C are distinct. This case is not covered by the
canonical forms obtained in this paper or in [18] as the considered pairs of matrices always
have the same rank.

The paper is organized as follows. In Section 2 we review the definitions of matrices having
structures with respect to indefinite inner products and provide some auxiliary results. In
Section 3 we present preliminary factorizations that are essential tools for the derivation of
the canonical forms. In Section 4 we then derive the canonical forms for the complex case
and for the real case when G and G are both symmetric. In Section 5 we study the case that
one of G, G is real symmetric and the other is real skew-symmetric. In Section 6 we present
the canonical forms for the case that both G, G are real skew-symmetric.

Throughout the paper we use F to denote the field of real or complex matrices, i.e., F = R
or F =C. R_ (R;) is the set of real negative (positive) numbers, and C_ (C;.) is the open
left (right) half complex plane. The n x n identity and n x n zero matrices are denoted by I,
and O, respectively. The m X n zero matrix is denoted by O,,x, and e; is the jth column
of the identity matrix or, equivalently, the jth standard basis vector of F”. Moreover, we
introduce

I. 0 0

T I, O 0 I
Eﬂ,u,é = 0 -1, O 5 271',1/ = Eﬂ',l/,() = |: 0 —I :| ) Jn = |:_I (;Z :| .

0 0 O v "

The transpose and conjugate transpose of a matrix A are denoted by AT and A*, respectively.
We use A1 & ... D A to denote a block diagonal matrix with diagonal blocks Ay, ..., Ag. If
A = [a;;] € F*™™ and B € F** then A ® B = [a;;B] € F**™k denotes the Kronecker
product of A and B. For a real symmetric or complex Hermitian matrix A we call (7, v, 0)
the Sylvester inertia inder with 7, v, é being the number of positive, negative, and zero
eigenvalues of A, respectively. For a square matrix A, 0(A) denotes the spectrum of A. We
use

0 . Al 0
. A
R, = . , TIn(N) =
1 0 1
0 A



to denote the n x n reverse identity or the n x n upper triangular Jordan block associated
with the eigenvalue A, respectively, and

[ a b 1 O 0 7

b a 0 1

a b

a b —b a
jn(a,b)_ln@)[_b a:|+jn(0)®l2— L o
0 1
a b
0 —b a |

for blocks associated with complex conjugate eigenvalues in the real Jordan form of a real
matrix.

2 DMatrices structured with respect to sesquilinear forms

Our general theory will cover and generalize results for the following classes of matrices.

Definition 2.1 Let G € F™*" be invertible and let H,KC € F™*™ be such that
(GH)*=GH and (GK)" =-GK.

1) If F = C and G is Hermitian or skew-Hermitian, then H is called G-Hermitian and K
1s called G-skew-Hermitian.

2) If F =R and G is symmetric, then H is called G-symmetric and K is called G-skew-
symmetric.

3) If F = R and G is skew-symmetric, then H is called G-Hamiltonian and K is called
G-skew-Hamiltonian.

G-Hermitian and G-symmetric matrices are often called G-selfadjoint matrices as they
are selfadjoint with respect to the indefinite inner product induced by G. In this paper, we
prefer the notions G-Hermitian and G-symmetric in order to clearly distinguish between the
real and the complex case. Observe that transformations of the form

(H,G) — (PYHP,P*GP), P € F™" invertible

preserve the structure of H with respect to G, i.e., if, for example, H is G-Hermitian, then
P~'HP is P*GP-Hermitian as well. Clearly, each complex Hermitian or real symmetric
invertible matrix G is congruent to X , for some 7, v and each real skew-symmetric invertible
matrix G is congruent to J, for some n. Thus, we may always restrict ourselves to the case
that either G = X , or G = J,,. In the latter case, we refer to J,-Hamiltonian or .J,,-skew-
Hamiltonian matrices simply as Hamiltonian or skew-Hamiltonian matrices, respectively.
G-(skew-)Hermitian, G-(skew-)symmetric, and G-(skew-)Hamiltonian matrices have been
intensively studied in the literature. In particular, canonical forms for such matrices have
been derived in many places. We review these well-known canonical forms in the following.



Theorem 2.2 (Canonical form for G-Hermitian matrices, [7, 16, 23])
Let G € C*™ be Hermitian and invertible and let H € C™*™ be G-Hermitian. Then there
exists an invertible matriz X € C"*" such that

X "HX =H.®H,, X*GX=G,dG,,
where

Hc:Hc,l@"'@Hc,mca Gc:Gc,l@"‘@Gc,mc,
Hr:Hr,l@"‘@Hr,mT-y Gr:Gr,l@"'@Gr,mru

and where the diagonal blocks have the following forms:

1) blocks associated with pairs (\j, \;) of nonreal eigenvalues of H:

Je.(A) 0 [ 0 R }
! 0 Jg(N) JTT T Ry 0

where ImA\; >0 and § € N for j =1,...,m;
2) blocks associated with real eigenvalues:
Mg = Tn(ey),  Grj = siBy,,

where a; € R, s; € {—1,1}, andn; €N for j=1,...,m,.

H has the (not necessarily pairwise distinct) non-real eigenvalues Ay, ..., Apyy Ay« -y Am, and
(not necessarily pairwise distinct) real eigenvalues o, . .., ..
Remark 2.3 Besides the eigenvalues, the signs s, ..., s, associated with the real eigenval-

ues are additional invariants of G-Hermitian matrices. The collection of these sign is called
the sign characteristic of H, sometimes also called Krein signature, [13]. For details on the
sign characteristics, we refer to [7] and the references therein.

The real version of Theorem 2.2 is as follows:

Theorem 2.4 (Canonical form for real G-symmetric matrices, [7, 15, 16, 24])
Let G € R™"™ be symmetric and invertible and let H € R™*"™ be G-symmetric. Then there
exists an invertible matriz X € R™ "™ such that

X "HX=H.®oH,, XTGX=G.®G,,
where

HC:HC71@...@HC7TRC7 GC:GC71®...@GC,W’LC7
Hr:Hr71@"'@HT7mT7 GT:GT,l@.”@GT’,mr’

and where the diagonal blocks have the following forms:

1) blocks associated with pairs (A\j, \j) of nonreal eigenvalues of H:
Hej = Je;(aj,b5),  Gej = Ry,

where bj =ImA; >0, a;j =Re);, and § €N for j=1,...,m;



2) blocks associated with real eigenvalues:
Hrj = Tn(as), Grj=sily,,

where a; € R, s; € {—1,1}, andn; €N for j=1,...,m,.

H has the (not necessarily pairwise distinct) non-real eigenvalues M, ..., Ao, ALy -+ s Am, and
(not necessarily pairwise distinct) real eigenvalues o, ..., 0y, .

The corresponding canonical form for G-skew-Hermitian matrices immediately follows
from Theorem 2.2, because a matrix K is G-skew-Hermitian if and only if H = K is G-
Hermitian. In the real case, however, the trick of multiplying by the imaginary unit ¢ is
not an option and a canonical form has to be derived separately. We also need additional
notation. We denote

(-1)° 0 0 (—-1)°

[1]
Il
3
Il
n
oy
3

Il

0 h (_1)77,—1 (_1)n—1 : 0

Theorem 2.5 (Canonical form for G-skew-symmetric matrices, [15, 17, 24])
Let G € R™™ be symmetric and invertible and let I € R™" be G-skew symmetric. Then
there exists an invertible matriz X € R™ "™ such that

X KX =K. oK, oK, eK,, X'GX=G.oG &G, dG,,

where
Kc:’Cc,l@"'@’Cc,mca GC:GC,I@"'@GC,THC?
]Cr:’Cr,l@"‘@,CT,mM Gr:Gr,l@"'@Gr,mm
’Cz:’Cz,l@"'@Kz,mm G'L:G'L,l@"'@G’L,mm

ICZ = ’Cz,l ©---D ’Cz,mo—i-mea Gz = Gz,l ©---D Gz,mo—i—mea

and where the diagonal blocks have the following forms:

1) blocks associated with quadruples ()\j,j\j, —Aj, —Xj) of monreal, non purely imaginary
etgenvalues of K:

\-7£(a7b) 0 :| |: 0 Rgg. :|
Kei= AR , Gei = Rye. = J ,
,] |: 0 7\753‘ (aj7 b]) 7 4 R2§j 0

where aj = ReX; >0, b; =ImA; >0, and § €N for j=1,...,m;

2) blocks associated with pairs (o, —aj) of real nonzero eigenvalues of K:

o jn.(aj) 0 L o 0 R77'
forg = [ ]0 —Tn; () |7 Crj = Ran, = Ry, 0] 7

where a; > 0 and n; € N for j=1,...,m;;

3) blocks associated with pairs (13;, —13;) of purely imaginary nonzero eigenvalues of K:

- 0 jj(ﬁ') .. Rj 0
o= | gy 0| s |

where B >0, s; € {—=1,1}, and p; € N for j =1,...,m,;

7



4) blocks associated with the eigenvalue A =0 of K:
Kej=J50), Gzj=t;1;,
where (j € N is odd, t; € {—1,1} for j=1,...,m,, and

Jo(0) 0 ] [ 0 Rcl
’Cz J— J , Gz . — J ,
»J 0 _\7@(0) »J ch 0
where (j € N is even for j =m,+1,...,m, + me.

K has the (not necessarily pairwise distinct) eigenvalues £1,..., 2+ m., £A 1, ..., Eds,
taq,...,tam,, 161, ..., 210y, and the additional eigenvalue 0, provided that m,+me > 0.

If G is skew-Hermitian, then the canonical form for G-Hermitian (G-skew-Hermitian)
matrices follows directly from Theorem 2.2, because ¢G is Hermitian and a matrix H is G-
Hermitian (G-skew-Hermitian) if and only if H is «G-Hermitian (:G-skew-Hermitian). The
real case, once again, has to be treated separately.

Theorem 2.6 (Canonical form for G-Hamiltonian matrices, [15, 17, 24])
Let G € R be skew-symmetric and invertible and let H € R?™*2" be G-Hamiltonian.
Then there exists an invertible matriz X € R?™*?" such that

X "HX=H.6H, dH,®H,, X' GX=GC.®G,dG,dG,,

where
HCZHC,I@”'@HC,WLU Gc:Gc,l@"'@Gc,mm
My =Hyr @ -+ & My, Gr=GCr1® @ Grm,,
Hz:Hz,l@"'@Hz,m“ Gz:Gz,l@"’@Gz,mm

Hz — Hz,l ®---D Hz,mo+mey Gz — Gz,l D Gz,mo+m57

and where the diagonal blocks have the following forms:

1) blocks associated with quadruples ()\j,j\j, VR —j\j) of monreal, non purely imaginary
eigenvalues of H.:

| Te(aj,5) 0 _ | 0 Ry
HC’] o |: 0 —jgj (aj,bj) ’ GC’] o —Rgg]. 0 ’

where aj = ReX; >0, b; =ImA; >0, and § €N forj=1,...,m;
2) blocks associated with pairs (o, —a;) of real, nonzero eigenvalues of H:

[ Fyla) 0 [ o Ry,
e R Ry e I A

where a; >0 and n; € N for j=1,...,my;

3) blocks associated with pairs (10, —13;) of purely imaginary, nonzero eigenvalues of H:

J— 0 jj(ﬁ) L 0 Rj
o B S R A |

where B >0, s; € {—=1,1}, and p; € N for j =1,...,m,;



4) blocks associated with the eigenvalue A =0 of H:

o jgj(O) 0 o 0 jo

where (; € N is odd for j =1,...,m,, and
Hej=5¢T0), Gz =tily,
where (; € N is even and t; € {—1,1} for j =mo+1,...,me+ me..

H has the (not necessarily pairwise distinct) eigenvalues +£A1...,ENn,, A1, .. Fhin,
Fai,...,xam,, £161, ..., E£10m,, and the additional eigenvalue 0, provided that my+me > 0.

Theorem 2.7 (Canonical form for G-skew-Hamiltonian matrices, [4, 17, 24])
Let G € R?™%2" be skew-symmetric and invertible and let I € R2™?" be G-skew-Hamiltonian.
Then there exists an invertible matriz X € R?*"*?" such that

X KX =K. oK, X'GX=G.®G,,

where
Kc:’Cc,l@"'@KC,mca Gc:Gc,l@“'@Gc,mca
ICT:,CT,I@"'@’CT,mra Gr:Gr,l@"'@Gr,mm

and where the diagonal blocks have the following forms:

1) blocks associated with pairs (\j,\;) of nonreal eigenvalues of K:

jg(a,b) 0 0 Rzg.
ICC | — AR ) GC | = g )
7 |: 0 k7§j(a]"bj) 7 -

where a;j = ReAj € R, bj =ImA; >0, and §; €N for j =1,...,m;

2) blocks associated with real eigenvalues o of KC:

_ jﬁj (aj) 0 _ 0 RT]j
ICTJ - |: 0 jﬁj (aj) ) GTJ - _an 0 )
where a; € R andn; €N for j =1,...,m,.
IC has the (not necessarily pairwise distinct) non-real eigenvalues aj £1by, . .., am, by, and
the (not necessarily pairwise distinct) real eigenvalues aq, . ..,y (possibly including zero).

