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Abstract

Canonical forms for matrix triples (A,G, Ĝ), where A is arbitrary rectangular and G,
Ĝ are either real symmetric or skew symmetric, or complex Hermitian or skew Hermitian,
are derived. These forms generalize classical product Schur forms as well as singular value
decompositions. An new proof for the complex case is given, where there is no need to
distinguish whether G and Ĝ are Hermitian or skew Hermitian. This proof is independent
from the results in [1], where a similar canonical form has been obtained for the complex
case, and it allows generalization to the real case. Here, the three cases, i.e., that G and
Ĝ are both symmetric, both skew symmetric or one each, are treated separately.

Keywords Matrix triples, indefinite inner product, structured SVD, canonical form, Hamil-
tonian matrix, skew-Hamiltonian matrix
AMS subject classification. 15A21, 65F15, 65L80, 65L05.

1 Introduction

Let F denote either the complex field C or the real field R. Consider a triple of matrices
(A,G, Ĝ) with A ∈ Fm×n, G ∈ Fm×m, and Ĝ ∈ Fn×n, where G and Ĝ are nonsingular and
either Hermitian or skew-Hermitian (in the complex case) or symmetric or skew-symmetric
(in the real case). In this paper we derive canonical forms (ACF, GCF, ĜCF) under the trans-
formation

(ACF, GCF, ĜCF) := (X∗AY, X∗GX,Y ∗ĜY ), (1.1)

with nonsingular matrices X ∈ Fm×m and Y ∈ Fn×n. (Here A∗ denotes the conjugate
transpose of a matrix A if F = C or the transpose if F = R.)

The canonical form for the complex case is already known and has appeared in [1], although
uniqueness of the canonical form had not been considered there. The real case, however, has
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only been investigated in [25] so far for the special case that

G =
[

0 Im

−Im 0

]
and Ĝ = In

and in [26] where a numerical method was derived for this case.
In this paper, based on stair-case-like decompositions, we give a new and independent proof

of the canonical form in the complex case. These stair-case decompositions have analogues
in the real case which allow a generalization of the results for the complex case to cover the
real case as well.

The difficulties encountered in the treatment of the real case in full generality stem from
the fact that one has to distinguish the cases that G and Ĝ are either both symmetric, or both
skew-symmetric, or that one is symmetric and the other skew-symmetric. In the complex case,
in contrast, there is no need to distinguish between Hermitian and skew-Hermitian matrices
G and Ĝ, because multiplication with the imaginary unit ı easily converts an Hermitian
matrix into a skew-Hermitian matrix and vice versa. A corresponding transformation can
be performed on the canonical form so that all cases are covered by presenting the canonical
form for the case that G and Ĝ are both Hermitian.

A third case besides the real case and the complex case with Hermitian and skew-Hermitian
G and Ĝ is obtained if one assumes that G and Ĝ are complex symmetric or complex skew-
symmetric and if one replaces the conjugate transpose in (1.1) by the transpose. This case
has been investigated in [18]. So together with this paper the complete set of canonical forms
for real and complex matrix triples of the form (1.1) is available.

The study of the described canonical forms is motivated by the goal of unifying the solution
procedures for eigenvalue problems associated with structured matrices from Lie and Jordan
algebras related to indefinite inner products, [3, 7, 20, 21]. Consider for example a signature
matrix

Σπ1,ν1 =
[

Iπ1 0
0 −Iν1

]
, π1 + ν1 = m.

A matrix H ∈ Cm×m is called Σπ1,ν1-Hermitian if (Σπ1,ν1H)∗ = Σπ1,ν1H, i.e., if Σπ1,ν1H is
Hermitian. The matrix Σπ1,ν1H then possesses a factorization Σπ1,ν1H = AΣπ2,ν2A

∗, where
Σπ2,ν2 is another signature matrix and A ∈ Rm×n with n = π2 + ν2. This means that H has
a factorization

H = Σπ1,ν1AΣπ2,ν2A
∗.

If, for the triple (A,Σπ1,ν1 , Σπ2,ν2), we can determine a suitable canonical form

(ACF, GCF, ĜCF) = (X∗AY, X∗Σπ1,ν1X, Y ∗Σπ2,ν2Y ),

then this will allow us to determine the eigenstructure of H, because

X−1HX = (X∗Σπ1,ν1X)−1(X∗AY )(Y ∗Σπ2,ν2Y )−1(Y ∗A∗X) = G−1
CFACFĜ−1

CFA∗
CF.

Simultaneously the eigenstructure for the Σπ2,ν2-Hermitian matrix Ĥ = Σπ2,ν2A
∗Σπ1,ν1A, is

obtained, because Y −1Σπ2,ν2A
∗Σπ1,ν1AY = Ĝ−1

CFA∗
CFG−1

CFA.
In general, the canonical form (1.1) of the matrix triple (A,G, Ĝ) will allow us to simul-

taneously determine the eigenstructures of the two structured matrices

H = G−1AĜ−1A∗, Ĥ = Ĝ−1A∗G−1A. (1.2)
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Structured matrices with such product representations cover all the structured matrices from
the Lie and Jordan algebras (see [3]), associated with the sesquilinear forms

< x, y >G= x∗Gy, < x, y >Ĝ= x∗Ĝy. (1.3)

Furthermore, the form (1.1) can be interpreted as a generalization of the singular value
decomposition [8] of a matrix A ∈ Cm×n, i.e., the decomposition

ACF := U∗AV =


σ1 0

. . .

σr

0 0

 , σ1 ≥ · · · ≥ σr > 0

with unitary matrices U, V . Indeed, the SVD can be considered as a canonical form for the
matrix triple (A, Im, In) under the transformation

(A, Im, In) 7→ (ACF, Im, In) = (X∗AY, X∗ImX, Y ∗InY ). (1.4)

Here, the equation for the first components of the two matrix triples in (1.4) is the actual
singular value decomposition, while the equations for the second and third components just
force the transformation matrices to be unitary. The canonical form then displays the eigen-
structure of the In-selfadjoint matrix A∗A and the Im-selfadjoint matrix AA∗, because the
nonzero singular values σ1, . . . , σr are just the square roots of the nonzero eigenvalues of A∗A
and AA∗.

When generalizing the concept of the singular value decomposition to analogous factor-
izations for linear maps L : Cn → Cm, where the spaces Cn and Cm are equipped with
indefinite inner products given by invertible Hermitian matrices G ∈ Cm×m and Ĝ ∈ Cn×n,
one may consider to apply a transformation A 7→ X∗AY to a matrix representation of L,
where X and Y are matrices that are unitary with respect to the sesquilinear forms (1.3),
i.e., where X∗GX = G, Y ∗ĜY = Ĝ. However, if one allows general changes of bases in the
spaces Cn and Cm, i.e., changes that affect the indefinite inner products as well, then this
corresponds exactly to the transformation as in (1.1) and the canonical forms will appear to
be less complicated.

Generalizations of the singular value decomposition in the sense of this paper have been
studied earlier in the literature, probably starting with [9, 10]. The generalized singular
value decomposition defined there corresponds to (1.1) for the case that for all three matrices
ACF, HCF := G−1

CFACFĜ−1
CFA∗

CF, and ĤCF := Ĝ−1
CFA∗

CFG−1
CFACF a diagonal representation can

be chosen. The general complex case (allowing also non-diagonal represenations) was then
discussed in [1].

In [14], the canonical forms of the matrices X [∗]X and XX [∗] were investigated, where
X [∗] = H−1XH denotes the adjoint of a matrix X ∈ Cn×n with respect to the indefinite
inner product induced by the nonsingular Hermitian matrix H ∈ Cn×n. This question is
motivated from the theory of polar decompositions in indefinite inner product spaces. It is
said that a matrix X ∈ Cn×n allows an H-polar decomposition, if there exists an H-selfadjoint
matrix B, i.e., a matrix satisfying B∗H = HB, and an H-unitary matrix U , i.e., a matrix
satisfying U∗HU = H, such that X = UB. It was shown in [19] that X allows an H-polar
decomposition if and only if the two matrices X [∗]X and XX [∗] have the same canonical forms
as H-selfadjoint matrices. Setting A = X, G = H−1, and Ĝ = H, we find that

X [∗]X = Ĝ−1A∗G−1A = Ĥ and XX [∗] = AĜ−1A∗G−1 = GHG−1,
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and thus, the canonical forms of X [∗]X and XX [∗] can be read off from the canonical form for
the matrix triple (A,G, Ĝ) = (X, H−1,H). Consequently, many of the results from [14] can
be recovered from the results in this paper. Recently, the relation of the spectra of X [∗]X and
XX [∗] has been investigated in terms of infinite dimensional indefinite inner product spaces
(also known as Krein spaces) in [22].

A canonical form closely related to the form obtained under the transformation (1.1) has
been developed in [12], where transformations of the form

(B,C) 7→ (X−1BY, Y −1CX), B ∈ Cm×n, C ∈ Cn×m

have been considered. Then a canonical form is constructed that reveals the Jordan structures
of the products BC and CB. In our framework, this corresponds to a canonical form of
the pair of matrices (G−1A, Ĝ−1A∗) rather than for the triple (A,G, Ĝ). When focussing
on matrix triples, our approach is more general, because the canonical form for the pair
(G−1A, Ĝ−1A∗) can be easily read off from the canonical form for (A,G, Ĝ), but not vice
versa. The approach in [12], on the other hand, focusses on different aspects and allows to
consider pairs (B,C) where the ranks of B and C are distinct. This case is not covered by the
canonical forms obtained in this paper or in [18] as the considered pairs of matrices always
have the same rank.

The paper is organized as follows. In Section 2 we review the definitions of matrices having
structures with respect to indefinite inner products and provide some auxiliary results. In
Section 3 we present preliminary factorizations that are essential tools for the derivation of
the canonical forms. In Section 4 we then derive the canonical forms for the complex case
and for the real case when G and Ĝ are both symmetric. In Section 5 we study the case that
one of G, Ĝ is real symmetric and the other is real skew-symmetric. In Section 6 we present
the canonical forms for the case that both G, Ĝ are real skew-symmetric.

Throughout the paper we use F to denote the field of real or complex matrices, i.e., F = R
or F = C. R− (R+) is the set of real negative (positive) numbers, and C− (C+) is the open
left (right) half complex plane. The n×n identity and n×n zero matrices are denoted by In

and On, respectively. The m × n zero matrix is denoted by Om×n and ej is the jth column
of the identity matrix or, equivalently, the jth standard basis vector of Fn. Moreover, we
introduce

Σπ,ν,δ =

 Iπ 0 0
0 −Iν 0
0 0 Oδ

 , Σπ,ν = Σπ,ν,0 =
[

Iπ 0
0 −Iν

]
, Jn =

[
0 In

−In 0

]
.

The transpose and conjugate transpose of a matrix A are denoted by AT and A∗, respectively.
We use A1 ⊕ . . .⊕ Ak to denote a block diagonal matrix with diagonal blocks A1, . . . , Ak. If
A = [aij ] ∈ Fn×m and B ∈ F`×k, then A ⊗ B = [aijB] ∈ Fn`×mk denotes the Kronecker
product of A and B. For a real symmetric or complex Hermitian matrix A we call (π, ν, δ)
the Sylvester inertia index with π, ν, δ being the number of positive, negative, and zero
eigenvalues of A, respectively. For a square matrix A, σ(A) denotes the spectrum of A. We
use

Rn =

 0 1
. .