In the following we need some results concerning the existence of structured square roots
of structured matrices. This question has been deeply investigated in the literature mostly in
the context of polar decompositions, and necessary and sufficient conditions for the existence
of square roots have been developed, see [1, 2, 4]. We do not quote the results in full generality,
but only consider the following special cases.

Theorem 2.8 Let G € F"*™ be Hermitian and nonsingular and let H € F™*" be G-
Hermitian, nonsingular, and such that o(H) N R_ = (. Then there exists a square root
S € F™™ of H that satisfies 0(S) C C4. This square root is unique and is a real polynomial
in H (i.e., a polynomial in H whose coefficients are real). In particular, S is G-Hermitian.



Proof. Comparing the canonical forms of G-Hermitian and G-symmetric matrices, it is easily
seen that any pair (G, H) € C"*"™ x C™*"  where G is a nonsingular Hermitian matrix and
H is G-Hermitian, can be transformed into a real pair (G, H,) = (P*GP, P~'HP) by some
complex nonsingular transformation matrix P € C™*™. (This corresponds to the well-known
fact that a matrix H is G-Hermitian for some Hermitian G if and only if H is similar to a real
matrix, see [7].) Therefore, it is sufficient to consider the real case. Then by the discussion
in Chapter 6.4 in [11], we obtain that a square root S of H with ¢(S) C C, exists, is unique,
and can be expressed as a polynomial (with real coefficients) in H. Clearly, this polynomial
stays invariant under the transformation with the transformation matrix P in the complex
case. It is then straightforward to check that a real polynomial in H is again G-Hermitian.
g

In the case of a skew-symmetric real bilinear form, we have a similar result. The proof
follows exactly the same line as the proof of the preceding theorem.

Theorem 2.9 Let G € R?>™*2" be skew-symmetric and nonsingular and let I € R*2" pe
G-skew-Hamiltonian, nonsingular, and such that o(K) "R_ = (). Then there exists a square
root S € R?"*2" of K that satisfies 0(S) C C,. This square root is unique and is a real
polynomial in IC. In particular, S is G-skew-Hamiltonian.

One might ask whether G-Hamiltonian matrices have G-Hamiltonian or G-skew-Hamil-
tonian square roots, but this is never the case because squares of such matrices must always
be G-skew-Hamiltonian. On the other hand, each real G-skew-Hamiltonian matrix K will
have a G-Hamiltonian square root [4], but this square root cannot be a polynomial in £,
because such a polynomial would be G-skew-Hamiltonian again.

After reviewing some of the basic canonical forms in this section, we introduce some basis
factorizations in the next section.

3 Preliminary factorizations

In the following sections, we aim to compute canonical forms via some type of staircase
algorithm. A key factorization needed in the steps of this algorithm is presented in the
following lemma.

Proposition 3.1 Let B € F™*" m > n, and let w,v > 0 be integers such that T + v = m.
Suppose that rank B = n and that the inertia index of the Hermitian matriz B*X B is
(w0, 1v0,00). Then mo + vy + 5o = n and there exists an invertible matriz X € F™*™ such that

0 ™ + 1 Is,
X*B = 0 do , X*EW,VX =2 ® 2o ,
By n I5o

where By € F™*™ is nonsingular, 1y =7 — 79— 09 > 0, and vy = v — 1y — §y > 0.
Proof. By assumption, there exists a nonsingular matrix ¥ € F™*™ such that

Y*B*S,,BY = %,

0,0,00°

10



Let By € F™*™ be the matrix formed by the leading my columns of BY and partition it as

B

B, = |: :| , Biie Fﬂ-Xﬂ-O, Boy € FV*™0,
B

Then from BYY; , By = I, we have that
Bi1B11 — B3 Ba1 = I, (3.1)

Since Bf;Bi11 and Bj, By are positive semidefinite, it follows that rank Byy = rank(Ir, +
B3, B21) = mo and therefore m > my by Sylvester’s Law of Inertia. Hence, there exists a
unitary matrix U; € F™*™ such that

. T
U1Bn={ 01],

where T} € F70*™ is invertible. Since Bj;B11 = 1511, we obtain that (3.1) is equivalent to
Ing — (Bn Ty ) (Bay Ty 1) = Ty T .

Then the matrix I, — (BT} 1)(321Tf 1)* is positive definite, because it easily follows from
[5] that it has the same eigenvalues as I, — (Bo1 T ')*(Ba1 Ty ") with a possible exception for
the eigenvalue A = 1. Thus, we have the factorization

I, — (BuTy ) (BaTy ) = Th 7, (32)

for some invertible ﬁ € FY*¥, Let

T 0  —(ByT )T+

x=| U0 0 I o 0 "
1 0 L/ T—T0 o,
—By; 0 T;

With (3.1) and (3.2) it is easily verified that

In, o
XikBl = 0 ™ =70 , XTZW,Z/XI == Eﬂ—’,,.
0 v

Then, since ETZW = I, the last relation implies that
XIZW,VX;( = XIZW,VEW,UETF,VXT = XIEW,VXTZW,VXIZTF,VXT

and thus X , X1 X , X = I, or, equivalently, X127 , X{ = Y . Alsorecall that By consists
of the first my columns of BY. Thus, partitioning

Ir, B }

X;BY =
! [ 0 B

where B is (m — m) x (n — m), we obtain from

Srowoso = Y B*X.,BY = (X{BY)*%, ,(X;BY)
[ O [ILy, 0 Iy B
Bfy B*|| 0 Zempn || O B |
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that
~. ~ -1, O
Bio =0, B Y rowB = 200,80 = )

0 O

Letting By € F(m=70)X10 he the matrix consisting of the leading 1y columns of E, we obtain
that B5Xr_r, ., B2 = —1,,. By a procedure analogous to the one used for B; above, we can
determine a nonsingular matrix X, € F(m=70)x(m=70) sych that

0 T — T
* *
XQBQ = Il/() o ) X2 Eﬂ'—ﬂ'o,l/XQ = 27'('—7'(0,1/7
0 v —1

which also shows that vy < v. With X3 = X (I, ® X2), we then have

I, 0 0
% . 0 0 Bl3 * —
X;BY = | Lo B |’ X3Xr X3 =2ry,
0 0 Bss

which also implies X332 , X5 = Y, and thus (X3BY)* X, ,(X;BY) = X 1,6, Then it
easily follows that
Byy—=0 and 0= | D8 S e row—o Bis | _ Bi3B13 — B33 Bs3. (3.3)
Bss ’ Bs3

Let P; be the permutation matrix that interchanges the middle two block-rows of X3BY by
pre-multiplication and set Xy = X3P;". Then

Iy, 0 0
0 I 0 X 0
X*BY _ 12 X*Z VX — o,Y0
4 0 0 Blg ’ 4=, 4 I: 0 EW—WO,V—VO
0 0 Bss

Now, both Bj3 and Bss have full column rank, because otherwise, by (3.3) it is not difficult
to show that Bi3 and B33 would have a common null space. But this is not possible, because
then X;BY, as well as B, would have rank less than n, contradicting the assumption. Since
Big € F(m=m0)%% and Bsg € FE—70)%%  we have that 7 > 7y + dp and v > vy + dy. Observe
that (3.3) implies that the positive definite factors in the polar decompositions of Bis and
Bss coincide, i.e., we have

Blg = ﬁgW and 333 = (74W

for some Us € [F(m—m0)xdo_ Uy € F(r—0)%%  where Us, Uy have orthonormal columns and
W = (Bf3313)1/2 = (B§3ng)1/2 € F%*% js nonsingular. Extending Us and U, to unitary
matrices Us € Fm—m0)x(m=m0) 7, ¢ F—70)x(¥=10) we obtain that.

w w
U3313:|:0:|, U4B33=[0],

12



Setting X5 = X4(Iry4u, ® Us @ Uy), we obtain that

ITFo-I—Vo 0
0 w
X:BY = 0 0 |, Xi%ruXs=5rome® Xrrowvo-
0 w
0 0

Let P> be the permutation matrix that interchanges the 3rd and 4th block row of X BY by
pre-multiplication, and let X¢ = X5P5. Then

I7T0+l/0 0
« o W .
X6BY = O W 9 X6 Eﬂ‘,VXG = Eﬂo,l/o @ 2(50,5() @ Eﬂ‘l,ljly
0 0

where m =7 — mg — dp and v; = v — 1y — §y. Then setting

\/Q[L;O Is, }

= —
2 150 _150

and X7 = Xe(Lngtvy ® Z @ I 41,), it is easily verified that

AW [ Vew . [ o Iy
7w =[] s ]

and thus, we have

ITF0+V0 0
0 2W 0 I
X;BY = 0 \/;) ) X;EW7VX7 = 27?07’/0 ® |: I 80 :| & 27?171/1'
0
0 0

Let P3 be the permutation matrix that changes the order the block rows of X7BY to the
order 4, 3,1,2 by pre-multiplication and set X = X7P;. Then

8 8 0 0 I
X*BY = y X*Eﬂ—J/X — Eﬂ'l’]jl EB O 271'()7110 0
ITF0+V0 0 I 0 0

0 VoW %0

The desired factorization then follows by multiplying with Y~ from the right and setting
By = (Ing4ve ® V2W)Y "1 O

Proposition 3.2 Let B € R*™*" and suppose that rank B = n, rank BT J,,B = 2ng (note
that the rank of a real skew-symmetric matriz is even), and let §o = n — 2ngy denote the
dimension of the null space of BT J,,B. Then there exists an invertible matriz X € R?mx2m
such that

0 ] 2nq 0 0 I,
X'B=1| 0| 6 , XThX=J,®| 0 Jy O
By | n ~Is, 0 0

where By € C"*" is nonsingular and ny = m — ng — dg.

Proof. The proof follows the same lines as in the complex case (or more precisely, as in the
case of a complex skew-symmetric bilinear form induced by J,,), see [18] for details. [
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4 Canonical form for G,G Hermitian

In this section, we investigate the matrix triple (A4, G, G’) for the case that both G, G are Her-
mitian and nonsingular. We first consider the simpler case that A is square and nonsingular.

Theorem 4.1 Let A € C"™ " be nonsingular and let G,G € C"™™ be Hermitian and nonsin-
gular. Then there exist nonsingular matrices X,Y € C" " such that

X*AY = A, @ A, X*GX =G. D Gy, Y*GY = G. G, (4.1)

and for the A@-Hermitian matric H = GTA*G™1A € C™" and for the G-Hermitian matriz
H =G TAG 1A* € C™", we have that

Y'HY =H.&H,, X 'HX=H.oH,. (4.2)
The diagonal blocks in these decompositions have the following forms:

1) blocks associated with pairs (u?,ﬂ?) of nonreal eigenvalues of H and H.:

g = [Tl 0 T [Teclim) 0]

0 J&l 0 e, (im,)
o [ ] e [ ]
oo [a, ] e [ )
R = [Jéém j;?m]@“'@ Jgicéum)j%%(()ﬁmc)r
H, = [Jiém)jg?m]*@...@ Jgicéumcz%nc(()_mc)]*?

where pj € C, argp; € (0,7/2), and § € N for j =1,...,me;

2) blocks associated with real eigenvalues oj of H and H:

Ar = jm(ﬂﬂ O D jﬁmr(ﬂmr)v
G, = SlRm <D Serr]mTa
Gr == '§1R771 D émTRT]mTa

®
@D -
= 51§1n77721(61) - Smrgmrqum,,(ﬁmr)a
r = 5151 (j7721 (/31))*@ U ®Smr§mr (anmT (ﬂmr))*7

where 3; > 0, s;,8; € {+1,—1}, and n; € N for j =1,...,m,. Thus, oj = ﬁ? > 0 if
S5 = .§j and oy = —ﬁ? <0 iij #* §j.

T T
|

Moreover, the form (4.1) is unique up to the simultaneous permutation of blocks in the right

hand side of (4.1).

Proof. The proof will be performed in two steps.
Step 1) We first show that we may assume without loss of generality that H either has only
one pair of conjugate complex nonreal eigenvalues (A, \) or only one real eigenvalue a.

14



Indeed, in view of Theorem 2.2, there exists a nonsingular matrix Y € C™*" such that
Y'HY =T @ Ha, Y'GY =G @ Gy,

where Hy, G1 € CPXP| Hy, Gy € Cn=p)x(n—p) 0(7:{1) 00(7:(2) = (), and H; either has only one

eigenvalue that is real or only two eigenvalues that are conjugate complex. Using
G AR =HG'A

and the fact that G~'A is nonsingular, we find that H and H are similar. Thus, there exists
a nonsingular matrix X € C™*" such that

_ - « H; 0 G1 Gio
X "HX = = . X*GX =
" et [0 Hz]’ [ 12 Gz]

HerAe, G hasAbeen partitioned conformably with H. By assumption, 0(7:[1) = J(ﬂ’{) and thus
o(H}) No(Hz) = 0. Then using that H is G-Hermitian, i.e.,

[7%1‘ o] [Gl Gz

[ Gy Gu] [7%1 o}
0 H; Tg GQ

— X*H*GX = X*GHX = :
} nt Tt [ 5 Gyl o

we obtain G15 = 0, because the Sylvester equation 7:{ Gig — G127:{2 = 0 only has the trivial
solution, given that the spectra of the coefficient matrices ’H* and Hs do not intersect. Next,
we will show that X*AY decomposes in the same way as H, H, G, and G. To this end, we
partition

(X*AY)~!