.

1 0

 , Jn(λ) =


λ 1 0

λ
. . .
. . . 1

0 λ


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to denote the n × n reverse identity or the n × n upper triangular Jordan block associated
with the eigenvalue λ, respectively, and

Jn(a, b) = In ⊗
[

a b
−b a

]
+ Jn(0)⊗ I2 =



a b 1 0 0
−b a 0 1

a b
. . .

−b a
. . . 1 0

0 1
a b

0 −b a


for blocks associated with complex conjugate eigenvalues in the real Jordan form of a real
matrix.

2 Matrices structured with respect to sesquilinear forms

Our general theory will cover and generalize results for the following classes of matrices.

Definition 2.1 Let G ∈ Fn×n be invertible and let H,K ∈ Fn×n be such that

(GH)∗ = GH and (GK)∗ = −GK.

1) If F = C and G is Hermitian or skew-Hermitian, then H is called G-Hermitian and K
is called G-skew-Hermitian.

2) If F = R and G is symmetric, then H is called G-symmetric and K is called G-skew-
symmetric.

3) If F = R and G is skew-symmetric, then H is called G-Hamiltonian and K is called
G-skew-Hamiltonian.

G-Hermitian and G-symmetric matrices are often called G-selfadjoint matrices as they
are selfadjoint with respect to the indefinite inner product induced by G. In this paper, we
prefer the notions G-Hermitian and G-symmetric in order to clearly distinguish between the
real and the complex case. Observe that transformations of the form

(H, G) 7→ (P−1HP, P ∗GP ), P ∈ Fn×n invertible

preserve the structure of H with respect to G, i.e., if, for example, H is G-Hermitian, then
P−1HP is P ∗GP -Hermitian as well. Clearly, each complex Hermitian or real symmetric
invertible matrix G is congruent to Σπ,ν for some π, ν and each real skew-symmetric invertible
matrix G is congruent to Jn for some n. Thus, we may always restrict ourselves to the case
that either G = Σπ,ν or G = Jn. In the latter case, we refer to Jn-Hamiltonian or Jn-skew-
Hamiltonian matrices simply as Hamiltonian or skew-Hamiltonian matrices, respectively.

G-(skew-)Hermitian, G-(skew-)symmetric, and G-(skew-)Hamiltonian matrices have been
intensively studied in the literature. In particular, canonical forms for such matrices have
been derived in many places. We review these well-known canonical forms in the following.
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Theorem 2.2 (Canonical form for G-Hermitian matrices, [7, 16, 23])
Let G ∈ Cn×n be Hermitian and invertible and let H ∈ Cn×n be G-Hermitian. Then there
exists an invertible matrix X ∈ Cn×n such that

X−1HX = Hc ⊕Hr, X∗GX = Gc ⊕Gr,

where
Hc = Hc,1 ⊕ · · · ⊕ Hc,mc , Gc = Gc,1 ⊕ · · · ⊕Gc,mc ,
Hr = Hr,1 ⊕ · · · ⊕ Hr,mr , Gr = Gr,1 ⊕ · · · ⊕Gr,mr ,

and where the diagonal blocks have the following forms:

1) blocks associated with pairs (λj , λj) of nonreal eigenvalues of H:

Hc,j =
[
Jξj

(λj) 0
0 Jξj

(λ̄j)

]
, Gc,j = R2ξj

=
[

0 Rξj

Rξj
0

]
,

where Im λj > 0 and ξj ∈ N for j = 1, . . . ,mc;

2) blocks associated with real eigenvalues:

Hr,j = Jηj (αj), Gr,j = sjRηj ,

where αj ∈ R, sj ∈ {−1, 1}, and ηj ∈ N for j = 1, . . . ,mr.

H has the (not necessarily pairwise distinct) non-real eigenvalues λ1, . . . , λmc , λ̄1, . . . , λ̄mc and
(not necessarily pairwise distinct) real eigenvalues α1, . . . , αmr .

Remark 2.3 Besides the eigenvalues, the signs s1, . . . , smr associated with the real eigenval-
ues are additional invariants of G-Hermitian matrices. The collection of these sign is called
the sign characteristic of H, sometimes also called Krein signature, [13]. For details on the
sign characteristics, we refer to [7] and the references therein.

The real version of Theorem 2.2 is as follows:

Theorem 2.4 (Canonical form for real G-symmetric matrices, [7, 15, 16, 24])
Let G ∈ Rn×n be symmetric and invertible and let H ∈ Rn×n be G-symmetric. Then there
exists an invertible matrix X ∈ Rn×n such that

X−1HX = Hc ⊕Hr, XT GX = Gc ⊕Gr,

where
Hc = Hc,1 ⊕ · · · ⊕ Hc,mc , Gc = Gc,1 ⊕ · · · ⊕Gc,mc ,
Hr = Hr,1 ⊕ · · · ⊕ Hr,mr , Gr = Gr,1 ⊕ · · · ⊕Gr,mr ,

and where the diagonal blocks have the following forms:

1) blocks associated with pairs (λj , λj) of nonreal eigenvalues of H:

Hc,j = Jξj
(aj , bj), Gc,j = R2ξj

,

where bj = Im λj > 0, aj = Re λj, and ξj ∈ N for j = 1, . . . ,mc;
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2) blocks associated with real eigenvalues:

Hr,j = Jηj (αj), Gr,j = sjRηj ,

where αj ∈ R, sj ∈ {−1, 1}, and ηj ∈ N for j = 1, . . . ,mr.

H has the (not necessarily pairwise distinct) non-real eigenvalues λ1, . . . , λmc , λ̄1, . . . , λ̄mc and
(not necessarily pairwise distinct) real eigenvalues α1, . . . , αmr .

The corresponding canonical form for G-skew-Hermitian matrices immediately follows
from Theorem 2.2, because a matrix K is G-skew-Hermitian if and only if H = ıK is G-
Hermitian. In the real case, however, the trick of multiplying by the imaginary unit ı is
not an option and a canonical form has to be derived separately. We also need additional
notation. We denote

Ξn =

 (−1)0 0
. . .

0 (−1)n−1

 , Γn = ΞnRn =

 0 (−1)0

. .
.

(−1)n−1 0

 .

Theorem 2.5 (Canonical form for G-skew-symmetric matrices, [15, 17, 24])
Let G ∈ Rn×n be symmetric and invertible and let K ∈ Rn×n be G-skew symmetric. Then
there exists an invertible matrix X ∈ Rn×n such that

X−1KX = Kc ⊕Kr ⊕Kı ⊕Kz, XT GX = Gc ⊕Gr ⊕Gı ⊕Gz,

where
Kc = Kc,1 ⊕ · · · ⊕ Kc,mc , Gc = Gc,1 ⊕ · · · ⊕Gc,mc ,
Kr = Kr,1 ⊕ · · · ⊕ Kr,mr , Gr = Gr,1 ⊕ · · · ⊕Gr,mr ,
Kı = Kı,1 ⊕ · · · ⊕ Kı,mı , Gı = Gı,1 ⊕ · · · ⊕Gı,mı ,
Kz = Kz,1 ⊕ · · · ⊕ Kz,mo+me , Gz = Gz,1 ⊕ · · · ⊕Gz,mo+me ,

and where the diagonal blocks have the following forms:

1) blocks associated with quadruples (λj , λ̄j ,−λj ,−λ̄j) of nonreal, non purely imaginary
eigenvalues of K:

Kc,j =
[
Jξj

(aj , bj) 0
0 −Jξj

(aj , bj)

]
, Gc,j = R4ξj

=
[

0 R2ξj

R2ξj
0

]
,

where aj = Re λj > 0, bj = Im λj > 0, and ξj ∈ N for j = 1, . . . ,mc;

2) blocks associated with pairs (αj ,−αj) of real nonzero eigenvalues of K:

Kr,j =
[
Jηj (αj) 0

0 −Jηj (αj)

]
, Gr,j = R2ηj =

[
0 Rηj

Rηj 0

]
,

where αj > 0 and ηj ∈ N for j = 1, . . . ,mr;

3) blocks associated with pairs (ıβj ,−ıβj) of purely imaginary nonzero eigenvalues of K:

Kı,j =
[

0 Jρj (βj)
−Jρj (βj) 0

]
, Gı,j = sj

[
Rρj 0
0 Rρj

]
,

where βj > 0, sj ∈ {−1, 1}, and ρj ∈ N for j = 1, . . . ,mı;
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4) blocks associated with the eigenvalue λ = 0 of K:

Kz,j = Jζj
(0), Gz,j = tjΓζj

,

where ζj ∈ N is odd, tj ∈ {−1, 1} for j = 1, . . . ,mo, and

Kz,j =
[
Jζj

(0) 0
0 −Jζj

(0)

]
, Gz,j =

[
0 Rζj

Rζj
0

]
,

where ζj ∈ N is even for j = mo + 1, . . . ,mo + me.

K has the (not necessarily pairwise distinct) eigenvalues ±λ1, . . . ,±λmc ,±λ1, . . . ,±λmc,
±α1, . . . ,±αmr , ±ıβ1, . . . ,±ıβmı, and the additional eigenvalue 0, provided that mo+me > 0.

If G is skew-Hermitian, then the canonical form for G-Hermitian (G-skew-Hermitian)
matrices follows directly from Theorem 2.2, because ıG is Hermitian and a matrix H is G-
Hermitian (G-skew-Hermitian) if and only if H is ıG-Hermitian (ıG-skew-Hermitian). The
real case, once again, has to be treated separately.

Theorem 2.6 (Canonical form for G-Hamiltonian matrices, [15, 17, 24])
Let G ∈ R2n×2n be skew-symmetric and invertible and let H ∈ R2n×2n be G-Hamiltonian.
Then there exists an invertible matrix X ∈ R2n×2n such that

X−1HX = Hc ⊕Hr ⊕Hı ⊕Hz, XT GX = Gc ⊕Gr ⊕Gı ⊕Gz,

where
Hc = Hc,1 ⊕ · · · ⊕ Hc,mc , Gc = Gc,1 ⊕ · · · ⊕Gc,mc ,
Hr = Hr,1 ⊕ · · · ⊕ Hr,mr , Gr = Gr,1 ⊕ · · · ⊕Gr,mr ,
Hı = Hı,1 ⊕ · · · ⊕ Hı,mı , Gı = Gı,1 ⊕ · · · ⊕Gı,mı ,
Hz = Hz,1 ⊕ · · · ⊕ Hz,mo+me , Gz = Gz,1 ⊕ · · · ⊕Gz,mo+me ,

and where the diagonal blocks have the following forms:

1) blocks associated with quadruples (λj , λ̄j ,−λj ,−λ̄j) of nonreal, non purely imaginary
eigenvalues of H:

Hc,j =
[
Jξj

(aj , bj) 0
0 −Jξj

(aj , bj)

]
, Gc,j =

[
0 R2ξj

−R2ξj
0

]
,

where aj = Re λj > 0, bj = Im λj > 0, and ξj ∈ N for j = 1, . . . ,mc;

2) blocks associated with pairs (αj ,−αj) of real, nonzero eigenvalues of H:

Hr,j =
[
Jηj (αj) 0

0 −Jηj (αj)

]
, Gr,j =

[
0 Rηj

−Rηj 0

]
,

where αj > 0 and ηj ∈ N for j = 1, . . . ,mr;

3) blocks associated with pairs (ıβj ,−ıβj) of purely imaginary, nonzero eigenvalues of H:

Hı,j =
[

0 Jρj (βj)
−Jρj (βj) 0

]
, Gı,j = sj

[
0 Rρj

−Rρj 0

]
,

where βj > 0, sj ∈ {−1, 1}, and ρj ∈ N for j = 1, . . . ,mı;
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4) blocks associated with the eigenvalue λ = 0 of H:

Hz,j =
[
Jζj

(0) 0
0 −Jζj

(0)

]
, Gz,j =

[
0 Rζj

−Rζj
0

]
,

where ζj ∈ N is odd for j = 1, . . . ,mo, and

Hz,j = Ξζj
Jζj

(0), Gz,j = tjΓζj
,

where ζj ∈ N is even and tj ∈ {−1, 1} for j = mo + 1, . . . ,mo + me.

H has the (not necessarily pairwise distinct) eigenvalues ±λ1 . . . ,±λmc ,±λ1, . . . ,±λmc,
±α1, . . . ,±αmr , ±ıβ1, . . . ,±ıβmı, and the additional eigenvalue 0, provided that mo+me > 0.

Theorem 2.7 (Canonical form for G-skew-Hamiltonian matrices, [4, 17, 24])
Let G ∈ R2n×2n be skew-symmetric and invertible and let K ∈ R2n×2n be G-skew-Hamiltonian.
Then there exists an invertible matrix X ∈ R2n×2n such that

X−1KX = Kc ⊕Kr, XT GX = Gc ⊕Gr,

where
Kc = Kc,1 ⊕ · · · ⊕ Kc,mc , Gc = Gc,1 ⊕ · · · ⊕Gc,mc ,
Kr = Kr,1 ⊕ · · · ⊕ Kr,mr , Gr = Gr,1 ⊕ · · · ⊕Gr,mr ,

and where the diagonal blocks have the following forms:

1) blocks associated with pairs (λj , λ̄j) of nonreal eigenvalues of K:

Kc,j =
[
Jξj

(aj , bj) 0
0 Jξj

(aj , bj)

]
, Gc,j =

[
0 R2ξj

−R2ξj
0

]
,

where aj = Re λj ∈ R, bj = Im λj > 0, and ξj ∈ N for j = 1, . . . ,mc;

2) blocks associated with real eigenvalues αj of K:

Kr,j =
[
Jηj (αj) 0

0 Jηj (αj)

]
, Gr,j =

[
0 Rηj

−Rηj 0

]
,

where αj ∈ R and ηj ∈ N for j = 1, . . . ,mr.

K has the (not necessarily pairwise distinct) non-real eigenvalues a1± ıb1, . . . , amc± ıbmc, and
the (not necessarily pairwise distinct) real eigenvalues α1, . . . , αmr (possibly including zero).

In the following we need some results concerning the existence of structured square roots
of structured matrices. This question has been deeply investigated in the literature mostly in
the context of polar decompositions, and necessary and sufficient conditions for the existence
of square roots have been developed, see [1, 2, 4]. We do not quote the results in full generality,
but only consider the following special cases.

Theorem 2.8 Let G ∈ Fn×n be Hermitian and nonsingular and let H ∈ Fn×n be G-
Hermitian, nonsingular, and such that σ(H) ∩ R− = ∅. Then there exists a square root
S ∈ Fn×n of H that satisfies σ(S) ⊆ C+. This square root is unique and is a real polynomial
in H (i.e., a polynomial in H whose coefficients are real). In particular, S is G-Hermitian.
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Proof. Comparing the canonical forms of G-Hermitian and G-symmetric matrices, it is easily
seen that any pair (G,H) ∈ Cn×n × Cn×n, where G is a nonsingular Hermitian matrix and
H is G-Hermitian, can be transformed into a real pair (Gr,Hr) = (P ∗GP,P−1HP ) by some
complex nonsingular transformation matrix P ∈ Cn×n. (This corresponds to the well-known
fact that a matrix H is G-Hermitian for some Hermitian G if and only if H is similar to a real
matrix, see [7].) Therefore, it is sufficient to consider the real case. Then by the discussion
in Chapter 6.4 in [11], we obtain that a square root S of H with σ(S) ⊆ C+ exists, is unique,
and can be expressed as a polynomial (with real coefficients) in H. Clearly, this polynomial
stays invariant under the transformation with the transformation matrix P in the complex
case. It is then straightforward to check that a real polynomial in H is again G-Hermitian.

In the case of a skew-symmetric real bilinear form, we have a similar result. The proof
follows exactly the same line as the proof of the preceding theorem.

Theorem 2.9 Let G ∈ R2n×2n be skew-symmetric and nonsingular and let K ∈ R2n×2n be
G-skew-Hamiltonian, nonsingular, and such that σ(K) ∩ R− = ∅. Then there exists a square
root S ∈ R2n×2n of K that satisfies σ(S) ⊆ C+. This square root is unique and is a real
polynomial in K. In particular, S is G-skew-Hamiltonian.

One might ask whether G-Hamiltonian matrices have G-Hamiltonian or G-skew-Hamil-
tonian square roots, but this is never the case because squares of such matrices must always
be G-skew-Hamiltonian. On the other hand, each real G-skew-Hamiltonian matrix K will
have a G-Hamiltonian square root [4], but this square root cannot be a polynomial in K,
because such a polynomial would be G-skew-Hamiltonian again.

After reviewing some of the basic canonical forms in this section, we introduce some basis
factorizations in the next section.

3 Preliminary factorizations

In the following sections, we aim to compute canonical forms via some type of staircase
algorithm. A key factorization needed in the steps of this algorithm is presented in the
following lemma.

Proposition 3.1 Let B ∈ Fm×n, m ≥ n, and let π, ν ≥ 0 be integers such that π + ν = m.
Suppose that rank B = n and that the inertia index of the Hermitian matrix B∗Σπ,νB is
(π0, ν0, δ0). Then π0 + ν0 + δ0 = n and there exists an invertible matrix X ∈ Fm×m such that

X∗B =

 0
0

B0

 π1 + ν1

δ0

n
, X∗Σπ,νX = Σπ1,ν1 ⊕

 Iδ0

Σπ0,ν0

Iδ0

 ,

where B0 ∈ Fn×n is nonsingular, π1 = π − π0 − δ0 ≥ 0, and ν1 = ν − ν0 − δ0 ≥ 0.

Proof. By assumption, there exists a nonsingular matrix Y ∈ Fn×n such that

Y ∗B∗Σπ,νBY = Σπ0,ν0,δ0 .

10



Let B1 ∈ Fm×π0 be the matrix formed by the leading π0 columns of BY and partition it as

B1 =
[

B11

B21

]
, B11 ∈ Fπ×π0 , B21 ∈ Fν×π0 .

Then from B∗
1Σπ,νB1 = Iπ0 we have that

B∗
11B11 −B∗

21B21 = Iπ0 . (3.1)

Since B∗
11B11 and B∗

21B21 are positive semidefinite, it follows that rankB11 = rank(Iπ0 +
B∗

21B21) = π0 and therefore π ≥ π0 by Sylvester’s Law of Inertia. Hence, there exists a
unitary matrix U1 ∈ Fπ×π such that

U∗
1 B11 =

[
T1

0

]
,

where T1 ∈ Fπ0×π0 is invertible. Since B∗
11B11 = T ∗

1 T1, we obtain that (3.1) is equivalent to

Iπ0 − (B21T
−1
1 )∗(B21T

−1
1 ) = T−∗

1 T−1
1 .

Then the matrix Iν − (B21T
−1
1 )(B21T

−1
1 )∗ is positive definite, because it easily follows from

[5] that it has the same eigenvalues as Iπ0 − (B21T
−1
1 )∗(B21T

−1
1 ) with a possible exception for

the eigenvalue λ = 1. Thus, we have the factorization

Iν − (B21T
−1
1 )(B21T

−1
1 )∗ = T̃1T̃

∗
1 , (3.2)

for some invertible T̃1 ∈ Fν×ν . Let

X1 =
[

U1 0
0 Iν

] T1 0 −(B21T
−1
1 )∗T̃−∗

1

0 Iπ−π0 0
−B21 0 T̃−∗

1

 .

With (3.1) and (3.2) it is easily verified that

X∗
1B1 =

 Iπ0

0
0

 π0

π − π0

ν
, X∗

1Σπ,νX1 = Σπ,ν .

Then, since Σ2
π,ν = Im, the last relation implies that

X1Σπ,νX
∗
1 = X1Σπ,νΣπ,νΣπ,νX

∗
1 = X1Σπ,νX

∗
1Σπ,νX1Σπ,νX

∗
1

and thus Σπ,νX1Σπ,νX
∗
1 = Im or, equivalently, X1Σπ,νX

∗
1 = Σπ,ν . Also recall that B1 consists

of the first π0 columns of BY . Thus, partitioning

X∗
1BY =

[
Iπ0 B12

0 B̃

]
,

where B̃ is (m− π0)× (n− π0), we obtain from

Σπ0,ν0,δ0 = Y ∗B∗Σπ,νBY = (X∗
1BY )∗Σπ,ν(X∗

1BY )

=
[

Iπ0 0
B∗

12 B̃∗

] [
Iπ0 0
0 Σπ−π0,ν

] [
Iπ0 B12

0 B̃

]
,
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that

B12 = 0, B̃∗Σπ−π0,νB̃ = Σ0,ν0,δ0 =
[
−Iν0 0

0 Oδ0

]
.

Letting B2 ∈ F(m−π0)×ν0 be the matrix consisting of the leading ν0 columns of B̃, we obtain
that B∗

2Σπ−π0,νB2 = −Iν0 . By a procedure analogous to the one used for B1 above, we can
determine a nonsingular matrix X2 ∈ F(m−π0)×(m−π0) such that

X∗
2B2 =

 0
Iν0

0

 π − π0

ν0

ν − ν0

, X∗
2Σπ−π0,νX2 = Σπ−π0,ν ,

which also shows that ν0 ≤ ν. With X3 = X1(Iπ0 ⊕X2), we then have

X∗
3BY =


Iπ0 0 0
0 0 B13

0 Iν0 B23

0 0 B33

 , X∗
3Σπ,νX3 = Σπ,ν ,

which also implies X3Σπ,νX
∗
3 = Σπ,ν and thus (X∗

3BY )∗Σπ,ν(X∗
3BY ) = Σπ0,ν0,δ0 . Then it

easily follows that

B23 = 0 and 0 =
[

B13

B33

]∗
Σπ−π0,ν−ν0

[
B13

B33

]
= B∗

13B13 −B∗
33B33. (3.3)

Let P1 be the permutation matrix that interchanges the middle two block-rows of X∗
3BY by

pre-multiplication and set X4 = X3P
∗
1 . Then

X∗
4BY =


Iπ0 0 0
0 Iν0 0
0 0 B13

0 0 B33

 , X∗
4Σπ,νX4 =

[
Σπ0,ν0 0

0 Σπ−π0,ν−ν0

]
.