[ A A }
Az Ago

conformably with G and G. Then

HA™ = GlA*G™ = (GTTAG Y)Y = (HA™) = A™'H*

H 0 An A | _ | An A H; 0

0 Hs Ao Ago A9 As 0 H}
Using once again the fact that a Sylvester equation only has the trivial solution if the spectra
of the coefficient matrices do not intersect, we finally obtain that

implies

* 1_ | A O
(X*AY) _[ 0 Ay

and thus X*AY is block diagonal as well. Repeating this argument several times, we see
that it remains to study triples (A, G, G) for which H has the restricted spectrum as initially
stated.

Step 2) By Step 1), we may assume without loss of generality that H either has only one pair
of conjugate complex nonreal eigenvalues (A, ) or only one real eigenvalue a. We discuss
these two cases separately.
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Case 1: o(H) = {\, A} for some A € C, Im A > 0.
By Theorem 2.8, H has a unique G-Hermitian square root S € C"*" satisfying o(5) C C,.
Then by Theorem 2.2, there exists a nonsingular matrix Y € C™*" such that

SCF::?—ls?:V&(“) 0 }@...@[ngm) 0 }

0 Je(m) 0 Jen (i)
oA [0 Re ] 0 Re,
Cor = Y76V = [Ra 0}@ @[Rsm 0 ]
Soapo _ [JEw) 0 T (n) 0
HF::YlHY:[& _} [ﬁm _},
‘ o T 0 2w

where = VA € C, argpu € (0, 5), and { € N for j = 1,...,m. Here, the third identity
immediately follows from H = S2. Since H and H are similar and since H has only a pair
of conjugate complex nonreal eigenvalues, we obtain from Theorem 2.2 that the canonical
forms of the pairs (H,G) and (H,G) coincide. In particular, this implies the existence of a
nonsingular matrix X € C™" such that

T () 0

Hep = )’Z'—IHX — |: 3 jﬁzm(:u) 0 :| 7

\|D-D _
R M
ST 0 R 0 R,
Gor =476 = |:Rfl 0]@ @[Rgm 0 ]
Finally, setting X = G !X *and Y = A_lG)?SCF, we obtain

X*AY = X 'G'AA'GXSer = Sor
X*GX = X 'GT'GGTIXTF = (X*GX) ' = G5l = Ger
Y*GY = SHLX'GATGAT'GXScr

= S X*GXX "M 'XSer

= SéFGCF(HCF)_ISCF = GCFSCF(HCF)_ISCF = GCF

as desired, where we have used that Scp is Gep-Hermitian and that SgF = Hcp. It is now
easy to check that X~ 'HX and Y ~1HY have the claimed forms.

Case 2: o(H) = {a} for some o € R\ {0}.
Observe that sign(a)H has the only positive eigenvalue |a|. Thus, we can apply Theorems 2.8
and 2.2 which yield the existence of a square root S € C"*" of sign(a)H and a nonsingular

matrix Y € C™"*" such that
S =Y 1SY = T (8) @& Ty (B)
Y*GY 51Ry, S @ SRy,
HCF = Y—lHY = Slgn(oé)‘-7n21 (/8) PP sign(a)jim (ﬂ),

where 3 = y/|a|, n; € Nand §; € {+1,—1} for j =1,...,m. Again using that H and H are
similar, we obtain from Theorem 2.2 the existence of a nonsingular matrix X € C™*" such
that

Hor = )Z:lH)E' sign(a) 72 (8) ® - - - @ sign(a) T2 (0),
GCF = X*G_X = 81R7]1 b---B Sman
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for some s1,..., 8, € {+1,—1}. Setting X = Gil)?** and Y = AilG)A(/SCF, we obtain as in
Case _Z that X*AY — SCF’ X*GX — GCF7 and Y*GY — GCFSCF(HCF)_ISCF — Slgn(o{)GCF

We mention in passing that it is possible to link the sign characteristic (81, ..., 8, ) to the
sign characteristic (s1,..., $y), but we refrain from doing so, because the explicit knowledge
of the parameters §1,...,35,, is irrelevant for the development of the canonical form for the

triple (A, G, @) It is now straightforward to check that X 'HX and Y 'HY have the
claimed forms. Concerning uniqueness, we note that the form (4.1) is uniquely determined
by the canonical form of H as a G-Hermitian matrix, and the restrictions arg pi € (0,7/2)
and 3 >0. O

In the general situation that A is non square, we have the following result.

Theorem 4.2 Let A € C™ " qnd let G € C™™ and G € C"™™ be Hermitian and nonsin-
gular. Then there exist nonsingular matrices X € C™*™ and Y € C™*™ such that
X*AY = Anz D Az71 S5 Az,2 D Az’3 & AZ,47
X*GX = an D Gz,l SY Gz,2 & Gz,3 @ GZ,4a (43)
YGY = Gn.®©G.10G. 200G 530G,
Moreover, for the G—Hermitian matriv H = GT1A*G1A € C™" and for the G-symmetric
matric H = GTPAG™TA* € C™ ™ we have that
Yﬁlﬂy - ﬂnz & 7:(2,1 > ﬂz,? S¥ 7:[@3 & 7’2;;74,
X_lHX - an & Hz,l > HZ,Q S¥ Hz,?) 7] Hz,4-

The diagonal blocks in these decompositions have the following forms:

0) blocks associated with nonzero eigenvalues of’}:{ and H:
Apzy Guzy Gry have the forms as in (4.1) and Hyz, Hy, have the forms as in (4.2);

1) one block corresponding to ng Jordan blocks of size 1 x 1 0f7:[ and mqy Jordan blocks of
size 1 X 1 of H associated with the eigenvalue zero:
Az,l = Omoxnoa Gz,l = Eﬂo,um CATvz,l = Eﬁ'o,ﬁov ﬂz,l = Onm Hz,l = Omm
where mg, g, 7o, Vo, To, Yo € NU {0} and mo + vo = mg, To + Do = no;

2) blocks corresponding to a pair of 7 x j Jordan blocks 0f7:{ and ‘H associated with the
eigenvalue zero:

Y1 Y2 Y
Ao = BRBO) & B J0) B & & Tan(0) ,
=1 =1 =1

Y1 Y2 Ye
G.o= @DR ® DR & -® DR,
=1 =1 =1
A 71 Y2 Ve
G.o= @R & DR, & & DR,
=1 =1 =1
~ 71 9 Y2 9 Ye 9
H.o = @ IJ5(0) @ P Ii0) ©---& P Ty(0),
=1 =1 =1
ga 2 T 2 2 T g 2 T
H.o = @ IF(0) @D I 0) @ © D Ty(0),
=1 =1 =1

where y1,...,v € NU{0}; thus, 7:(272 and H. 2 both have each 2v; Jordan blocks of size
J X j, where exactly vy; blocks have sign +1 and ~y; blocks have sign —1, for j =1,...,¢;
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3) blocks corresponding to a j x j Jordan blocks of H and a (j + 1) x (j + 1) Jordan block
of H associated with the eigenvalue zero:

mi I ma I me—1 I,
ra= B|0] e 8|t e ||
=1 2x1 i=1 3x2 i=1 £x(£—1)
G _ mi (Z)R m2 (Z)R me—1 (@) R
2,3 @51 2 @ @52 3 S S @ Sp_14ve
i=1 i=1 i=1
TP, () A 50 N0
2,3 Ds;’Ri @& PRy ®--- D 5, R,
i=1 i=1 i=1
R mi1 me—1 Do
Hos = @500 © @5 R0 00 @ 15,50
mi my—1 .
H.3 = @ J2(0 )T@@l%z §21 J3(0)'e- - & ED Se 1§g 1 Je(0)T,

where my,...,my—1 € NU{0}, and for j = 1,...,0 — 1, we have that ng‘) =1 and
A(i) € {+1,—1} if j is odd, and s(i) € {—l—l 1} and §(i) =1 if j is even; thus H.3 has
mJ Jordan blocks of size j X j with signs s Zf] 1s odd and szgns s ij s even, and
H.3 has m; Jordan blocks of size (j + 1) x (j + 1) with signs s zf] is odd and signs
sgi) if g iseven fori=1,...,mj and j=1,...,0—1;

4) blocks corresponding to a (j + 1) x (j + 1) Jordan blocks of H and a j x j Jordan block
of H associated with the eigenvalue zero:

ni n2 -1
Ay = @1[0 L), ® @1[0 L]y, @@ @ [0 Ze—1] (p_y)e
_nl (l) _TZQ (Z) Ne—1 )
G4 = @51 Ry S @32 Ry b---D EBSE 1Rg 1,
i=1 i=1 i=1
N ni (i) n2 (i) Ne—1 .
Gz,4 = @él R2 S @§2 R3 b---B @ SZ le,
i=1 i=1

Wl

Hon = @51 31 J2(0) & @32 52 J3(0) &--- & @ S Sgl_ltﬁ(o)v
M. —@s&’s&" (0@ 5955 B(0)T & - -ea@ 50180 Tema (0)7
=1

where ny,...,ny—1 € NU {0}, and for 5 = 1,...,£ — 1, we have that ng‘) =1 and
§§i) € {+1,—1} if j is even, and s ) e {+1,-1} and §(i =1 if j is odd; thus, 7:[Z4 has
nj Jordan blocks of size (j + 1) x (] + 1) with signs s Zf] 18 odd and signs s ij 18
even, and H. 4 has n; Jordan blocks of size j X j wzth signs s Zf] s odd and $1gns

ij is even fori=1,...,m; and j=1,...,0—1;

For the eigenvalue zero, the matrices H and H have 27vj+mj+n;_1 respectively 2v;+mj_1+n;

Jordan blocks of size j x j for j =1,... £, where my = ny = 0 and where £ is the mazimum

of the index 0f7:( and the index of H. (Here, index refers to the mazimal size of a Jordan

block associated with the eigenvalue zero.)
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Furthermore, the form (4.3) is unique up to simultaneous block permutation of the blocks
in the block diagonal of the right hand side of (4.3).

Proof. Due to its very technical nature, the proof is omitted here and presented in the
Appendix. O

Since the canonical form of Theorem 4.2 is quite complicated, we present some examples
to illustrate this form.

Example 4.3 Let A, G, G be given by

A= G = G =
o100 0o 007 roafoofofoor [{GHHIEHEE )
00(0j00j]0O0O 1 0/00/0]|00 0 0l=1iloolo 0 0
00(1/0 0|0 0O 00(01]0(00O0 0ololoilo 0 o
0 0/0/0 0/0 00, y00]10]0]007F, | 0otoliolo o0 o
00(0j0 1|000O0 0 0(0 0[+1{0 0 000 00l0 0 =1
00(0j0 0|0 10O 00(00[0]|01 00loloolo=10
LO 0[O0 0[O0 1L LO O[O0 OF0J L0 o6l oo 0l-10 0

Then the canonical form consists of one block of type 2) with j = 2, one block of type 3)
with j = 1 and sign 8{") = —1, and two blocks of type 4), one with j = 1 and sign s\") = +1
and one with j = 2 and sign §§1) = —1. Observe that the signs only occur in the blocks of

G or é, respectively, that have odd size. The signs attached to the corresponding even sized
blocks are always +1. Thus, for example, the signs corresponding to blocks of type 4) will
always be found in G if j is odd and they can be read off G if j is even.

Example 4.4 It is important to note that rectangular matrices with a total number of zero
rows or columns are allowed in the canonical form. For example consider the two non-
equivalent triples

A 01
Ar=[0 1},G1:[—1],G1:[1 0}
and Ay =[0 1], G=[-1],G=|" "]
) ) 0 _1
The first example is just one block of type 4) with sign sgl) = —1. Indeed, forming the
products
Hi =G AIG A = [ - ] . Mi=GrlAGT AT =0 ],

as predicted, H, has only one Jordan block of size 2 associated with the eigenvalue A = 0 and
the sign s = —1, while H; has one Jordan block of size 1 associated with A = 0 and the sign
s = —1. The situation is different in the second case. Here, we obtain

0 0

Hy = G5 ASGS A = { 01

} . Ha=GylAG'A3=[1],

ie., Hs has two Jordan blocks of size 1, one associated with A = 0 and sign s; = 1 and a
second one associated with A = 1 and sign so = —1, while Hs has one Jordan block of size
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1 associated with A = 1 and sign s = —1. Here, the triple (Aa, Ga, Gs) is in canonical form
consisting of one block of type 1) and size 0 x 1 and of one block of type 0):

Ay=[0[1], G=[-1 ,02:[#%}

We have the following real versions of Theorem 4.1 and Theorem 4.2.

Theorem 4.5 Let A € R™"™ be nonsingular and let G, G e R™™ pe symmetric and nonsin-
gular. Then there exist nonsingular matrices X,Y € R™*"™ such that

XTAy =A. @ A, X'GX=G.0G,, YIGv=G.0G,. (4.4)

Moreover, for the G-symmetric matric H = G 1ATG'A and for the G-symmetric matriz
H =G TAGTAT, we have that

Y'Y =H.®oH,, X 'HX=H.0H,. (4.5)
The diagonal blocks in these decompositions have the following forms:

1) blocks associated with pairs (u?,ﬂ?) of nonreal eigenvalues of H and H.:

A = t7§1 (a’lvbl) DD jfmc(a’mc’bmc)?