Now, both B13 and B33 have full column rank, because otherwise, by (3.3) it is not difficult
to show that B13 and B33 would have a common null space. But this is not possible, because
then X∗

4BY , as well as B, would have rank less than n, contradicting the assumption. Since
B13 ∈ F(π−π0)×δ0 and B33 ∈ F(ν−ν0)×δ0 , we have that π ≥ π0 + δ0 and ν ≥ ν0 + δ0. Observe
that (3.3) implies that the positive definite factors in the polar decompositions of B13 and
B33 coincide, i.e., we have

B13 = Ũ3W and B33 = Ũ4W

for some Ũ3 ∈ F(π−π0)×δ0 , Ũ4 ∈ F(ν−ν0)×δ0 , where U3, U4 have orthonormal columns and
W = (B∗

13B13)1/2 = (B∗
33B33)1/2 ∈ Fδ0×δ0 is nonsingular. Extending Ũ3 and Ũ4 to unitary

matrices U3 ∈ F(π−π0)×(π−π0), U4 ∈ F(ν−ν0)×(ν−ν0), we obtain that.

U3B13 =
[

W
0

]
, U4B33 =

[
W
0

]
,
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Setting X5 = X4(Iπ0+ν0 ⊕ U∗
3 ⊕ U∗

4 ), we obtain that

X∗
5BY =


Iπ0+ν0 0

0 W
0 0
0 W
0 0

 , X∗
5Σπ,νX5 = Σπ0,ν0 ⊕Σπ−π0,ν−ν0 .

Let P2 be the permutation matrix that interchanges the 3rd and 4th block row of X∗
5BY by

pre-multiplication, and let X6 = X5P
∗
2 . Then

X∗
6BY =


Iπ0+ν0 0

0 W
0 W
0 0

 , X∗
6Σπ,νX6 = Σπ0,ν0 ⊕Σδ0,δ0 ⊕Σπ1,ν1 ,

where π1 = π − π0 − δ0 and ν1 = ν − ν0 − δ0. Then setting

Z =
√

2
2

[
Iδ0 Iδ0

Iδ0 −Iδ0

]
,

and X7 = X6(Iπ0+ν0 ⊕ Z ⊕ Iπ1+ν1), it is easily verified that

Z∗
[

W
W

]
=

[ √
2W
0

]
, Z∗Σδ0,δ0Z =

[
0 Iδ0

Iδ0 0

]
,

and thus, we have

X∗
7BY =


Iπ0+ν0 0

0
√

2W
0 0
0 0

 , X∗
7Σπ,νX7 = Σπ0,ν0 ⊕

[
0 Iδ0

Iδ0 0

]
⊕Σπ1,ν1 .

Let P3 be the permutation matrix that changes the order the block rows of X∗
7BY to the

order 4, 3, 1, 2 by pre-multiplication and set X = X7P
∗
3 . Then

X∗BY =


0 0
0 0

Iπ0+ν0 0
0

√
2W

 , X∗Σπ,νX = Σπ1,ν1 ⊕

 0 0 Iδ0

0 Σπ0,ν0 0
Iδ0 0 0

 .

The desired factorization then follows by multiplying with Y −1 from the right and setting
B0 = (Iπ0+ν0 ⊕

√
2W )Y −1.

Proposition 3.2 Let B ∈ R2m×n and suppose that rank B = n, rank BT JmB = 2n0 (note
that the rank of a real skew-symmetric matrix is even), and let δ0 = n − 2n0 denote the
dimension of the null space of BT JmB. Then there exists an invertible matrix X ∈ R2m×2m

such that

XT B =

 0
0

B0

 2n1

δ0

n
, XT JmX = Jn1 ⊕

 0 0 Iδ0

0 Jn0 0
−Iδ0 0 0

 .

where B0 ∈ Cn×n is nonsingular and n1 = m− n0 − δ0.

Proof. The proof follows the same lines as in the complex case (or more precisely, as in the
case of a complex skew-symmetric bilinear form induced by Jm), see [18] for details.
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4 Canonical form for G, Ĝ Hermitian

In this section, we investigate the matrix triple (A,G, Ĝ) for the case that both G, Ĝ are Her-
mitian and nonsingular. We first consider the simpler case that A is square and nonsingular.

Theorem 4.1 Let A ∈ Cn×n be nonsingular and let G, Ĝ ∈ Cn×n be Hermitian and nonsin-
gular. Then there exist nonsingular matrices X, Y ∈ Cn×n such that

X∗AY = Ac ⊕Ar, X∗GX = Gc ⊕Gr, Y ∗ĜY = Ĝc ⊕ Ĝr, (4.1)

and for the Ĝ-Hermitian matrix Ĥ = Ĝ−1A∗G−1A ∈ Cn×n and for the G-Hermitian matrix
H = G−1AĜ−1A∗ ∈ Cn×n, we have that

Y −1ĤY = Ĥc ⊕ Ĥr, X−1HX = Hc ⊕Hr. (4.2)

The diagonal blocks in these decompositions have the following forms:

1) blocks associated with pairs (µ2
j , µ̄

2
j ) of nonreal eigenvalues of Ĥ and H:

Ac =
[
Jξ1(µ1) 0

0 Jξ1(µ̄1)

]
⊕ · · ·⊕

[
Jξmc

(µmc) 0
0 Jξmc

(µ̄mc)

]
,

Gc =
[

0 Rξ1

Rξ1 0

]
⊕ · · ·⊕

[
0 Rξmc

Rξmc
0

]
,

Ĝc =
[

0 Rξ1

Rξ1 0

]
⊕ · · ·⊕

[
0 Rξmc

Rξmc
0

]
,

Ĥc =
[
J 2

ξ1
(µ1) 0
0 J 2

ξ1
(µ̄1)

]
⊕ · · ·⊕

[
J 2

ξmc
(µmc) 0
0 J 2

ξmc
(µ̄mc)

]
,

Hc =
[
J 2

ξ1
(µ1) 0
0 J 2

ξ1
(µ̄1)

]∗
⊕ · · ·⊕

[
J 2

ξmc
(µmc) 0
0 J 2

ξmc
(µ̄mc)

]∗
,

where µj ∈ C, arg µj ∈ (0, π/2), and ξj ∈ N for j = 1, . . . ,mc;

2) blocks associated with real eigenvalues αj of H and Ĥ:

Ar = Jη1(β1) ⊕ · · ·⊕ Jηmr
(βmr),

Gr = s1Rη1 ⊕ · · ·⊕ smrRηmr
,

Ĝr = ŝ1Rη1 ⊕ · · ·⊕ ŝmrRηmr
,

Ĥr = s1ŝ1J 2
η1

(β1) ⊕ · · ·⊕ smr ŝmrJ 2
ηmr

(βmr),
Hr = s1ŝ1

(
J 2

η1
(β1)

)∗⊕ · · ·⊕smr ŝmr

(
J 2

ηmr
(βmr)

)∗
,

where βj > 0, sj , ŝj ∈ {+1,−1}, and ηj ∈ N for j = 1, . . . ,mr. Thus, αj = β2
j > 0 if

sj = ŝj and αj = −β2
j < 0 if sj 6= ŝj.

Moreover, the form (4.1) is unique up to the simultaneous permutation of blocks in the right
hand side of (4.1).

Proof. The proof will be performed in two steps.
Step 1) We first show that we may assume without loss of generality that Ĥ either has only
one pair of conjugate complex nonreal eigenvalues (λ, λ̄) or only one real eigenvalue α.
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Indeed, in view of Theorem 2.2, there exists a nonsingular matrix Y ∈ Cn×n such that

Y −1ĤY = Ĥ1 ⊕ Ĥ2, Y ∗ĜY = Ĝ1 ⊕ Ĝ2,

where Ĥ1, Ĝ1 ∈ Cp×p, Ĥ2, Ĝ2 ∈ C(n−p)×(n−p), σ(Ĥ1)∩σ(Ĥ2) = ∅, and Ĥ1 either has only one
eigenvalue that is real or only two eigenvalues that are conjugate complex. Using

G−1AĤ = HG−1A

and the fact that G−1A is nonsingular, we find that H and Ĥ are similar. Thus, there exists
a nonsingular matrix X ∈ Cm×m such that

X−1HX = Ĥ1 ⊕ Ĥ2 =
[
Ĥ1 0
0 Ĥ2

]
, X∗GX =

[
G1 G12

G∗
12 G2

]
,

Here, G has been partitioned conformably with H. By assumption, σ(Ĥ1) = σ(Ĥ∗
1) and thus

σ(Ĥ∗
1) ∩ σ(Ĥ2) = ∅. Then using that H is G-Hermitian, i.e.,[

Ĥ∗
1 0
0 Ĥ∗

2

] [
G1 G12

G∗
12 G2

]
= X∗H∗GX = X∗GHX =

[
G1 G12

G∗
12 G2

] [
Ĥ1 0
0 Ĥ2

]
,

we obtain G12 = 0, because the Sylvester equation Ĥ∗
1G12 − G12Ĥ2 = 0 only has the trivial

solution, given that the spectra of the coefficient matrices Ĥ∗
1 and Ĥ2 do not intersect. Next,

we will show that X∗AY decomposes in the same way as H, Ĥ, G, and Ĝ. To this end, we
partition

(X∗AY )−1 =
[

A11 A12

A21 A22

]
conformably with G and Ĝ. Then

ĤA−1 = Ĝ−1A∗G−1 = (G−1AĜ−1)∗ = (HA−∗)∗ = A−1H∗

implies [
Ĥ1 0
0 Ĥ2

] [
A11 A12

A21 A22

]
=

[
A11 A12

A21 A22

] [
Ĥ∗

1 0
0 Ĥ∗

2

]
Using once again the fact that a Sylvester equation only has the trivial solution if the spectra
of the coefficient matrices do not intersect, we finally obtain that

(X∗AY )−1 =
[

A11 0
0 A22

]
and thus X∗AY is block diagonal as well. Repeating this argument several times, we see
that it remains to study triples (A,G, Ĝ) for which Ĥ has the restricted spectrum as initially
stated.
Step 2) By Step 1), we may assume without loss of generality that Ĥ either has only one pair
of conjugate complex nonreal eigenvalues (λ, λ̄) or only one real eigenvalue α. We discuss
these two cases separately.
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Case 1: σ(Ĥ) = {λ, λ̄} for some λ ∈ C, Im λ > 0.
By Theorem 2.8, Ĥ has a unique Ĝ-Hermitian square root S ∈ Cn×n satisfying σ(S) ⊆ C+.
Then by Theorem 2.2, there exists a nonsingular matrix Ỹ ∈ Cn×n such that

SCF := Ỹ −1SỸ =
[
Jξ1(µ) 0

0 Jξ1(µ̄)

]
⊕ · · ·⊕

[
Jξm(µ) 0

0 Jξm(µ̄)

]
,

GCF := Ỹ ∗ĜỸ =
[

0 Rξ1

Rξ1 0

]
⊕ · · ·⊕

[
0 Rξm

Rξm 0

]
,

HCF := Ỹ −1ĤỸ =
[
J 2

ξ1
(µ) 0
0 J 2

ξ1
(µ̄)

]
⊕ · · ·⊕

[
J 2

ξm
(µ) 0

0 J 2
ξm

(µ̄)

]
,

where µ =
√

λ ∈ C, arg µ ∈ (0, π
2 ), and ξj ∈ N for j = 1, . . . ,m. Here, the third identity

immediately follows from Ĥ = S2. Since H and Ĥ are similar and since Ĥ has only a pair
of conjugate complex nonreal eigenvalues, we obtain from Theorem 2.2 that the canonical
forms of the pairs (H, G) and (Ĥ, Ĝ) coincide. In particular, this implies the existence of a
nonsingular matrix X̃ ∈ Cn×n such that

HCF = X̃−1HX̃ =
[
J 2

ξ1
(µ) 0
0 J 2

ξ1
(µ̄)

]
⊕ · · ·⊕

[
J 2

ξm
(µ) 0

0 J 2
ξm

(µ̄)

]
,

GCF = X̃∗GX̃ =
[

0 Rξ1

Rξ1 0

]
⊕ · · ·⊕

[
0 Rξm

Rξm 0

]
.

Finally, setting X = G−1X̃−∗ and Y = A−1GX̃SCF, we obtain

X∗AY = X̃−1G−1AA−1GX̃SCF = SCF

X∗GX = X̃−1G−1GG−1X̃−∗ = (X̃∗GX̃)−1 = G−1
CF = GCF

Y ∗ĜY = S∗
CFX̃∗GA−∗ĜA−1GX̃SCF

= S∗
CFX̃∗GX̃X̃−1H−1X̃SCF

= S∗
CFGCF(HCF)−1SCF = GCFSCF(HCF)−1SCF = GCF

as desired, where we have used that SCF is GCF-Hermitian and that S2
CF = HCF. It is now

easy to check that X−1HX and Y −1ĤY have the claimed forms.
Case 2: σ(Ĥ) = {α} for some α ∈ R \ {0}.

Observe that sign(α)Ĥ has the only positive eigenvalue |α|. Thus, we can apply Theorems 2.8
and 2.2 which yield the existence of a square root S ∈ Cn×n of sign(α)Ĥ and a nonsingular
matrix Ỹ ∈ Cn×n such that

SCF := Ỹ −1SỸ = Jη1(β) ⊕ · · ·⊕ Jηm(β),
Ỹ ∗ĜỸ = ŝ1Rη1 ⊕ · · ·⊕ ŝmRηm ,

HCF := Ỹ −1ĤỸ = sign(α)J 2
η1

(β)⊕ · · ·⊕ sign(α)J 2
ηm

(β),

where β =
√
|α|, ηj ∈ N and ŝj ∈ {+1,−1} for j = 1, . . . ,m. Again using that H and Ĥ are

similar, we obtain from Theorem 2.2 the existence of a nonsingular matrix X̃ ∈ Cn×n such
that

HCF = X̃−1HX̃ = sign(α)J 2
η1

(β)⊕ · · ·⊕ sign(α)J 2
ηm

(β),
GCF := X̃∗GX̃ = s1Rη1 ⊕ · · ·⊕ smRηm
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for some s1, . . . , sm ∈ {+1,−1}. Setting X = G−1X̃−∗ and Y = A−1GX̃SCF, we obtain as in
Case 1 that X∗AY = SCF, X∗GX = GCF, and Y ∗ĜY = GCFSCF(HCF)−1SCF = sign(α)GCF.

We mention in passing that it is possible to link the sign characteristic (ŝ1, . . . , ŝm) to the
sign characteristic (s1, . . . , sm), but we refrain from doing so, because the explicit knowledge
of the parameters ŝ1, . . . , ŝm is irrelevant for the development of the canonical form for the
triple (A,G, Ĝ). It is now straightforward to check that X−1HX and Y −1ĤY have the
claimed forms. Concerning uniqueness, we note that the form (4.1) is uniquely determined
by the canonical form of Ĥ as a Ĝ-Hermitian matrix, and the restrictions arg µj ∈ (0, π/2)
and β > 0.

In the general situation that A is non square, we have the following result.

Theorem 4.2 Let A ∈ Cm×n and let G ∈ Cm×m and Ĝ ∈ Cn×n be Hermitian and nonsin-
gular. Then there exist nonsingular matrices X ∈ Cm×m and Y ∈ Cn×n such that

X∗AY = Anz ⊕Az,1 ⊕Az,2 ⊕Az,3 ⊕Az,4,

X∗GX = Gnz ⊕Gz,1 ⊕Gz,2 ⊕Gz,3 ⊕Gz,4, (4.3)
Y ∗ĜY = Ĝnz ⊕ Ĝz,1 ⊕ Ĝz,2 ⊕ Ĝz,3 ⊕ Ĝz,4.

Moreover, for the Ĝ-Hermitian matrix Ĥ = Ĝ−1A∗G−1A ∈ Cn×n and for the G-symmetric
matrix H = G−1AĜ−1A∗ ∈ Cm×m we have that

Y −1ĤY = Ĥnz ⊕ Ĥz,1 ⊕ Ĥz,2 ⊕ Ĥz,3 ⊕ Ĥz,4,

X−1HX = Hnz ⊕Hz,1 ⊕Hz,2 ⊕Hz,3 ⊕Hz,4.

The diagonal blocks in these decompositions have the following forms:

0) blocks associated with nonzero eigenvalues of Ĥ and H:
Anz, Gnz, Ĝnz have the forms as in (4.1) and Ĥnz,Hnz have the forms as in (4.2);

1) one block corresponding to n0 Jordan blocks of size 1× 1 of Ĥ and m0 Jordan blocks of
size 1× 1 of H associated with the eigenvalue zero:

Az,1 = Om0×n0 , Gz,1 = Σπ0,ν0 , Ĝz,1 = Σπ̂0,ν̂0 , Ĥz,1 = On0 , Hz,1 = Om0 ,

where m0, n0, π0, ν0, π̂0, ν̂0 ∈ N ∪ {0} and π0 + ν0 = m0, π̂0 + ν̂0 = n0;

2) blocks corresponding to a pair of j × j Jordan blocks of Ĥ and H associated with the
eigenvalue zero:

Az,2 =
γ1⊕
i=1
J2(0) ⊕

γ2⊕
i=1
J4(0) ⊕ · · ·⊕

γ⊕̀
i=1
J2`(0) ,

Gz,2 =
γ1⊕
i=1

R2 ⊕
γ2⊕
i=1

R4 ⊕ · · ·⊕
γ⊕̀

i=1
R2` ,

Ĝz,2 =
γ1⊕
i=1

R2 ⊕
γ2⊕
i=1

R4 ⊕ · · ·⊕
γ⊕̀

i=1
R2` ,

Ĥz,2 =
γ1⊕
i=1
J 2

2 (0) ⊕
γ2⊕
i=1
J 2

4 (0) ⊕ · · ·⊕
γ⊕̀

i=1
J 2

2`(0) ,

Hz,2 =
γ1⊕
i=1
J 2

2 (0)T⊕
γ2⊕
i=1
J 2

4 (0)T⊕ · · ·⊕
γ⊕̀

i=1
J 2

2`(0)T ,

where γ1, . . . , γ` ∈ N∪{0}; thus, Ĥz,2 and Hz,2 both have each 2γj Jordan blocks of size
j× j, where exactly γj blocks have sign +1 and γj blocks have sign −1, for j = 1, . . . , `;
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3) blocks corresponding to a j × j Jordan blocks of Ĥ and a (j + 1)× (j + 1) Jordan block
of H associated with the eigenvalue zero:

Az,3 =
m1⊕
i=1

[
I1

0

]
2×1

⊕
m2⊕
i=1

[
I2

0

]
3×2

⊕ · · ·⊕
m`−1⊕
i=1

[
I`−1

0

]
`×(`−1)

,

Gz,3 =
m1⊕
i=1

s
(i)
1 R2 ⊕

m2⊕
i=1

s
(i)
2 R3 ⊕ · · ·⊕

m`−1⊕
i=1

s
(i)
`−1R` ,

Ĝz,3 =
m1⊕
i=1

ŝ
(i)
1 R1 ⊕

m2⊕
i=1

ŝ
(i)
2 R2 ⊕ · · ·⊕

m`−1⊕
i=1

ŝ
(i)
`−1R`−1 ,

Ĥz,3 =
m1⊕
i=1

s
(i)
1 ŝ

(i)
1 J1(0) ⊕

m2⊕
i=1

s
(i)
2 ŝ

(i)
2 J2(0) ⊕ · · ·⊕

m`−1⊕
i=1

s
(i)
`−1ŝ

(i)
`−1J`−1(0) ,

Hz,3 =
m1⊕
i=1

s
(i)
1 ŝ

(i)
1 J2(0)T⊕

m2⊕
i=1

s
(i)
2 ŝ

(i)
2 J3(0)T⊕ · · ·⊕

m`−1⊕
i=1

s
(i)
`−1ŝ

(i)
`−1J`(0)T ,

where m1, . . . ,m`−1 ∈ N ∪ {0}, and for j = 1, . . . , ` − 1, we have that s
(i)
j = 1 and

ŝ
(i)
j ∈ {+1,−1} if j is odd, and s

(i)
j ∈ {+1,−1} and ŝ

(i)
j = 1 if j is even; thus Ĥz,3 has

mj Jordan blocks of size j × j with signs ŝ
(i)
j if j is odd and signs s

(i)
j if j is even, and

Hz,3 has mj Jordan blocks of size (j + 1)× (j + 1) with signs ŝ
(i)
j if j is odd and signs

s
(i)
j if j is even for i = 1, . . . ,mj and j = 1, . . . , `− 1;

4) blocks corresponding to a (j + 1)× (j + 1) Jordan blocks of Ĥ and a j × j Jordan block
of H associated with the eigenvalue zero:

Az,4 =
n1⊕
i=1

[
0 I1

]
1×2
⊕

n2⊕
i=1

[
0 I2

]
2×3

⊕ · · ·⊕
n`−1⊕
i=1

[
0 I`−1

]
(`−1)×`

,

Gz,4 =
n1⊕
i=1

s
(i)
1 R1 ⊕

n2⊕
i=1

s
(i)
2 R2 ⊕ · · ·⊕

n`−1⊕
i=1

s
(i)
`−1R`−1 ,

Ĝz,4 =
n1⊕
i=1

ŝ
(i)
1 R2 ⊕

n2⊕
i=1

ŝ
(i)
2 R3 ⊕ · · ·⊕

n`−1⊕
i=1

ŝ
(i)
`−1R` ,

Ĥz,4 =
n1⊕
i=1

s
(i)
1 ŝ

(i)
1 J2(0)⊕

n2⊕
i=1

s
(i)
2 ŝ

(i)
2 J3(0) ⊕ · · ·⊕

n`−1⊕
i=1

s
(i)
`−1ŝ

(i)
`−1J`(0),

Hz,4 =
n1⊕
i=1

s
(i)
1 ŝ

(i)
1 J1(0)T⊕

n2⊕
i=1

s
(i)
2 ŝ

(i)
2 J2(0)T ⊕ · · ·⊕

n`−1⊕
i=1

s
(i)
`−1ŝ

(i)
`−1J`−1(0)T ,

where n1, . . . , n`−1 ∈ N ∪ {0}, and for j = 1, . . . , ` − 1, we have that s
(i)
j = 1 and