Q
[

&
D

B R2£mc7

[

Ge= Ry, @@ Ry,

(¢}

He = ‘7621 (a1,b1) ®--- @ jgmc(amcvbmc)v
He = J(a1,00) @ ©T2, (ame:bm,)"
where aj,b; >0, pj = aj +1bj, and § € N for j =1,...,mg;

2) blocks associated with real eigenvalues a; of H and H:

Ar = jm(ﬂl) DD jnmr (/er)a
Gr=  siRy @@ Sy R,

G, = &Ry @@ Sm Ry,

Hy = s1872(81) @@ s Sm, T2, (Bm,),
He = 5181(T2(51) @ Bm, 3, (T2, (Bm,))"

where 3; > 0, s;,8; € {+1,—1}, and n; € N for j =1,...,m,. Thus, oj = ﬂ? > 0 if
S5 = éj and oy = —5]2 <0 iij #* §j'

Furthermore, the form (4.4) is unique up to the simultaneous permutation of blocks in the
right hand side of (4.4).

Proof. The proof follows exactly the same lines as the proof of Theorem 4.1. (The key point
here is that the square roots that are constructed analogously to the proof of Theorem 4.1
are real, see Theorem 2.8.) O
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Theorem 4.6 Let A € R™" qnd let G € R™™ and G € R™™ be symmetric and nonsin-
gular. Then there exist nonsingular matrices X € R™*™ and € R™™"™ such that

XTAY = Anz D AZ,l D AZ,Q D AZ73 & AZ747
XTax = G..o G.19G.2® G, 3D G4, (4.6)
YIQY = GG ®G.00G.50G,

Moreover, for the G—symmetm’c matrizc H = GYATG YA € C™" and for the G-symmetric
matriz H = GTTAG™1AT € C™™ we have that

Y'HY = Hp @ Hoy @Hoo @ Hos & Heau,
X "HX = Hu®Hot @Hoo @ Hos ® Hau
Here, the blocks A, Gns, Gz, Has, and Hap. have the forms as in (4.4) and (4.5), while A, ,

Gk Gz,k’ ’Flz,k, and H. 1 have the forms as in Theorem 4.2 for k=1,...,4.
Moreover, the form (4.6) is unique up to the simultaneous permutation of blocks in the

right hand side of (4.6).

Proof. The proof follows exactly the same lines as the proof of Theorem 4.2. Indeed,
the proof (as presented in the Appendix) makes use of the decompositions as presented in
Proposition 3.1 which has a real version as well. [

In the particular case that one of the Hermitian matrices is positive definite (say G), we
obtain the following special case of Theorem 4.2 and Theorem 4.6 that can be interpreted as
a generalization of both the Schur form for a Hermitian matrix as well as a generalization of
the standard singular value decomposition.

Corollary 4.7 Let A € F™*" let G € F™*™ be Hermitian and positive definite, and let
G € F™*™ be Hermitian and nonsingular. Then there exist nonsingular matrices X € Fm*™
and Y € F™*" such that

[ 5 0
X*AY = B Omoxng ® [ Oy Iny |
L 0 B,
[ 1 0
X*GX = &Iy @ In, = Iy,
0 1
6
Y*GY = ® Lsg,00 © [ 121 181 } ;
L 0 S,
where ng = 7o + vy and B; >0, 55 € {—1,1} for j =1,...,m,. Moreover,
s 0
YTlGTA*GTAY = O Opy ® [ 8 Igl ] :
[ 5107 0
X la7tAGtATX = D Opmo -ty -
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Proof. Because G is positive definite, due to the inertia index relation, in the canonical form
of Theorem 4.2, G, as well as Ac,éc must be void. Furthermore, 71 = ... = 9y, = 1 and
51 = ... = Sy, = 1. Concerning the blocks A, 1, G , (A}'ZJ{;, the blocks for k£ = 1 may exist,
but G 1 has to be the identity matrix I,,,,; the blocks for £ = 2 and k£ = 3 must be void, and
the blocks for & = 4 may only exist when j = 1. In this case G 4 has to be I,,, and applying

an appropriate permutation, we can achieve the forms

)

~ I,
Az4:[0n1 Irn]» Gz,4:In17 Gz4:|: 0 1:|-

The proof for the real case is analogous. O

Remark 4.8 It should be noted that when G = I, then X is unitary and Corollary 4.7 gives
the Schur form of the Hermitian matrix product AG—1A*. Also, it simultaneously displays
the Jordan form of G~1A*A. One should observe here the difference in the eigenstructures
of AG™1A* and G~1A4*A corresponding to the eigenvalue A = 0. (Indeed, it is well known
that two matrix products AB and BA have identical nonzero eigenvalues including identical
algebraic, geometric, and partial multiplicities, but the Jordan structure for the eigenvalue
A = 0 may be different for both matrices, see [5].) If G = I,,, and G = I,,, then also Y is
unitary and Corollary 4.7 becomes the standard singular value decomposition.

A

5 Canonical form for G symmetric and G skew-symmetric

In this section we determine the canonical form for the case that G is symmetric and G is
skew-symmetric. We only consider the real case, because the corresponding complex case (i.e.,
G being Hermitian and G being skew-Hermitian) can be easily derived from the canonical
form in Theorem 4.2 by simply multiplying G with —1. For the real case, the situation is
different and the canonical form becomes more complicated. Again, we start with the result
for the case that A is square and nonsingular.

Theorem 5.1 Let A € R>™*27 be nonsingular, let G € R*™2" be symmetric and nonsingu-
lar, and let G € R?*™*?" be skew-symmetric and nonsingular. Then there exist nonsingular
matrices X,Y € R?"*2" sych that

XTAY = A, 0 A, 04, X'GX=G.aG oG, Y'GY=G.oG, oG, (5.1)

Moreover, for the G-Hamiltonian matrizc H = G TATG 1A and for the G-skew-symmetric
matric H = GYAGYAT | we have that

Y'Y =H. e H, &H,, X 'HX=H.®H &H,. (5.2)
The diagonal blocks in these decompositions have the following forms:

1) blocks associated with quadruples ((a; £ 1bj)?, —(a; £ 1b;)?) of nonreal and non-purely
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imaginary eigenvalues 0f7:[ and H:

o \.7{1 (a/b bl) 0 . ‘7£mc (amca bmc) 0 :|
e = [ 0 ngal,bo] v @{ 0 Jen(mesbm) |’

0 RQE 0 Rgg ]
G. = ! @D me |
[ Rog, 0 ] [ Rog,,, 0
- 0 Ry 0 Roe }
G, = 1 DO me |
[ —Rye, 0 ] [ —Ry,,, O
- ~Je, (a1,01) 0 } T (Ao i, )? 0 }
HC — 1 ... me c c ,
[ 0 Jel(ar,br)? boe 0 Terme (e bn.)?
H — j&l (a17b1)2 0 23 . @ j&mc (amc7bmc)2 0 g
¢ 0 —J¢ (a1, b)? 0 ~ Tt (Am,, bm.)?|

where a; >b; >0 and § € N for j =1,...,mg;

2) blocks associated with pairs of real eigenvalues (a?, —oz?) of H and H:

A — [Jm(al) 0 }@...@ [jnm(amr) 0 }

0 T (1) 0 Tnm, ()
S B P
o [ 5 %) e [ %)
H, = {—Jm O(m)zjm (om)Q] o [—Jnmr O(amrhjnm ?amf} |

T

9

C [Tmla)? 0 ]T [Jnm(aw)? 0 ]
”’“‘[ 0 —Jn(e)? T 0 — g (am,)?

where a; >0 and n; €N for j=1,...,m;;

3) blocks associated with pairs of purely imaginary eigenvalues (zﬁ?, —zﬂ?) of H and H:

A — [jm(ﬂl) 0 ]@._,@ {mel(@m) 0 ]

0 jpl(ﬁl) 0 jpml(ﬁmz)
- Ry 0 .. Rop, 0
e [ R e ]
A O RPI O Rpmz
6= wlp, ] ee wg M)

H, = [ [ o T 5"“)2],

In(B1)* 0 T, (Bm,)? 0
where 3; >0, s; € {+1,—1}, and p; €N forj =1,...,m,;

Furthermore, the form (5.1) is unique up to the simultaneous permutation of blocks in the

right hand side of (5.1).
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Proof. Analogous to the proof of Theorem 4.1, it can be shown that without loss of generality,
we may assume that o(H) = {\, X, =\, —A}, where A € C\ {0}. We then distinguish the three
different cases A\*> > 0, A\ < 0, and A2 € R. The proof then proceeds similar to the proof
of Theorem 4.1, but instead of constructing a square root of 7:{, a square root of a related
G-skew-Hamiltonian matrix S will be considered. The proof for the cases A2 > 0 and A2 ¢ R
follows exactly the same lines as the proof of Theorem 5.1 in [18] and will not be reproduced
here. The proof for the remaining case differs slightly and will therefore be presented here in
full detail.

Thus, assume without loss of generality that o(H) = {A, —2A}, where A > 0. By Theo-
rem 2.6, there exists a nonsingular matrix W € R?"*27 guch that

W—lﬂwz[ 0 jpl(A)}@m@[ 0 jpm(x)]’

=Jn(A) 0 ~Tpm(A) 0
WIGW = & gpl Ropl } CRRRY:> §m[£pm Rgm ]
where p; € N and §; € {+1,—1} for j = 1,...,m. Next, we define the matrix S to be such
that o 7 0 T 0
wsw =[P g oo [T gl ]

Then S is G;skeW—Hamiltonian and satisfies 0(5) C Ry. Thus, applying Theorem 2.9, we
obtain that S has unique square root S € C"*" that satisfies o(S) C R4 and that is a
polynomial in S. Consequently, with S also its square root S is G-skew-Hamiltonian. Let

B = VX. Then Theorem 2.7 implies the existence of a nonsingular matrix Y € R2"2n guch
that ) )
S 1ao T (B 0 ] Tom (B 0
S ::YlSY:[ n O TP ;
. 0 Ju(B) 0 T (B)
T AT 0 R 0 R
T _ P1 .. Pm
ey = [_Rm 0 ] v ? {_Rpm 0 ] '

(Note that the Jordan structure of S follows from the fact that S is a polynomial in S )
Moreover, using G 'AH = HG~'A and the fact that G~'A is nonsingular, we find that H
and ‘H are similar. Thus, by Theorem 2.5, we find that there is a nonsingular matrix X7 such

that ( ) ( )
PR B R AV B 0 T h
Xl”Xl‘[—zuM 0 ]@ @[—%AM 0 ]
STow. — = | B 0 3, L
HEX == [ 0 Ry ] G o [ 0 Ry, |’

where 51,...,3, € {+1,—1}. On the other hand, since 3? = A, the matrix

7““‘[$§m_i%u”}@”ﬁﬂsz>_$%wﬁ

is similar to )?1_ 1HX,. It is also obvious that Hep is X GX-skew symmetric. Again, by
Theorem 2.5 there exists a nonsingular matrix X, such that with setting X = X; X5 we have
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that
e e I A

Tn(B) 0 T (B) 0
ST R 0 R 0
e T _ P1 .. Pm
Ger = X"GX = 51 [ 0 R, ] - D Sm [ 0 R, ] )
for some s1,...,sm € {+1,—1}. (It is actually possible to show that 5; = s; for j =1,...,m,

but we refrain from doing so as it is not necessary for the proof.) Observe that Scr is Gep-
symmetric and satisfies

0 I 0 I
Ser(Hep) ™S, :[ ”1}@.‘-@[ ”m]
CF( CF) CF —Ip1 O _Ipm 0

Using this identity and setting X = G X TandY = A_IG’)N(SCF, we obtain

XTAy = X 'G'AA'GXSor = Sor,
XTex = X '¢7'6G ' X T = (XTGX) ™' = (Gex) ™' = Gor,
YTGy = SLXTGATGA'GXSer

= ST XTGXX "M 'XSer

- Sg’FGCF(HCF)il‘SCF - GCFSCF(HCF)ilscF

S T N 0 fom
~ '|-R, 0 ™| -R, 0 |°

It is now straightforward to check that Y ~'HY and X ~IH X have the claimed forms. Con-
cerning uniqueness, we note that the form (5.1) is already uniquely determined by the Jordan
structure, the sign characteristic of H, and by the restrictions on the parameters. 0O

For the general non square case we have the following result.

Theorem 5.2 Let A € R™*2" et G € R™*™ be symmetric nonsingular, and let G € R2x2n
be skew-symmetric and nonsingular. Then there exist nonsingular matrices X € R™*™ and
Y € R?"*2" such that

XTAY = Anz @ Az,l @ Az,2 S AZ,3 S?) Az,4 S Az,5 S Az,6a
XTGX = Gny®G1®G.20G,30G,40G,50 G, (5.3)
YIGQY = Gro® G @Gn®Gs®Gou@ G50 Gy

Moreover, for the G-Hamiltonian matriz H = G 1ATG 1A € R22n gnd for the G-skew-
symmetric matric H = G"TAG™TAT € R™™ we have that

Yﬁlr}:‘Y - ﬂnz S¥ 7:[,2,1 & 7:(7;72 > 7:(2,3 S¥ ﬂz,4 & 7—22,5 > 7:‘2,67
X'"MX = Hu®@MH1 @Ho2®Hos @ Hon @ Has ® Hag

The diagonal blocks in these decompositions have the following forms:

0) blocks associated with nonzero eigenvalues 0f7:l and H:
Anz, Gz, Gy have the forms as in (5.1) and Hyy, Hyp. have the forms as in (5.2);
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1) one block corresponding to 2ng Jordan blocks of size 1 x 1 0f7:[ and mqg Jordan blocks
of size 1 X 1 of H associated with the eigenvalue zero:

Az,l = Om0><2n0y Gz,l = Zwo,uoa Gz,l =

A~

~

Jnm Hz,l = 02710’ Hz,l = Omov

where mg, ng, mo, vo € NU {0} and mg = m + vp;

2) blocks corresponding to a pair of j x j Jordan blocks of H and H associated with the

etgenvalue zero:

71
Az,2 - @\72(0) D

i=1

7 2
G,o= @ Ry & @ Ry
i=1 i=1

i=1

Y2041

2
@J4(0) S D G_91 J1042(0) ,

Y2041

DD D Ruwsa,
i=1

2 0 Ry T2 0 Ror
10}69 GBI:—RQ 0] ©e @[ 0 |-

i1 |~ Raeg1

Y26+1

~ 71 Y2
H.o= D02 @® P(—222)T70) @& B (—Zoey1,2041)Ti742(0),
=1 =1 =1

Y1 Y2 9 T Y26+1 9 T
Hz,2 = @ 02 ¥ @ 23,1«74 (0) SPRRRENY @ 22f+2,€j4g+2(0) )
i=1 i=1 i=1
where v1,...,v € NU{0}; thus, 7:(Z,2 and H 2 both have each 2v; Jordan blocks of size

jxgjforj=1,...,204+1;
moreover, if j is odd, then exactly v; Jordan blocks of H. 2 of size j X j have sign s = +1
and ezxactly v; blocks have sign s = —1 (even-sized Jordan blocks associated with zero of
G-skew-symmetric matrices do not have signs), and if j is even, then exactly v; Jordan
blocks of 7:{,272 of size j X j have sign s = +1 and ezactly v; blocks have sign s = —1
(odd-sized Jordan blocks associated with zero of G-Hamiltonian matrices do not have

signs);

3) blocks corresponding to a 2j x 2j Jordan block of H and a (2§ + 1) x (2j + 1) Jordan

block of H associated with the eigenvalue zero:

mo I maoy T
Az = @[02] D@ @[0%] 7
i=1 3x2 1=1 (20+1)x2¢
mso maoy
Gz73 = @ SEQ)R:; D---D @ SZ(%)R2@+1 s
i=1 i=1
. om0 R ma [0 Ry
6o = [ 5] oo ELRT]
; (s R (420
Hes = D(=5;7"211)70) & & D(=s;" Xre)J2(0) ,
i=1 =1
mo maoy
H.3 = 6_91 85%)22,1\73(0)T SRR 6_91 SZ(%)ZHLZJ%H(O)T,
where ma, my, . ..,moy € NU{0}; thus, 7:(273 has maj; Jordan blocks of size 2j x 2j with

signs S(2j), and H 3 has mqj Jordan blocks of size (25 + 1) x (25 + 1) with signs s

i

fori=1,...,mg; and j=1,...,¢;

26

(2)

i



4) blocks corresponding to two (25 —1) x

(25—

1) Jordan blocks ofﬂ and two 25 x 25 Jordan

blocks of H associated with the eigenvalue zero:

0 I 0 Iz
mi 0 0 mae—1 0 0
00 4x2 0 0 40% (40—2)
m1 mae—1
G.u = @D R4 @B D Ra.
i=1 i=1
v om0 Ry ML=t 0  Ro
6= B 50] e & e,
~ m I —71(0) 0 Mt —Tae—1(0) 0
HZ = )
4 Z@l[ 0 m(o)] ©e P { 0 Ja1(0)
T T
m [—T(0) 0 et [_jQZ(O) 0 ]
Hz - : 3
a i:l[ 0 \72(0)} P 1@1 0 J2(0)

where myi, ms, ...
(2j - 1)

,mag—1 € NU{0}; thus, 7:6374 has 2mgj_1 Jordan blocks of the size
X (2§ — 1) and H, 4 has 2mg;_1 Jordan blocks of size 2j x 2j for j =1,...,

l;

(no sign-characteristic is involved, because neither even-sized Jordan blocks associated
with zero of G-skew-symmetric matrices nor odd-sized Jordan blocks associated with zero

of G-Hamiltonian matrices have signs);

5) blocks corresponding to a 2j x 2j Jordan

block of H and a (2j — 1) x (2§ — 1) Jordan

block of H associated with the eigenvalue zero:

ni

Ap = 2@1 [0 L],
G.5 é%lsz(‘l)Rl
Hos— é_a( s§1 211)72(0) &
H.5 = EBS ) 2101 (0)T

where ny,ng . ..

szgns s( 9= ), and H.5 has ngj_1 Jordan

Z( fOTizl,...,ngj_l and j=1,...

27

b - -

P

y,nor—1 € NU{0}; thus, 7:(,2,

n2e—1

" @ [0 124*1](26—1)x2z7
0 Ry

nag—1
[Rz 0] ’

@ @ S
D 5, ) e 0)

R% 1,

nzz 1
i=1
n2¢—1

P EB(

Tng 1

- @ 8(25 UEZZ 1J20-1(0)7,

5 has naj_1 Jordan blocks of size 2j x 2j with

blocks of size (2] — 1) x (25 — 1) with signs

76;



6) blocks corresponding to two (2j+1)x (2j+1) Jordan blocks of H and two 2j x 25 Jordan
blocks of H associated with the eigenvalue zero:

n2 10 00 I n2e 10 0 0 Iy
T T
=1 0120 0], ¢ 0 I 00 40x (40+2)
nayp
G.g = @R4 @ D Rur ,
i=1
G { 0 R3 2‘[ 0 Rzeﬂ]
20 R3 0 Roy1 0 ]
N J3(0) 0 n2t [ =J2e41(0) 0
Mo = @1[ 0 J3(0) e @ﬁ% 0 Jat1(0)]
T T
"2 [—75(0) 0 } 3 [—jze(o) 0 ]
HZ — EB@ ,
0 Gj[ 0 J(0) GB 0 J20(0)

where na,ng,ng,...,n2e € NU{0}; thus, 7:[2’6 has 2ng; Jordan blocks of size (2 +
1) x (25 + 1) and H.¢ has 2ny; Jordan blocks of size 2j x 2j for j = 1,...,4; (no
sign-characteristic is involved, because neither even-sized Jordan blocks associated with
zero of G-skew-symmetric matrices nor odd-sized Jordan blocks associated with zero of
G-Hamiltonian matrices have signs);

For the eigenvalue zero, the matrices H and H have 2725 + maj + noj_1, respectively 279, +
2maj_1 + 2ng9; Jordan blocks of size 25 x 2§ for j = 1,...,¢, and 272511 + 2maji1 + 2na;,
respectively 2y2j41 + maj + ngjr1 Jordan blocks of size (2j + 1) x (25 + 1) for j =0,...,¢L.
Here mog11 = nagyr1 = 0, where 2 4+ 1 is the smallest odd number that is larger or equal to
the maximum of the index 0f7:£ and the index of H. (Here, index refers to the maximal size
of a Jordan block associated with the eigenvalue zero.)

Furthermore, the form (5.3) is unique up to the simultaneous permutation of blocks in the
right hand side of (5.3).

Proof. The proof can be found in the Appendix. [
For the special case that G is positive definite the condensed form simplifies considerably.

Corollary 5.3 Let A € R™?" et G € R™™ be symmetric and positive definite, and
let G € R?™¥2" be skew-symmetric and nonsingular. Then there exist nonsingular matrices
X € R™™ gnd Y € R*™*2" sych that

pr 0 Pm, 0
XTAY = |: 0 /81 b...D 8’1 /Bmz @OmOXQTLo S [ 0111 Inl :| )
xTgx = L. oLl ®l, =1

YIGY = J1@... 8018 Jny @ Jn,,

with 3; >0 for j =1,...,m,.

Moreover,
—1A—1 4T ~—1 _ 0 —6% 0 - g@, 0 —In,
YT GTTATGTTAY = {ﬂ% 0 D...0 Bg% 0 @ O2py @ E
et g 0 0 B
X1GTAGTIATX = [ e %1]@...@[_% Ol}@omw1
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Proof. Because G is positive definite, due to the inertia index relation, in the canonical form
of Theorem 5.2, G, Gy, as well as A,, G¢, Ay, G, must be void. Furthermore, pL=...=
pm, = 1 and s1 = ... = s,,, = 1. Concerning the blocks A, j, G , C;’z,k, the blocks for k£ =1
may exist, but G, 1 has to be the identity matrix I,,,; the blocks for k = 2,3,4,6 must be
void, and the blocks for kK = 5 may only exist when j = 1. In this case G, 5 has to be I,
and applying an appropriate permutation, we can achieve the forms A, 4 = [ On, In, ] ,

Goa=Ip,and G,y = Jp,. D
The result of Corollary 5.3 first appeared in [25], where an independent proof is given.

6 Canonical form for skew-symmetric G and G

When G € F™™ and G € F™ " are both skew-Hermitian, then in the complex case the
canonical form for the triple (A, G, G), where A € F™*™ can easily be derived from the
Hermitian case in Section 4, by simply considering the related triple (A, ZG,lé). The real
case, however, is different.

Theorem 6.1 Let A € R?*"*2" be nonsingular and let G, G e R2>2n pe skew-symmetric and
nonsingular. Then there exist nonsingular matrices X,Y € R*™2" such that

XTAy =A. 0 A, X'GX=G.eG,, YI'Gy=0G.G,. (6.1)

Moreover, for the é-sk’ew-Harrfiltonian matric H = G YATG'A and for the G-skew-
Hamiltonian matric H = G~YAG™1 AT, we have that

Y YHY =H.®H,, X 'HX=H.®H,. (6.2)
The diagonal blocks in these decompositions have the following forms:

1) blocks associated with pairs (u?,i?) of nonreal eigenvalues of H and H:

% (al, bl) 0 :| |:j§m (amca bmc) 0 :|
Ac == 1 PPN c ,
[ 0 Jelar,br) G Tt (@me: b,

0 Ry } [ Rgg ]
GC — 1 ®D--P me ,
|: _stl 0 R2£7n5
A 0 — Ry _R2§ :|
Ge = ! ®---D me |
o L n
(

2
» _ I:*jfl(alubl) ) 0 :| DD
0 J¢(a1,b1)

[‘7521(01751) 0 ]T
0 jgl(al,bl)

NE & (ame, bm,) 0
0 j{ (amc ’ bmc ) ’

T
‘752,,16 (a’mc7 bmc) 0
bmc) ’

H, = 0

PR

where a; ER, b; >0, u; =a; +1b;, and & €N fori=1,...,me;
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2) blocks associated with real eigenvalues aj = 5]-6]2 of H and H.:

0 Tn(6) . 0 Tim, Bm,)
o= Lw, W] ee [, )
] A B
T e R S|

T T
2 (Bu) 0
0 J,?l(ﬂl)] © @‘5”“[ "0 W(ﬂm,)] !

where B; >0, §; € {+1,—-1}, and n; € N for j =1,...,m,. (Here, 6; is not a sign in
the sense of “sign characteristic”, but only depends on o; = d,ﬂ? being either positive
or negative. )

Furthermore, the form (6.1) is unique up to the simultaneous permutation of blocks in the

right hand side of (6.1).

Proof. Once again, we can restrict ourselves to the case that either o(H ) = {u?, %} for some
we C\Roro(H)={a}, where « € R\ {0}. The remainder of the proof then follows exactly
the same lines as the proof of Theorem 4.1 by constructing a skew—Hamlltoman square root
S of H that is a polynomial in H in the cases o(H) = {,u i} or o(H) = {a} and a > 0, or
by constructing a skew-Hamiltonian square root S of —H otherwise. O

We mention that the choice of the transformation matrices X,Y in Theorem 6.1 so that
XTG.X = —YTQG.Y rather than XTG. X = YTG.Y is just a matter of taste and avoids the
occurrence of distracting minus signs in the forms for H,. and H,.

For the general non square case we have the following result.