ŝ
(i)
j ∈ {+1,−1} if j is even, and s

(i)
j ∈ {+1,−1} and ŝ

(i)
j = 1 if j is odd; thus, Ĥz,4 has

nj Jordan blocks of size (j + 1)× (j + 1) with signs s
(i)
j if j is odd and signs ŝ

(i)
j if j is

even, and Hz,4 has nj Jordan blocks of size j × j with signs s
(i)
j if j is odd and signs

ŝ
(i)
j if j is even for i = 1, . . . ,mj and j = 1, . . . , `− 1;

For the eigenvalue zero, the matrices Ĥ and H have 2γj+mj+nj−1 respectively 2γj+mj−1+nj

Jordan blocks of size j × j for j = 1, . . . , `, where m` = n` = 0 and where ` is the maximum
of the index of Ĥ and the index of H. (Here, index refers to the maximal size of a Jordan
block associated with the eigenvalue zero.)
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Furthermore, the form (4.3) is unique up to simultaneous block permutation of the blocks
in the block diagonal of the right hand side of (4.3).

Proof. Due to its very technical nature, the proof is omitted here and presented in the
Appendix.

Since the canonical form of Theorem 4.2 is quite complicated, we present some examples
to illustrate this form.

Example 4.3 Let A, G, Ĝ be given by

A = G = Ĝ =

0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


,



0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 +1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0


,



0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 −1 0
0 0 0 0 0 −1 0 0


.

Then the canonical form consists of one block of type 2) with j = 2, one block of type 3)
with j = 1 and sign ŝ

(1)
1 = −1, and two blocks of type 4), one with j = 1 and sign s

(1)
1 = +1

and one with j = 2 and sign ŝ
(1)
2 = −1. Observe that the signs only occur in the blocks of

G or Ĝ, respectively, that have odd size. The signs attached to the corresponding even sized
blocks are always +1. Thus, for example, the signs corresponding to blocks of type 4) will
always be found in G if j is odd and they can be read off Ĝ if j is even.

Example 4.4 It is important to note that rectangular matrices with a total number of zero
rows or columns are allowed in the canonical form. For example consider the two non-
equivalent triples

A1 =
[

0 1
]
, G1 =

[
−1

]
, Ĝ1 =

[
0 1
1 0

]
and A2 =

[
0 1

]
, G2 =

[
−1

]
, Ĝ2 =

[
1 0
0 −1

]
.

The first example is just one block of type 4) with sign s
(1)
1 = −1. Indeed, forming the

products

Ĥ1 = Ĝ−1
1 A∗

1G
−1
1 A =

[
0 −1
0 0

]
, H1 = G−1

1 AĜ−1
1 A∗

1 =
[

0
]
,

as predicted, Ĥ1 has only one Jordan block of size 2 associated with the eigenvalue λ = 0 and
the sign s = −1, while H1 has one Jordan block of size 1 associated with λ = 0 and the sign
s = −1. The situation is different in the second case. Here, we obtain

Ĥ2 = Ĝ−1
2 A∗

2G
−1
2 A =

[
0 0
0 1

]
, H2 = G−1

2 AĜ−1
2 A∗

2 =
[

1
]
,

i.e., Ĥ2 has two Jordan blocks of size 1, one associated with λ = 0 and sign s1 = 1 and a
second one associated with λ = 1 and sign s2 = −1, while H2 has one Jordan block of size

19



1 associated with λ = 1 and sign s = −1. Here, the triple (A2, G2, Ĝ2) is in canonical form
consisting of one block of type 1) and size 0× 1 and of one block of type 0):

A2 =
[

0 1
]
, G2 =

[
−1

]
, Ĝ2 =

[
1 0
0 −1

]
.

We have the following real versions of Theorem 4.1 and Theorem 4.2.

Theorem 4.5 Let A ∈ Rn×n be nonsingular and let G, Ĝ ∈ Rn×n be symmetric and nonsin-
gular. Then there exist nonsingular matrices X, Y ∈ Rn×n such that

XT AY = Ac ⊕Ar, XT GX = Gc ⊕Gr, Y T ĜY = Ĝc ⊕ Ĝr. (4.4)

Moreover, for the Ĝ-symmetric matrix Ĥ = Ĝ−1AT G−1A and for the G-symmetric matrix
H = G−1AĜ−1AT , we have that

Y −1ĤY = Ĥc ⊕ Ĥr, X−1HX = Hc ⊕Hr. (4.5)

The diagonal blocks in these decompositions have the following forms:

1) blocks associated with pairs (µ2
j , µ̄

2
j ) of nonreal eigenvalues of Ĥ and H:

Ac = Jξ1(a1, b1) ⊕ · · ·⊕ Jξmc
(amc , bmc),

Gc = R2ξ1 ⊕ · · ·⊕ R2ξmc
,

Ĝc = R2ξ1 ⊕ · · ·⊕ R2ξmc
,

Ĥc = J 2
ξ1

(a1, b1) ⊕ · · ·⊕ J 2
ξmc

(amc , bmc),

Hc = J 2
ξ1

(a1, b1)T⊕ · · ·⊕J 2
ξmc

(amc , bmc)T ,

where aj , bj > 0, µj = aj + ıbj, and ξj ∈ N for j = 1, . . . ,mc;

2) blocks associated with real eigenvalues αj of H and Ĥ:

Ar = Jη1(β1) ⊕ · · ·⊕ Jηmr
(βmr),

Gr = s1Rη1 ⊕ · · ·⊕ smrRηmr
,

Ĝr = ŝ1Rη1 ⊕ · · ·⊕ ŝmrRηmr
,

Ĥr = s1ŝ1J 2
η1

(β1) ⊕ · · ·⊕ smr ŝmrJ 2
ηmr

(βmr),
Hr = s1ŝ1

(
J 2

η1
(β1)

)T⊕ · · ·⊕smr ŝmr

(
J 2

ηmr
(βmr)

)T
,

where βj > 0, sj , ŝj ∈ {+1,−1}, and ηj ∈ N for j = 1, . . . ,mr. Thus, αj = β2
j > 0 if

sj = ŝj and αj = −β2
j < 0 if sj 6= ŝj.

Furthermore, the form (4.4) is unique up to the simultaneous permutation of blocks in the
right hand side of (4.4).

Proof. The proof follows exactly the same lines as the proof of Theorem 4.1. (The key point
here is that the square roots that are constructed analogously to the proof of Theorem 4.1
are real, see Theorem 2.8.)
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Theorem 4.6 Let A ∈ Rm×n and let G ∈ Rm×m and Ĝ ∈ Rn×n be symmetric and nonsin-
gular. Then there exist nonsingular matrices X ∈ Rm×m and ∈ Rn×n such that

XT AY = Anz ⊕Az,1 ⊕Az,2 ⊕Az,3 ⊕Az,4,

XT GX = Gnz ⊕Gz,1 ⊕Gz,2 ⊕Gz,3 ⊕Gz,4, (4.6)
Y T ĜY = Ĝnz ⊕ Ĝz,1 ⊕ Ĝz,2 ⊕ Ĝz,3 ⊕ Ĝz,4.

Moreover, for the Ĝ-symmetric matrix Ĥ = Ĝ−1AT G−1A ∈ Cn×n and for the G-symmetric
matrix H = G−1AĜ−1AT ∈ Cm×m we have that

Y −1ĤY = Ĥnz ⊕ Ĥz,1 ⊕ Ĥz,2 ⊕ Ĥz,3 ⊕ Ĥz,4,

X−1HX = Hnz ⊕Hz,1 ⊕Hz,2 ⊕Hz,3 ⊕Hz,4.

Here, the blocks Anz, Gnz, Ĝnz, Ĥnz, and Hnz have the forms as in (4.4) and (4.5), while Az,k,
Gz,k, Ĝz,k, Ĥz,k, and Hz,k have the forms as in Theorem 4.2 for k = 1, . . . , 4.

Moreover, the form (4.6) is unique up to the simultaneous permutation of blocks in the
right hand side of (4.6).

Proof. The proof follows exactly the same lines as the proof of Theorem 4.2. Indeed,
the proof (as presented in the Appendix) makes use of the decompositions as presented in
Proposition 3.1 which has a real version as well.

In the particular case that one of the Hermitian matrices is positive definite (say G), we
obtain the following special case of Theorem 4.2 and Theorem 4.6 that can be interpreted as
a generalization of both the Schur form for a Hermitian matrix as well as a generalization of
the standard singular value decomposition.

Corollary 4.7 Let A ∈ Fm×n, let G ∈ Fm×m be Hermitian and positive definite, and let
Ĝ ∈ Fn×n be Hermitian and nonsingular. Then there exist nonsingular matrices X ∈ Fm×m

and Y ∈ Fn×n such that

X∗AY =

 β1 0
. . .

0 βmr

⊕Om0×n0 ⊕
[
On1 In1

]
,

X∗GX =

 1 0
. . .

0 1

⊕ Im0 ⊕ In1 = Im,

Y ∗ĜY =

 ŝ1 0
. . .

0 ŝmr

⊕Σπ̂0,ν̂0 ⊕
[

0 In1

In1 0

]
,

where n0 = π̂0 + ν̂0 and βj > 0, ŝj ∈ {−1, 1} for j = 1, . . . ,mr. Moreover,

Y −1Ĝ−1A∗G−1AY =

 ŝ1β
2
1 0

. . .

0 ŝmrβ
2
mr

⊕On0 ⊕
[

0 In1

0 0

]
,

X−1G−1AĜ−1A∗X =

 ŝ1β
2
1 0

. . .

0 ŝmrβ
2
mr

⊕Om0+n1 .
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Proof. Because G is positive definite, due to the inertia index relation, in the canonical form
of Theorem 4.2, Gc, as well as Ac, Ĝc must be void. Furthermore, η1 = . . . = ηmr = 1 and
s1 = . . . = smr = 1. Concerning the blocks Az,k, Gz,k, Ĝz,k, the blocks for k = 1 may exist,
but Gz,1 has to be the identity matrix Im0 ; the blocks for k = 2 and k = 3 must be void, and
the blocks for k = 4 may only exist when j = 1. In this case Gz,4 has to be In1 and applying
an appropriate permutation, we can achieve the forms

Az,4 =
[
On1 In1

]
, Gz,4 = In1 , Ĝz,4 =

[
0 In1

In1 0

]
.