Theorem 6.2 Let A € RZ™%2 gnd let G € R2™2m G € R2™2 pe skew-symmetric and
nonsingular. Then there exists nonsingular matrices X € R*™X2m qnd Y € R2"*27 sych that

XTAY = Anz D Az71 ® Az,? & Az,3 @ AZ747
XTGX = an ) Gz,l > Gz,2 S¥ Gz,3 @ GZ,47 (63)
YTGY = an D GAz,l &b Gz,2 (&) CATYZ,3 ¥ GAZ,4'

Moreover, for the G-skew-Hamiltonian matrizc H = G *ATG1A € R2"™2" and for the G-
skew-Hamiltonian matriz H = GTYAG™TAT € R?™*2m ye have that

Y_lﬂy = ﬂnz 3] ﬂz,l @ ﬂz,Q @ Hz,ii D 7:[2,47
X "X = Hu®Hot ©Hoo @ Hoz ® Hau

The diagonal blocks in these decompositions have the following forms:

0) blocks associated with nonzero eigenvalues of H and H:
Apzy Guzy Grz have the forms as in (6.1) and Hyz, Hy, have the forms as in (6.2);
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1) one block corresponding to 2ng Jordan blocks of size 1 x 1 of H and 2mg Jordan blocks
of size 1 X 1 of H associated with the eigenvalue zero:

A~

Az,l = 02m0><2n0a Gz,l = Jmoa Gz,l = J’no7 Hz,l = 02n0’ Hz,l = 02m0§

2) blocks corresponding to a pair of j x j Jordan blocks of H and H associated with the
etgenvalue zero:

Y1 Y2 v,
Aa= @RO) & DIO) @& @ Tul),
=1 =1 =1

_ A 0 Ry )2 0 R gL 0 Rg
o=@ 8L ] e L]
N 0 Ry 72 0 Rs e 0 Ry
Gam@n 0oLk Tee &[0 0]
N 7 Y2 . 9 Ye o . 9
Hoo= D0 o ®LJH0) &0 @ [hwI2(0).

=1 =1 =1
71 2 9 T e 9 T
Hep= @02 & DIIL0) & & D I2Tyu0),
=1 =1 =1
where y1, ..., € NU{Q}, and ﬁQj = (_Ij—l)@ll@(_Ij) and ng = (_Ij)@ll@(_lj—l)

for g =2,...,¢; thus, H.2 and H.2 both have each 2v; Jordan blocks of size j x j for
j=1,...,¢;

3) blocks corresponding to two j x j Jordan blocks 0f7:{ and two (j+ 1) x (j + 1) Jordan
blocks of H associated with the eigenvalue zero:

0 L 0 Ip—
m me

A = 11 2 8 &0 If_l 8 ’

0 0], mo 0 20% (20—2)
o= 8| 55 e @R T]
~ m et
G.3 = l@ll [_2{1 }E)l} Gw Z@l |:_R(;—l R%_l]’
Hes = é [jlo(O)Jl?o)]@”'@ m@l [\7401(0)%?(0)] ’
o= 85 sl oo G0

where my,...,my_1 € NU{0}; thus, 7:(@3 has 2m; Jordan blocks of size j x j and H. 3
has 2m; Jordan blocks of size (j+1) x (j+1) forj=1,...,0—1;
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4) blocks corresponding to two (j + 1) x (j + 1) Jordan blocks of H and two j x j Jordan
blocks of H associated with the eigenvalue zero:

m 0007 @ |00 0l
A = @ [O I o 5]2X4@“‘@ﬂ91 [0 L1 0 Zol} (20-2)x2¢
| n_
G.4 = l@l [_2{1 }31} SZRRR 1;@11 [—Roé1 Rg_l] 7
GZA = § [_?%2 }?)2} D0 iééll [_(Jl?z RE)Z] ’
Ha= 81750 ee @ 0]
Moo= @ [jlo(O)Jl?o)r oo @ [ﬂ_ol(())jf?(o)ﬁ

where ny,...,ng—1 € NU{0}; thus, 7:lzy4 has 2n; Jordan blocks of size (j +1) x (j +1)
and H. 4 has 2n; Jordan blocks of size j X j for j=1,...,0 —1;

Then for the eigenvalue zero, the matrices H and H have 27 + 2m; + 2nj_1 respectively
27; 4+ 2mj_1 + 2n; Jordan blocks of size j x j for j =1,...,£. Here [ is the maximum of the
indices of H and H. (Here index refers to the maximal size of a Jordan block associated with
the eigenvalue zero.)

Furthermore, the form (6.3) is unique up to simultaneous block permutation of the blocks
in the diagonal blocks of the right hand side of (6.3).

Proof. The proof is presented in the Appendix. 0O

7 Conclusion

We have presented canonical forms for matrix triples (A, G, é), where G, G are nonsingular
and either complex and Hermitian or skew Hermitian or real and symmetric or skew sym-
metric. These results generalize the canonical forms for matrices that are Hermitian, skew
Hermitian or real symmetric, skew symmetric with respect to indefinite scalar products as
they are studied in detail in [6, 7, 15, 16, 17].
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Appendix: Proof of Theorem 4.2

We present a constructive and recursive proof in several steps. The proof uses the same
strategy as in the case of G and G being complex symmetric, see [18]. Although this requires
a lot of repetition of the ideas published in [18], we decided to give the full proof of Theorem 4.2
and ideas of proof for the other main theorems, because of two reasons. First, we want
this paper to be self-contained, and secondly, the case of complex sesquilinear forms or real
bilinear forms is more involved than the case of complex bilinear forms. For example, any
complex symmetric matrix is congruent to the identity matrix, but the same is not true
for complex Hermitian matrices under congruence or real symmetric matrices under real
congruence. This fact results in the existence of the so-called sign characteristic of real
eigenvalues of G-Hermitian matrices. It is this point that makes the development of the
canonical forms more challenging in the case that G and G are complex Hermitian or real
symmetric or skew-symmetric.

Step 1) Reduction to a stair-case-like form

Let (m,v,0) and (7, 7,0) be the Sylvester inertia indices of G and G, respectively. Applying
appropriate congruence transformations to G and G otherwise, we may assume that G = X,
and G’ = Efl—’{,. Let

A= BCY

be a full rank factorization of A, ie., By € C™*", Cy € C"*", rank By = rankC; = r.
Applying Lemma 3.1 to By and Cy, respectively, we can determine nonsingular matrices
X, € C™*™ and Y7 € C™*"™ such that

0 1 wotw 0 0 I

X{B; = 0 51 , Xi X Xo =20, @ 0 Xpg O ,
| Big | - I, 0 0
0 T w0t 0 0 I

Yl*Cl = 0 51 s }/1*27%,17}/1 = Efro,l?o D 0 2251,41 0 ’
| CLO 1 131 0 0
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where By g,C19 € C™*" are both invertible, p1, q1, 61, D1, ¢1, 51 > 0, and

Pt +0=p1+Gq +0 =7

Partition
P1+ 41 b1
A A
By oC* :p1+q1[ 3,3 3,4]’
LO™10 =5 Az Asg
then
00 0 0 (Srows 0 0 0]
o |00 0 0 i B 0 0 0 Iy
XAV =1\ Az Aszg |7 XiZmpX1 = 0 0 Zpa 0 |7
0 0 Ags Agy 0 I; 0 0

Yoy 0 0 07
0 0 0 I
* g — o1
Yismeh 0 0 X4 O

o0 I, 0 0 |

Applying the same procedure to the triple (Asz 3, X,
matrices Xo, Y5 such that

1> 2p1.61), We can construct nonsingular

00 0 0 Sewn 000
x| 00 0 0 - . 0 0 0 I
S I R N I A 0 0 Xpg 0 |
0 0 Ags Agg | 0 Iy, 0 0 |
[ Sme 0 0 0]
. - 0 0 0 I
Y*EA AYQ = P ,
2 “p1,41 0 0 Zﬁz#ﬁ 0
0 L, 0 0 |

where pa, ga, 02, P2, G2, 09 > 0, Agg € F52f82, Ase € F(p2+a2)xé2 Agp € FO2x(P2td2) Ay o ¢
FP2ta2)x(b2+62)  po 4 gy + 89 = Py + Go + 09 = rank As 3, and where the matrix

[ A575 A576 :| e F(p2+q2+52)><(p2+q2+52)
Ass Ass

is nonsingular. Letting

Xo = X1 (Ingsvpss, ® Xo ® I5,), Yo=Yi(L.

Fo+00+01 Y2 @ 151)’
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we then have

00 O 0 0 0 0

0 0 0 0 0 0 0

00 0 0 0 0 As;

X;AY, = 0 O 0 0 0 0 Au7 |,

0 0 0 0 Ass A576 A577

0 0 0 0 A675 A6,6 A677

L 0 0 A7z A7q A7y A7 Arg |

[ Ywwe 0O 0 0 0O 0 07
o 0 0 0 0 0 I
0 0 Ypw 0 0 0 0

XiYrXo = o 0o 0 0 0 I 0 |,

0 0 0 0 Yyg 0 0
0 0 0 Is, 0 0 0

0 I, 0o 0 0 0 0

[ Yipoo O 0 0 0 0 0 ]
0 0 0 0 0 0 131
0 0 Sss 0 0 0 0

Yy SasYs = 0 0 0 0 0 I 0|,

0 0 0 0 Zpa 0 0
0 0 0 I, 0 0 0

o0 I, 0o 0 0 0 0|

where the matrix X5 AY5 has been partitioned conformably with X5X; , Xo (row-wise) and
Y5 X4 5Yo (column-wise). The submatrix of X5AY5 that is obtained by deleting the leading

two rows and columns is then nonsingular, because it is equivalent to By oC7 . Thus, [‘:i;]

has full row rank and [A73 A7 4] has full column rank.
We can repeat the procedure for the triple (As 5, Xp, ., 2, ,) Which finally yields nonsin-
gular matrices X3 and Y3 such that (after renaming some blocks in A and using the canonical
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notation corresponding to the notation in the previous step), we have

[0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 Az 10
0 0 0 0 0 0 0 0 0 A0
. 0 0 0 0 0 0 0 0 Aso As1o
XsAYs = 0 0 0 0 0 0 0 0  Aso Ao |’
0 0 0 0 0 0 A7,7 A778 A77g A7,10
0 0 0 0 0 0 As7 Ass Aso Asio
0 0 0 0 Ags Ags Agr Agsg Agge Agio
| 0 0 A3z Awoa Aros Aroe Aro7r Aios Ao Aloo |
Swwe O 0 0 0 0 0 0 0 0]
0 0 0 0 0 0 0 0 0 Is,
0 0Y%,,, 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 Is, 0
. o 0 0 0X,,0 0 0 0 0
X2muXs = o 0 0 0 0 0 0 I, O 0 |’ (7.1)
0 0 0 0 0 0 Y,e 0 0 0
0 0 0 0 0 Is, 0 0 0 0
0 0 0 Is, 0 0 0 0 0 0
0 I, 0 0 0 0 0 0 0 0 |
e 00 0 0O 0O 0 0 0 0 7
0 0 0 0 0 0 0 0 0 151
0 0%, 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 152 0
. 0 0 0 0 Zys 0O 0 0 0 0
Yo Xao¥s = o 0 0 0 0 0 0 Iy 0 0o |’
0 0 0 0 0 0 Y, 0 0 0
0 0 0 0 0 Igs 0 0 0 0
0 0 0 ISQ 0 0 0 0 0 0
Lo, 0o 0 0 0 0 0 0 0 |

where [A103 A104] and [Ags Agg| have full column rank,

[ As.10 ] and [ ﬁ5,9 ] have full row rank, and [ Arg Az ] is nonsingular.
6,9

Continuing recursively, the process clearly has to stagnate after finitely many steps. Using
the canonical notation corresponding to the notation in the first two steps of the process, we
find that stagnation occurs after the /th step either when Asp;q 9,41 is nonsingular or when
pe = q¢ = P¢ = ¢¢ = 0. In both cases we obviously have that py + q» = p¢ + §¢, and we end up
with a nonsingular matrix

Azerrper1 Azer10002 | ploctartdo) x (petaetde)
Aspioo041 Aet2.2042 ’

full row rank matrices

|: A2k+1,3g+2—k :| c F(Wk+yk+6k+l)><8k7 k= 1’ o ’g _ 1’
Aokyo 3042k
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and full column rank matrices [Aspio_port1 Asero—k2kt2] € ROk X (Rat+9k41) for k=
1,...,£—1. Also, we have K
8¢ = 0, (7.2)

because py + qp + 8¢ = pp+ Go + 5@. Finally, we obtain that due to the full rank properties, we
have that

k1 > g1 + Dpo1 + Ok, Okt = Mho1 + V1 + O, (7.3)
for k =2,...,£. On the other hand from the reduction process we have
i+ @ + 6k = Pr + G + O, (7.4)

for k=1,2,...,¢, and

Ph—1+ Q-1 = Tp—1+ Vk—1 + 20k + Pk + Gk,
Ph—1+Ap—1 = Tp—1+ Ug—1 + 20; + D + G,
for k =2,...,1. The latter two equations can be rewritten as
Ph—1+ Q-1+ 0k—1 = Tp—1+ Vg1 + O + Ok—1 + (Dr + @i + Ok),
Ph—1 + Gk—1 + k-1 = Fp—1+ Dp—1 + g + Ok—1 + (Dr + i + Ok)-

By using (7.4) we then obtain
Tt + Vo1 + O + Op1 = T + D1 + Ok + k1,
or, equivalently,
Op—1 — Th1 — Vh1 — O = Op—1 — Fp—1 — D1 — 0 >0 (7.5)

for k = 2,...,¢, where the nonnegativity follows from (7.3).

Step 2) Further reduction of the staircase form

We now isolate the nonsingular block Agyq 2,41 from the other blocks and compress the
remaining part of X;AY, to a more condensed form. We set my = py, vy = q¢, ¢ = Do, Vo = G

and
Tk + Vg if k is even T, + Vi if k is odd

mk::{frk—l—ﬁk if kisodd ’ nk::{frk—i—ﬁk if k is even
for k= 0,...,¢. Moreover, (using (7.2) and (7.5)), we define ~; := &, = é; and
Vi 1= Ok — T — Vg — Op1 = O — g — D — Op1, k=1,...,0— 1L

For the sake of readability of the paper, we will not carry out the proof for the general case,
but we will illustrate the procedure for the special case that £ = 3, where we have the matrices
as in (7.1). The general case proceeds in a completely analogous way.