The proof for the real case is analogous.

Remark 4.8 It should be noted that when G = Im, then X is unitary and Corollary 4.7 gives
the Schur form of the Hermitian matrix product AĜ−1A∗. Also, it simultaneously displays
the Jordan form of Ĝ−1A∗A. One should observe here the difference in the eigenstructures
of AĜ−1A∗ and Ĝ−1A∗A corresponding to the eigenvalue λ = 0. (Indeed, it is well known
that two matrix products AB and BA have identical nonzero eigenvalues including identical
algebraic, geometric, and partial multiplicities, but the Jordan structure for the eigenvalue
λ = 0 may be different for both matrices, see [5].) If G = Im and Ĝ = In, then also Y is
unitary and Corollary 4.7 becomes the standard singular value decomposition.

5 Canonical form for G symmetric and Ĝ skew-symmetric

In this section we determine the canonical form for the case that G is symmetric and Ĝ is
skew-symmetric. We only consider the real case, because the corresponding complex case (i.e.,
G being Hermitian and Ĝ being skew-Hermitian) can be easily derived from the canonical
form in Theorem 4.2 by simply multiplying Ĝ with −ı. For the real case, the situation is
different and the canonical form becomes more complicated. Again, we start with the result
for the case that A is square and nonsingular.

Theorem 5.1 Let A ∈ R2n×2n be nonsingular, let G ∈ R2n×2n be symmetric and nonsingu-
lar, and let Ĝ ∈ R2n×2n be skew-symmetric and nonsingular. Then there exist nonsingular
matrices X, Y ∈ R2n×2n such that

XT AY = Ac ⊕Ar ⊕Aı, XT GX = Gc ⊕Gr ⊕Gı, Y T ĜY = Ĝc ⊕ Ĝr ⊕ Ĝı. (5.1)

Moreover, for the Ĝ-Hamiltonian matrix Ĥ = Ĝ−1AT G−1A and for the G-skew-symmetric
matrix H = G−1AĜ−1AT , we have that

Y −1ĤY = Ĥc ⊕ Ĥr ⊕ Ĥı, X−1HX = Hc ⊕Hr ⊕Hı. (5.2)

The diagonal blocks in these decompositions have the following forms:

1) blocks associated with quadruples ((aj ± ıbj)2,−(aj ± ıbj)2) of nonreal and non-purely
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imaginary eigenvalues of Ĥ and H:

Ac =
[
Jξ1(a1, b1) 0

0 Jξ1(a1, b1)

]
⊕ · · ·⊕

[
Jξmc

(amc , bmc) 0
0 Jξmc

(amc , bmc)

]
,

Gc =
[

0 R2ξ1

R2ξ1 0

]
⊕ · · ·⊕

[
0 R2ξmc

R2ξmc
0

]
,

Ĝc =
[

0 R2ξ1

−R2ξ1 0

]
⊕ · · ·⊕

[
0 R2ξmc

−R2ξmc
0

]
,

Ĥc =
[
−Jξ1(a1, b1)2 0

0 Jξ1(a1, b1)2

]
⊕ · · ·⊕

[
−Jξmc

(amc , bmc)2 0
0 Jξmc

(amc , bmc)2

]
,

Hc =
[
Jξ1(a1, b1)2 0

0 −Jξ1(a1, b1)2

]T

⊕ · · ·⊕
[
Jξmc

(amc , bmc)2 0
0 −Jξmc

(amc , bmc)2

]T

,

where aj > bj > 0 and ξj ∈ N for j = 1, . . . ,mc;

2) blocks associated with pairs of real eigenvalues (α2
j ,−α2

j ) of H and Ĥ:

Ar =
[
Jη1(α1) 0

0 Jη1(α1)

]
⊕ · · ·⊕

[
Jηmr

(αmr) 0
0 Jηmr

(αmr)

]
,

Gr =
[

0 Rη1

Rη1 0

]
⊕ · · ·⊕

[
0 Rηmr

Rηmr
0

]
,

Ĝr =
[

0 Rη1

−Rη1 0

]
⊕ · · ·⊕

[
0 Rηmr

−Rηmr
0

]
,

Ĥr =
[
−Jη1(α1)2 0

0 Jη1(α1)2

]
⊕ · · ·⊕

[
−Jηmr

(αmr)2 0
0 Jηmr

(αmr)2

]
,

Hr =
[
Jη1(α1)2 0

0 −Jη1(α1)2

]T

⊕ · · ·⊕
[
Jηmr

(αmr)2 0
0 −Jηmr

(αmr)2

]T

,

where αj > 0 and ηj ∈ N for j = 1, . . . ,mr;

3) blocks associated with pairs of purely imaginary eigenvalues (ıβ2
j ,−ıβ2

j ) of H and Ĥ:

Aı =
[
Jρ1(β1) 0

0 Jρ1(β1)

]
⊕ · · ·⊕

[
Jρmı

(βmı) 0
0 Jρmı

(βmı)

]
,

Gı = s1

[
Rρ1 0
0 Rρ1

]
⊕ · · ·⊕ smı

[
Rρmı

0
0 Rρmı

]
,

Ĝı = s1

[
0 Rρ1

−Rρ1 0

]
⊕ · · ·⊕ smı

[
0 Rρmı

−Rρmı
0

]
,

Ĥı =
[

0 Jρ1(β1)2

−Jρ1(β1)2 0

]T

⊕ · · ·⊕
[

0 Jρmı
(βmı)2

−Jρmı
(βmı)2 0

]T

,

Hı =
[

0 −Jρ1(β1)2

Jρ1(β1)2 0

]
⊕ · · ·⊕

[
0 −Jρmı

(βmı)2

Jρmı
(βmı)2 0

]
,

where βj > 0, sj ∈ {+1,−1}, and ρj ∈ N for j = 1, . . . ,mı;

Furthermore, the form (5.1) is unique up to the simultaneous permutation of blocks in the
right hand side of (5.1).
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Proof. Analogous to the proof of Theorem 4.1, it can be shown that without loss of generality,
we may assume that σ(Ĥ) = {λ, λ̄,−λ,−λ̄}, where λ ∈ C\{0}. We then distinguish the three
different cases λ2 > 0, λ2 < 0, and λ2 6∈ R. The proof then proceeds similar to the proof
of Theorem 4.1, but instead of constructing a square root of Ĥ, a square root of a related
Ĝ-skew-Hamiltonian matrix S̃ will be considered. The proof for the cases λ2 > 0 and λ2 6∈ R
follows exactly the same lines as the proof of Theorem 5.1 in [18] and will not be reproduced
here. The proof for the remaining case differs slightly and will therefore be presented here in
full detail.

Thus, assume without loss of generality that σ(Ĥ) = {ıλ,−ıλ}, where λ > 0. By Theo-
rem 2.6, there exists a nonsingular matrix W ∈ R2n×2n such that

W−1ĤW =
[

0 Jρ1(λ)
−Jρ1(λ) 0

]
⊕ · · ·⊕

[
0 Jρm(λ)

−Jρm(λ) 0

]
,

W T ĜW = ŝ1

[
0 Rρ1

−Rρ1 0

]
⊕ · · ·⊕ ŝm

[
0 Rρm

−Rρm 0

]
,

where ρj ∈ N and ŝj ∈ {+1,−1} for j = 1, . . . ,m. Next, we define the matrix S̃ to be such
that

W−1S̃W =
[
Jρ1(λ) 0

0 Jρ1(λ)

]
⊕ · · · ⊕

[
Jρm(λ) 0

0 Jρm(λ)

]
.

Then S̃ is Ĝ-skew-Hamiltonian and satisfies σ(S̃) ⊆ R+. Thus, applying Theorem 2.9, we
obtain that S̃ has unique square root S ∈ Cn×n that satisfies σ(S) ⊆ R+ and that is a
polynomial in S̃. Consequently, with S̃ also its square root S is Ĝ-skew-Hamiltonian. Let
β =

√
λ. Then Theorem 2.7 implies the existence of a nonsingular matrix Ỹ ∈ R2n×2n such

that

SCF := Ỹ −1SỸ =
[
Jρ1(β) 0

0 Jρ1(β)

]
⊕ · · ·⊕

[
Jρm(β) 0

0 Jρm(β)

]
,

Ỹ T ĜỸ =
[

0 Rρ1

−Rρ1 0

]
⊕ · · ·⊕

[
0 Rρm

−Rρm 0

]
.

(Note that the Jordan structure of S follows from the fact that S is a polynomial in S̃.)
Moreover, using G−1AĤ = HG−1A and the fact that G−1A is nonsingular, we find that Ĥ
and H are similar. Thus, by Theorem 2.5, we find that there is a nonsingular matrix X̃1 such
that

X̃−1
1 HX̃1 =

[
0 Jρ1(λ)

−Jρ1(λ) 0

]
⊕ · · ·⊕

[
0 Jρm(λ)

−Jρm(λ) 0

]
,

X̃T
1 GX̃1 = s̃1

[
Rρ1 0
0 Rρ1

]
⊕ · · ·⊕ s̃m

[
Rρm 0

0 Rρm

]
,

where s̃1, . . . , s̃m ∈ {+1,−1}. On the other hand, since β2 = λ, the matrix

HCF :=
[

0 −J 2
ρ1

(β)
J 2

ρ1
(β) 0

]
⊕ · · · ⊕

[
0 −J 2

ρm
(β)

J 2
ρm

(β) 0

]
is similar to X̃−1

1 HX̃1. It is also obvious that HCF is XT
1 GX̃1-skew symmetric. Again, by

Theorem 2.5 there exists a nonsingular matrix X̃2 such that with setting X̃ = X̃1X̃2 we have

24



that

HCF := X̃−1HX̃ =
[

0 −J 2
ρ1

(β)
J 2

ρ1
(β) 0

]
⊕ · · ·⊕

[
0 −J 2

ρm
(β)

J 2
ρm

(β) 0

]
,

GCF := X̃T GX̃ = s1

[
Rρ1 0
0 Rρ1

]
⊕ · · ·⊕ sm

[
Rρm 0

0 Rρm

]
,

for some s1, . . . , sm ∈ {+1,−1}. (It is actually possible to show that s̃j = sj for j = 1, . . . ,m,
but we refrain from doing so as it is not necessary for the proof.) Observe that SCF is GCF-
symmetric and satisfies

SCF(HCF)−1SCF =
[

0 Iρ1

−Iρ1 0

]
⊕ · · · ⊕

[
0 Iρm

−Iρm 0

]
.

Using this identity and setting X = G−1X̃−T and Y = A−1GX̃SCF, we obtain

XT AY = X̃−1G−1AA−1GX̃SCF = SCF,

XT GX = X̃−1G−1GG−1X̃−T = (X̃T GX̃)−1 = (GCF)−1 = GCF,

Y T ĜY = ST
CFX̃T GA−T ĜA−1GX̃SCF

= ST
CFX̃T GX̃X̃−1H−1X̃SCF

= ST
CFGCF(HCF)−1SCF = GCFSCF(HCF)−1SCF

= s1

[
0 Rρ1

−Rρ1 0

]
⊕ · · · ⊕ sm

[
0 Rρm

−Rρm 0

]
.