If not void, then A7 7 in X3 AY3 in (7.1) is nonsingular, and hence, we can annihilate A7 g
by post-multiplying X3jAY3 with the matrix

I—MMW

zl:=Ino@lsl@fm1@152@1"2@153@[0 I

}@%@%.
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Correspondingly updating Y5 X; ;Y3 this leads to a fill-in in the (7,8) and (8,7) block posi-
tions in Z7Y3 X% ;Y37 given by —Efrg’ﬁBA;’%Azg and —A?SA?_;L}}S’,;B, respectively. We can
annihilate these two fill-ins by using the (8,6) block entry I 5, as a pivot, i.e., by applying a
congruence transformation to Z7Y5 Y5 ;Y37 with

* —%
I A7 g A7 %, 0

Z2:Ino@‘[51@[m1@182@1n2@ 0 I

@153 &) ISQ EBI&.

It is then easy to check that Z5Z7Y5 Y5 ;Y321 75 = Y5 X ;Y3 and that the correspondingly

updated matrix X3 AY37;Z5 has no further fill-ins. Finally, we update Y3 « Y37, Z5.
Similarly, we can annihilate Ag 7 by working on the rows of X3 AY3 and applying congru-

ence transformations to X3, ,, X3. Then, we can proceed and annihilate the blocks A7 g,

Ag 7, A710, and Aqg7 in X3 AY3. Since originally the matrix

[ A77 Arg ]
Ag7 Agg

is nonsingular, we find that after the above reductions the updated block Agg is nonsingular
(or even void). With Agg as the pivot, we can then annihilate Agg, Agg, Ag 10, Aiog and
recover X33, X3 and Y35 Y; 5Y3. Observe that this does not change the zero blocks in
X35 AYs. Finally post-multiplying X35 AY3 with the matrix

Zy=Ing @I @I, ®I; &I, ® A B Ipyug, ® Agy & I3 0 I,

we then obtain

[0 0 o0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 As 10
0 0 0 0 0 0 0 0 0 A0
. 00 0 0 0 0 0 0 Asg Asig
XAS=10"0 0 0 0 0 0 0 A Aew|’
0 0 0 0 0 0 Az7 0 0 0
0 0 0 0 0 0 0 Is, 0 0
0 0 0 0 A9’5 A976 0 0 Agyg Ag)lo
| 0 0 Ays Awoa Aoy Aoe 0 0 Ao Aio10]

while X35, , X3 and Y525 ;Y3 are as in (7.1). (Indeed, observe that the congruence trans-
formation with Z3 leaves Y3"X; ;Y3 invariant.) Since the original block [Ags Agg| has full
column rank, it easily follows that the corresponding updated entry

[ Ags Ags | — | Aos AgsAig |

has full column rank as well. Then there exists a nonsingular matrix Wj such that

I, 0O
[ Ags Agg | — Wi [ Ags Agg | =] 0 I |- (7.6)
0 0

Transforming then X3 AY3 and X3 , X3 with a multiplication from the left and congruence
transformation, respectively, with a block diagonal matrix having VVl_1 in the (4, 4)-block posi-
tion and W7 in the (9, 9)-block position, we obtain the desired update in the block [Ag 5 Ag ]
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while X3X: X3 and zero block-structure of X;AY3 are invariant under that transforma-
tion. We then continue by taking this updated block [Ags Agg| as a pivot to annihilate
[A105 A1o6]. Again, this can be done without changing X5X, , X5.
Similarly, due to a full row rank argument, there exists a nonsingular matrix Ws such that
Aso | | Aspg | Imy 0 O
[ o } - [ il Lol R (7.7)
and applying appropriate transformation matrices, the corresponding change in X;AY3 can

be made without changing Y5* X'z ,Y3. Then, A5 109 and Ag 10 can be annihilated.

Also, we use the pivots [32,3} and [ Ags Age ], respectively, to annihilate the leading

ma + d3 columns of Agg and Ajg, and the leading ny + 53 rows of Ag g and Ag 19. So these
three blocks become

0 0 0 0
Agg— |0 0 0 |, Agro—| O , Ao |0 0 Ao |,
0 0 Agg Ag. 10

where 2979 € Fr2x7z, gg,lo € Fr2xon g1079 € F%1 %72 Since originally the submatrix

0 0 0 0 A
0 0 0 0 Ag
0 0 A7r7 A7g Arg
0 0 Ag7r Ass Aso
Ags Age Ag7r Agg Agpo

was nonsingular, we have that Avg,g is nonsingular. We then use xz{vg,g as pivot block to
annihilate Ag 10 and Ajg9, and transform Agg to I,,.
In a similar way we can perform the reductions

I 0
As 10 I, 0 0 m
b IA
|: A4710 :| - |: 0 _[52 0 ) [ A10,3 A10,4 ] «— 8 82 ,

and use them as pivots to reduce Ajg 19 to

00 0
A10710 =100 0
00

A10,10

where ﬁmm € F"*7 and finally transform ﬁmm to I,,. After all this, the matrix X3AY3
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has the form

00 O 0 0 0 0 0 0 0 0 0 0 0
00 O 0 0 0 0 0 0 0 0 0 0 0
0 0 O 0 0 0 0 0 0 0 0 |, O 0
0 0 O 0 0 0 0 0 0 0 0 0 Is, O
00 O 0 0 0 0 0 |In, O 0 0 0 0
00 O 0 0 0 0 0 o I, O 0 0 0
N |0 0 © 0 0 0 A7 O 0 0 0 0 0 0
X34¥s=1490 0 0o o o o0 L,/ 0 0 0|0 0 0|
00 O 0 L, O 0 0 0 0 0 0 0 0
00 O 0 0 I, 0 0 0 0 0 0 0 0
00 O 0 0 0 0 0 0 0 I,| 0 0 0
00, 0 0 0 0 0]0 0 0[]0 0 0
00 O 152 0 0 0 0 0 0 0 0 0 0
L0 0 O 0 0 0 0 0 0 0 0 0 0 I, |
while X3, X3 and Y5 Y5 ;Y3 are still as in (7.1). We partition
Is, = Iy @ Iy © 1y; & L, @ Ly, Is, = In, ® I; ® Ly,
I$1 =Iny @ Iny © Iy; © 1y, © Iy, 152 = Imy © Iy @ Iy,

and replace Is,, Is,, I 5 and 1 5, In the matrix triple with these partitions. We then get
X3AY3, X352, X3, and Y5 Y; ;Y3 partitioned in 22 block rows and columns. Let Pg be the
block permutation that re-arranges the block columns of X3 AY3 in the order

13,1,6,22,5,10,17,21,4,9,12, 14, 16, 20,2, 7, 18,3,8, 11, 15, 19.

Let Pr, be another block permutation such that P; re-arranges the block rows of X;AY3 in
the same order. Set B B
X = X3PL, Y = YéPR

Then we obtain that

X*AY = A®Acd (A B A dA3) @ (A28 Az3),
X5, X = Gus®Go® (G1 ® Go®G3) ® (Gra ® Gog),
?*Eﬁ,ﬁ? = gns S¥ Qo > (QA1 ©® .C’;z S Q?,) 5>} (gAl,Q @ 62,3)7
where R
ATLS = A2€+1,2£+17 gns = Eﬂ'e,uey gns = Eﬁ'g,ﬁga e =3 (78)
AO == 0’m0><’n07 gO - Eﬂ'o,l/()v ng - Eﬁ'o,l?(w (79)
0 0 0 0O 0 0]
0 0 0 O 00 0 0 0 I,
100 0 0 0 I, 0 0 0 0 I, O
AI@A2@A3_[0 IM]@ 002, 0|9loo0 01,0 0]
0L, 0 O 0 0 I, 0 0 O
1 0, 0 0 0 0 |
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GL®G DGz =G @G ®Gs

0 0 0 0 0 I,
0 0 0 I, 0 0 0 0 I, O
:[0171}@001720@0001%00
L, 0 0 I, 0 0 0 0 I, 0 0 0 [’
I, 0 0 0 0 I, 0 0 0 O
| I, 0 0 0 0 O |

[0 0 0 0 0 ]
0 0 0 0 0 0 0 I,
Aip@Asz= |0 0 L, | | 0 0 0 Iy, 0
0 Im, O 0 0 I, 0 0

1 0 Iy, O 0 0O |

F0 0 0 0 Iy,
0 0 Iy, 0 0 0 Iy, O
G120G3=| 0 Xrp 0 (&) 0 0 Xr 0 0
I, 0 0 0 I, 0 0 0

| I, O 0 0 O |

[0 0 0 0 I, ]
) ) 0 0 I 0 0 0 Iy O
G12 @ Ga3 = 0 Xz O ®1 0 0 245 0 0
I, 0 0 0 In, 0 0 0

| [, 0 0 0 0 |

Step 3) Extraction of Jordan blocks from the staircase-like-form

Completely analogous to the case ¢ = 3, we proceed in the case ¢ # 3 and obtain the staircase-
like-form as

l /—1
XY = Anodo@PA oA
j=1 j=1
_ _ )4 /—1
X2 X = Gus®G0 PG & PG
=1 =1
_ _ )4 /-1
Y52 = Gue®Goo PG ® P Giin,
=1 =1

where Aps, Gns, Gns are as in (7.8), Ao, Go, Gy are as in (7.9),

0 0 0 0
0 0 0 I,
Ay = (Royy () @ Ly = | o o , (7.10)
0 Iy, 0 0 J 5525 blocks
0 0 I,
Gi=Gj=Ry®@I,=1| 0 . 0 , (7.11)
I’YJ' 0 0 (25)x(24) blocks



"o 0]
0 I
Ajj+1 = ) (7.12)
0 I,
L 0 Imj 0 4 (2741)%x(25+1) blocks
"o Imj -
I,
G = S, : (7.13)
I,
L Imj 0 4 (2741)%x(2j+1) blocks
"o [nj -
I,
Gjjr1 = i 05 . (7.14)
I,
L Inj 0 4 (2741)%x(25+1) blocks

The blocks A,s, Gns, Qns, Ao, Go, and .C;o are already in the form as indicated in Theo-
rem 4.2. Next, let us investigate in detail the blocks of the form (7.10)—(7.11). Let P; be the
permutation such that premultiplication with P;" reorders the rows of A; in the order

2].’7]'7 (2j_1)7j7 ) Vis
2575 — 1, 2 =1y =1, ..., v -1,

2y —vi+1, 2 —1yj—v+1, ..., 1

and let ﬁj be the permutation such that postmultiplication with ij reorders the columns of
Aj; in the order

ij_la E) (2j_1)7j_1? 2j7j_17

1, vy (2 =Dy =y +1, 25y — i+ 1L
Then it is easily verified that

j i
PAP = @ Jy(0), PrG;Py = PG, Py = @D R
i=1 =1
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Finally, let us return to the blocks of the forms (7.12)—(7.14). Let Z; be the permutation such
that premultiplication with Z7 reorders the rows of A; j+1 in the order

(7 + )ym; + jn;, gmj + (j — )n;, e 2m; + nj, m;,
(j—l—l)mj—l—{—jnj, jmj—l—l—(j—l)nj, ceey 2mj—1+nj, mj—l,
gm; + 1+ jn;, G=Dmj+1+(G—1ns, ..., mj+1+n 1,

jm; + jn;, (G—Dmy+(G—ng, ..., mj+mny,
jmj—i—jnj—l, (j—l)mj—i—(j—l)nj—l, ce mj—i—nj—l,
gmj+ (G —Dn;+1, (G—mj+ (G —2)n;+1, ..., mj + 1,

and let Zj+1 be the permutation such that postmultiplication with ZjH reorders the columns
of A; 41 in the order

m; + nj, 2mj+nj, RN jmj —|—jnj,
mj—1+mn;, 2m;—1+n; ..., jm; — 14 jn;,

1+ n;j, mj+1+4+n;, ..., (j—1mj+1+jn;,

nj—l, mj—i—2nj—1, ey (j—l)mj—i-jnj—l, jmj+(j+1)nj—1,
1, mj—l—nj—l—l, ...,(j—l)mj—l—(j—l)nj—l—l, jmj—i-jn]—l-l

Then it is easily verified that

ZjAjjZj+1 = @[ 0 ] 4 DL L gy
i=1 (J+1)xj i=1
l/j " m]‘ nj
2G5 25 = GB Rjt1® @ Rjt1® @ R, (7.15)
i=1 i=vj+1 i=1
o B mj v n;
Z7419j 412541 = PR s@RrRne@ R,
i=1 i=1 i=0j+1
if j is even and
mj I TLj
Zj Aj 12t :@ [ 6 ] @@ [0 I ]jx(j+l)’
i=1 +Dxj =1
m; vj 75
Z:GijnZ; = PR o PRieP R (7.16)
i=1 i=1 i=vj+1
vj mj n;
ZinGinZin=Pred Re DR,
i=1 =041 i=1
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if 7 is odd, where

N 0 0 R,
Rygn=| 0 -1 0 (7.17)
R, 0 0

The matrices in (7.15) and (7.16) are block diagonal (with rectangular diagonal blocks in
Z;Aj7j+1 Z j+1) and it is straightforward to check that with appropriate transformation matri-
ces it is possible to simultaneously transform, say, the kth block in all three matrices without
changing the other blocks. We use this observation to finally show that the form (7.15)
or (7.16) is equivalent to the corresponding form in Theorem 4.2. It only remains to show
that the odd-sized blocks Ej and Ej_‘_l in (7.15) and (7.16) can be replaced by —R; and
—Rj41, respectively, without changing the other blocks. We show this by an induction argu-
ment for the triple ([0 ], }Aéj, Rjt1) and j odd, the proof in the other cases is similar. For
j = 1 there is nothing to show, so let j = 3, i.e.,

0100 0 0 1 R 88(1)(1]
A=100 1 0|, gG=|0 -1 0|, Gg=

0 001 10 0 0 100

1 000

Then G can be transformed to —Rs3 by the congruence transformation with the transfor-
mation matrix diag(1,1,—1). Updating A accordingly (i.e., by premultiplying A with the
transformation matrix), we obtain

010 0 0 0 -1 ) 88(1)3

A=|l001 0|, G=| 0 -1 0 |, G=
000 —1 -1 0 0 0 1 00
1000

The negative entry in A can then be reset to +1 by postmultiplication with diag(—1,1,1, —1).
Observe that the congruence transformation with this matrix leaves G invariant. Next, con-
sider the case j =5, i.e.,

0ol1 00 0 0 1 0 0 1
A=|0[0 L|0|, 6=|0 Ry 0|, G=|0 Ry ©
0[0 01 1 0 0 1 0 0

Applying the transformations of the previous step (embedded in slightly larger transformation
matrices), we obtain that

0|l—-1 010 0 0 1 0 0 1
A=10| 0 I3/0|, gG=|10 —R3 0|, G=|0 Rs4 O
0] 0 01 1 0 0 1 0 0
Premultiplying A with diag(—1, I;) and applying the corresponding congruence transforma-

tion on G yields

0|1 010 0 0 -1 R 0 0 1
A=10|0 I3]0 |, G= 0 —-Rs 0 |, G=|0 Ry O
0/0 0]1 -1 0 0 1 0 0

The remainder of the proof then follows by induction using alternately the arguments as in
the cases j =3 and j = 5.
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Step 4) Getting the canonical form for H and H

Up to this point, we have proved the existence of the canonical form for the triple (A, G, G‘)
The corresponding forms for H and H then immediately follow by forming the products
G1A*G7'A and G 1AG1A*. These forms are already very close to the actual canoni-
cal forms of Theorem 2.2, and further reducing them to that canonical form leads to the
statements on the eigenvalues and attached signs of H and H.

Step 5) Uniqueness of the form

We highlight that once uniqueness of the parameters «;,m;,n; has been proved, then all

other parameters are already uniquely defined by the unique canonical forms of H and H
(2 (2
§ ) g )A
immediately reconstructed from the sign characteristics of the eigenvalue 0 of H and H.) The
proof of uniqueness of ~;, m;, n; follows the same lines as the proof for the corresponding case
of complex symmetric G and G given in [18]. For the sake of selfcontainedness of this paper,
we reproduce this proof here.
Note that there exists a unique sequence of subspaces

as G-Hermitian, respectively G-Hermitian matrices. (Indeed, the signs s:” and §:’ can be

Eig¢(H,0) C Eig,—1(H,0) C --- C Eig(H,0) = ker H

where Eig ;(H, 0) consists of the zero vector and all eigenvectors of H associated with zero that
can be extended to a Jordan chain of length at least j. Define x; = dim (Eig ¢(H, 0) Nker A)
and

rj = dim (Eig;(H,0) Nker A) — dim (Eig j+1(H,0) Nker A), j=1,...,0—1.

Then any eigenvector of H that is associated with a Jordan block of size j x j in the
canonical form and that is also in the kernel of A contributes to x;. Similarly, we define
#¢ = dim (Eig ¢(H,0) Nker A*) and

ir; = dim (Eig ; (M, 0) N ker A*) — dim (Eig j4+1(7,0) Nker A*), j=1,...,0—1.
Then elementary counting yields
kj =7 +nj_1 and A;j=7+mj_1, j=1,...,L

If 7;, respectively 7; denotes the number of Jordan blocks of size j x j in the canonical form
of H and H, respectively, we also have that

Tj:27j—|—mj+nj_1 and %j:2’yj+mj_1+nj, j:1,...,€.

Hence, we obtain

Tj—Kj —kj=mj—mj_1, and Tj—kKj—FK;j=n;—nj_1, J=1,...,4¢,
from which we can successively compute m;,n;, j = ¢ —1,...,0 using my = ny = 0. We
furthermore obtain that ]
7 = 5 (15— my —nj-1)
for j = 1,...,¢. Thus, the numbers 7;,mj,n; are uniquely determined by the invariant

numbers 7,75, Kk, R, 7 =1,...,L.
This concludes the proof of Theorem 4.2. 0O
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Proof of Theorem 5.2

Applying appropriate congruence transformations to G and G otherwise, we may assume that
G=2%:,and G =J,. Let
A= B, cT

be a full rank factorization of A, i.e., By € R™ " (C; € R**" rank By = rankC; = r.
Repeatedly applying Proposition 3.1 to B; and Proposition 3.2 to (', respectively, we can
determine a staircase-like form that can be further reduced to canonical form. The proof
follows the same lines as in the steps 1) and 2) of the proof of Theorem 4.2 and yields the
reduced staircase-like form

l (-1
XTay = Ans@Ao@@Aj@@AjJ—i-ly
=1 i=1
_ _ )4 /-1
XT2:,X = Guu®GoPg e,
j=1 =1
B _ . A ¢ . /-1 A
YIL.Y = GueGe @y e,
j=1 =1

where
-Ans = A2Z+1,2£+17 gns = Zﬂg,wv gns = Jfrga

with 7y + vy = 27, and Agpyq 0041 € C*X2%¢ being nonsingular,

AO = OmoXQTLo; gO = 271'0,1/07 gO = JTL07

. 0 R
Aj = (sz~72j(0)> ®@Ly,, Gi=RyolL,; ,G;= [ _R, o ] ® Iy,

and Ajji1, -C;j,j+lv and Qj,j+1 are (27 + 1) x (25 + 1) block matrices, where, if j is odd, the
block rows have alternating sizes n;,2m; and the forms

[0 0] 0 Lo, ]
0 I, Iy,
- Io, a
Aj7j+1 — . Zm] 7gj,j+1 — ' Eﬂ'j)”j y (718)
0 In; I,
L0 Tom, 0] [ Lom,; 0 |
[0 I,
) Iij
Gijr1 = } T, , (7.19)
_Iij
__Inj 0_

47



or, if j is even, then the block rows have alternating sizes 2n;, m; and the forms

0 0
0 I2nj
Aiiq — g I, Giiig =
3+l = - . » Jg,j+1 =
0 Iop,
[0 I, 0 |
0 I2nj
Am,
Gjgr1 = I, :
I,
—Ion, 0]

0

I

J
. IQ'I‘LJ'

T, ., (7.20)

(7.21)

The blocks AO, Go, and go are already in the form as indicated in Theorem 4.2, for the

blocks Apns, Gns, Gns, We can apply Theorem 5.1, and for the blocks A;, QJ, and g] we
can apply an analogous permutation as it has been done for the corresponding blocks in
the proof of Theorem 4.2. Moreover, if j is odd, then let Z; be the permutation such that

premultiplication with ZjT reorders the rows of A4; ;11 in the order

2(] + 1)771] +jnj7
2jm; +my + jny,
2(5 + )ym; —1 + jn;,
2jm; +m] =14 jny,

2jm; +mj +1+ jny,
2jmj +1 +jnj7

2jm; + jnj,
2jm; + jn; — 1, 2(
2jm; +(j— Dny + 1, 2(

2(j

25m; + (j — L)ny,
—m; +my + (§ —

Qjmj _1+( )nJ7

2(j = Vmy + (G = ny,
J—Dm;+ (G —1)n;

J=1m;+ (G —

1)nj7

2(j = Dm; +my =1+ (j — L)ny,

2(j = Dmy +my +1+ (5 — 1)ny,
200 —my +1+ (G — Dny,

L,

2)71]‘ —+ 1,

ey

ey

ey

ey

4m; + nj, 2my;,
2mj +m; +ny, mj,
4m]‘—1+’n]‘, Qm]‘—L
2m; +m; —14+n;, my; —1,
2my; +my; +1+n;, my +1,
2mj—|—1—|—nj, 17
ij +nj7
2m; +n; — 1,
2mj+1,

and let Zvj+1 be the permutation such that postmultiplication with Z j+1 reorders the columns

of Aj 41 in the order

m; +nj, 2mj +my +2n5, .., 2(3 — L)my +my + jny,
2mj +ny, 4my; + ny, . 2jm;j + jng,
m; —1+n;, 2m; +my; —1+42n;, ..., 2(j—1)mj +m; —1+ jnj,
2m]-—1+n]-, 4mj—1—|—nj, ey 2]m3—1+‘]n],
1+71j, 2mj+1+nj, ey 2(j—1)Mj-|—1—|—j7Lj,
mj +1+nj, 2mj +m]‘ +1+n]‘, ceey 2(371)m] +m]- +1+]TLJ,
nj, 2m; + 2n;, 2(j = V)my + jnj, 2jm; + (3 + Dny,
n; — 1, 2mj + 2nj - 1, cey 2(] - 1)77’LJ -|—]TZJ - 1, 2jm] + (] + 1)7Lj - 1,
17 Qmj + TLj + 17 ey 2(] — l)mj —|— (] — 1)7Lj + 1, 2jmj +]nJ —|— 1.
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Then it is easily verified that

TA. 7 = -
25 Ajj+1Zj1 —@ . 0 @ @ [0 ]jX(j+1)’
i=1 6 0 i=1
" G, (1.22)
J J J
0 R N 7.22
To ’ _ 7+1 . .
25 Gjj+12; ZEBI { Rii 0 ] ® EBIRJ & ieyaﬂ Rj,
= 1= =V
my n; .
_ . . 0 R 0 RM
T . p— J
25 119j+12541 = G? [ -R; 0 } @G? —Rj+1 02 ’
= i= 2

where }~3j is as in (7.17). Then analogously as in the proof of Theorem 4.2, we can transform
]Sbj to —R; without changing any of the other blocks. Thus, we finally obtain blocks as in 4)
and 5) in Theorem 5.2. Similarly, an analogous permutation extracts blocks as in 3) and 6)
in Theorem 5.2 for the case that j is even, i.e., if we consider the blocks (7.20)—-(7.21).

Concerning uniqueness, as in the proof of Theorem 4.2 it remains to show uniqueness
of the numbers ¢;, 2m;, and n;. This is done exactly in the same way as in the proof of
Theorem 4.2. Note that the paired blocks in 4) and 6) in Theorem 5.2 cannot be decomposed
into two smaller blocks of equal size, because of the fact that nonsingular skew-symmetric
matrices must have even size. 0O

Proof of Theorem 6.2

Applying appropriate congruence transformations to G and G otherwise, we may assume that
G =Jy, and G = J,. Again, we then compute a staircase-like form for A by considering the
full rank factorization

A= B, cT

of A, ie., By € R (C; € R* " rankB; = rank(C; = r, and repeatedly applying
Proposition 3.2 to B; and C;. Then continuing as in step 2) of the proof of Theorem 4.2
yields the reduced staircase-like form

L -1
XTAY = A, 0A® @ A; ® @Aj,j-;-h
=t =l
_ _ )4 /-1
XTInX = Gus®Go ® PG © P Gjj,
=1 =
_ _ )4 /-1
YILY = GuaG o@D e@dm,
P

where
Ans = A2£+1,2€+1a gns = Jﬂga gns = Jfrg = Jﬂ'gv

with Agpi19041 € R27¢X27¢ heing nonsingular,

Ao = 02mpx2nes G0 = Img, G0 = Iy,
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Aj = <R2j~72j(0)) ® L,

%:@:[

0 R
~R; 0

£

1

Vi

and Aj 11, Gjjr1, and G i1 are (25 + 1) x (2§ + 1) block matrices, where the block rows
have alternating sizes 2n;,2m; and the forms

Ajj1 =

Gjj+1 =

0 0
0 I2TL]'
IQTTL]'
0 I2nj
_0 IQmj 0 i
- 0 I2nj_
I2m3
FA
_—[277’1]'
L~ 12, 0]

s Gjj+1 =

. Ian

J

_IQHJ‘

_I2m]-

Iij

I

(7.23)

(7.24)

The remainder of the proof then proceed as the proof of Theorem 5.2 by adapting the per-
mutation used on the blocks of the forms (7.23)—(7.24) similarly as in the proof of Theorem 5.2
in order to allow to group together paired blocks.

Concerning uniqueness, as in the proof of Theorem 4.2 it remains to show uniqueness
of the numbers ¢;, 2m;, and 2n;. This is done exactly in the same way as in the proof of

Theorem 4.2.
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