It is now straightforward to check that Y −1HY and X−1ĤX have the claimed forms. Con-
cerning uniqueness, we note that the form (5.1) is already uniquely determined by the Jordan
structure, the sign characteristic of H, and by the restrictions on the parameters.

For the general non square case we have the following result.

Theorem 5.2 Let A ∈ Rm×2n, let G ∈ Rm×m be symmetric nonsingular, and let Ĝ ∈ R2n×2n

be skew-symmetric and nonsingular. Then there exist nonsingular matrices X ∈ Rm×m and
Y ∈ R2n×2n such that

XT AY = Anz ⊕Az,1 ⊕Az,2 ⊕Az,3 ⊕Az,4 ⊕Az,5 ⊕Az,6,

XT GX = Gnz ⊕Gz,1 ⊕Gz,2 ⊕Gz,3 ⊕Gz,4 ⊕Gz,5 ⊕Gz,6, (5.3)
Y T ĜY = Ĝnz ⊕ Ĝz,1 ⊕ Ĝz,2 ⊕ Ĝz,3 ⊕ Ĝz,4 ⊕ Ĝz,5 ⊕ Ĝz,6.

Moreover, for the Ĝ-Hamiltonian matrix Ĥ = Ĝ−1AT G−1A ∈ R2n×2n and for the G-skew-
symmetric matrix H = G−1AĜ−1AT ∈ Rm×m we have that

Y −1ĤY = Ĥnz ⊕ Ĥz,1 ⊕ Ĥz,2 ⊕ Ĥz,3 ⊕ Ĥz,4 ⊕ Ĥz,5 ⊕ Ĥz,6,

X−1HX = Hnz ⊕Hz,1 ⊕Hz,2 ⊕Hz,3 ⊕Hz,4 ⊕Hz,5 ⊕Hz,6.

The diagonal blocks in these decompositions have the following forms:

0) blocks associated with nonzero eigenvalues of Ĥ and H:
Anz, Gnz, Ĝnz have the forms as in (5.1) and Ĥnz,Hnz have the forms as in (5.2);
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1) one block corresponding to 2n0 Jordan blocks of size 1 × 1 of Ĥ and m0 Jordan blocks
of size 1× 1 of H associated with the eigenvalue zero:

Az,1 = Om0×2n0 , Gz,1 = Σπ0,ν0 , Ĝz,1 = Jn0 , Ĥz,1 = O2n0 , Hz,1 = Om0 ,

where m0, n0, π0, ν0 ∈ N ∪ {0} and m0 = π0 + ν0;

2) blocks corresponding to a pair of j × j Jordan blocks of H and Ĥ associated with the
eigenvalue zero:

Az,2 =
γ1⊕
i=1
J2(0) ⊕

γ2⊕
i=1
J4(0) ⊕ · · ·⊕

γ2`+1⊕
i=1
J4`+2(0) ,

Gz,2 =
γ1⊕
i=1

R2 ⊕
γ2⊕
i=1

R4 ⊕ · · ·⊕
γ2`+1⊕
i=1

R4`+2 ,

Ĝz,2 =
γ1⊕
i=1

[
0 1
−1 0

]
⊕

γ2⊕
i=1

[
0 R2

−R2 0

]
⊕ · · ·⊕

γ2`+1⊕
i=1

[
0 R2`+1

−R2`+1 0

]
,

Ĥz,2 =
γ1⊕
i=1

02 ⊕
γ2⊕
i=1

(−Σ2,2)J 2
4 (0) ⊕ · · ·⊕

γ2`+1⊕
i=1

(−Σ2`+1,2`+1)J 2
4`+2(0),

Hz,2 =
γ1⊕
i=1

02 ⊕
γ2⊕
i=1

Σ3,1J 2
4 (0)T ⊕ · · ·⊕

γ2`+1⊕
i=1

Σ2`+2,`J 2
4`+2(0)T ,

where γ1, . . . , γ` ∈ N∪{0}; thus, Ĥz,2 and Hz,2 both have each 2γj Jordan blocks of size
j × j for j = 1, . . . , 2` + 1;
moreover, if j is odd, then exactly γj Jordan blocks of Hz,2 of size j×j have sign s = +1
and exactly γj blocks have sign s = −1 (even-sized Jordan blocks associated with zero of
G-skew-symmetric matrices do not have signs), and if j is even, then exactly γj Jordan
blocks of Ĥz,2 of size j × j have sign s = +1 and exactly γj blocks have sign s = −1
(odd-sized Jordan blocks associated with zero of Ĝ-Hamiltonian matrices do not have
signs);

3) blocks corresponding to a 2j × 2j Jordan block of Ĥ and a (2j + 1) × (2j + 1) Jordan
block of H associated with the eigenvalue zero:

Az,3 =
m2⊕
i=1

[
I2

0

]
3×2

⊕ · · ·⊕
m2⊕̀
i=1

[
I2`

0

]
(2`+1)×2`

,

Gz,3 =
m2⊕
i=1

s
(2)
i R3 ⊕ · · ·⊕

m2⊕̀
i=1

s
(2`)
i R2`+1 ,

Ĝz,3 =
m2⊕
i=1

[
0 R1

−R1 0

]
⊕ · · ·⊕

m2⊕̀
i=1

[
0 R`

−R` 0

]
,

Ĥz,3 =
m2⊕
i=1

(−s
(2)
i Σ1,1)J2(0) ⊕ · · ·⊕

m2⊕̀
i=1

(−s
(2`)
i Σ`,`)J2`(0) ,

Hz,3 =
m2⊕
i=1

s
(2`)
i Σ2,1J3(0)T ⊕ · · ·⊕

m2⊕̀
i=1

s
(2`)
i Σ`+1,`J2`+1(0)T ,

where m2,m4, . . . ,m2` ∈ N∪ {0}; thus, Ĥz,3 has m2j Jordan blocks of size 2j × 2j with
signs s

(2j)
i , and Hz,3 has m2j Jordan blocks of size (2j + 1) × (2j + 1) with signs s

(2j)
i

for i = 1, . . . ,m2j and j = 1, . . . , `;
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4) blocks corresponding to two (2j−1)×(2j−1) Jordan blocks of Ĥ and two 2j×2j Jordan
blocks of H associated with the eigenvalue zero:

Az,4 =
m1⊕
i=1


0 I1

0 0
I1 0
0 0


4×2

⊕ · · ·⊕
m2`−1⊕
i=1


0 I2`−1

0 0
I2`−1 0

0 0


4`×(4`−2)

,

Gz,4 =
m1⊕
i=1

R4 ⊕ · · ·⊕
m2`−1⊕
i=1

R4` ,

Ĝz,4 =
m1⊕
i=1

[
0 R1

−R1 0

]
⊕ · · ·⊕

m2`−1⊕
i=1

[
0 R2`−1

−R2`−1 0

]
,

Ĥz,4 =
m1⊕
i=1

[
−J1(0) 0

0 J1(0)

]
⊕ · · ·⊕

m2`−1⊕
i=1

[
−J2`−1(0) 0

0 J2`−1(0)

]
,

Hz,4 =
m1⊕
i=1

[
−J2(0) 0

0 J2(0)

]T

⊕ · · ·⊕
m2`−1⊕
i=1

[
−J2`(0) 0

0 J2`(0)

]T

,

where m1,m3, . . . ,m2`−1 ∈ N ∪ {0}; thus, Ĥz,4 has 2m2j−1 Jordan blocks of the size
(2j − 1)× (2j − 1) and Hz,4 has 2m2j−1 Jordan blocks of size 2j × 2j for j = 1, . . . , `;
(no sign-characteristic is involved, because neither even-sized Jordan blocks associated
with zero of G-skew-symmetric matrices nor odd-sized Jordan blocks associated with zero
of Ĝ-Hamiltonian matrices have signs);

5) blocks corresponding to a 2j × 2j Jordan block of Ĥ and a (2j − 1) × (2j − 1) Jordan
block of H associated with the eigenvalue zero:

Az,5 =
n1⊕
i=1

[
0 I1

]
1×2

⊕ · · ·⊕
n2`−1⊕
i=1

[
0 I2`−1

]
(2`−1)×2`

,

Gz,5 =
n1⊕
i=1

s
(1)
i R1 ⊕ · · ·⊕

n2`−1⊕
i=1

s
(2`−1)
i R2`−1 ,

Ĝz,5 =
n1⊕
i=1

[
0 R1

−R1 0

]
⊕ · · ·⊕

n2`−1⊕
i=1

[
0 R`

−R` 0

]
,

Ĥz,5 =
n1⊕
i=1

(−s
(1)
i Σ1,1)J2(0) ⊕ · · ·⊕

n2`−1⊕
i=1

(−s
(2`−1)
i Σ`,`)J2`(0) ,

Hz,5 =
n1⊕
i=1

s
(1)
i Σ1,0J1(0)T ⊕ · · ·⊕

n2`−1⊕
i=1

s
(2`−1)
i Σ`,`−1J2`−1(0)T ,

where n1, n3 . . . , n2`−1 ∈ N∪{0}; thus, Ĥz,5 has n2j−1 Jordan blocks of size 2j×2j with
signs s

(2j−1)
i , and Hz,5 has n2j−1 Jordan blocks of size (2j − 1) × (2j − 1) with signs

s
(2j−1)
i for i = 1, . . . , n2j−1 and j = 1, . . . , `;
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6) blocks corresponding to two (2j+1)×(2j+1) Jordan blocks of Ĥ and two 2j×2j Jordan
blocks of H associated with the eigenvalue zero:

Az,6 =
n2⊕
i=1

[
0 0 0 I2

0 I2 0 0

]
4×6

⊕ · · ·⊕
n2⊕̀
i=1

[
0 0 0 I2`

0 I2` 0 0

]
4`×(4`+2)

,

Gz,6 =
n2⊕
i=1

R4 ⊕ · · ·⊕
n2⊕̀
i=1

R4` ,

Ĝz,6 =
n2⊕
i=1

[
0 R3

−R3 0

]
⊕ · · ·⊕

n2⊕̀
i=1

[
0 R2`+1

−R2`+1 0

]
,

Ĥz,6 =
n2⊕
i=1

[
−J3(0) 0

0 J3(0)

]
⊕ · · ·⊕

n2⊕̀
i=1

[
−J2`+1(0) 0

0 J2`+1(0)

]
,

Hz,6 =
n2⊕
i=1

[
−J2(0) 0

0 J2(0)

]T

⊕ · · ·⊕
n2⊕̀
i=1

[
−J2`(0) 0

0 J2`(0)

]T

,

where n2, n4, n6, . . . , n2` ∈ N ∪ {0}; thus, Ĥz,6 has 2n2j Jordan blocks of size (2j +
1) × (2j + 1) and Hz,6 has 2n2j Jordan blocks of size 2j × 2j for j = 1, . . . , `; (no
sign-characteristic is involved, because neither even-sized Jordan blocks associated with
zero of G-skew-symmetric matrices nor odd-sized Jordan blocks associated with zero of
Ĝ-Hamiltonian matrices have signs);

For the eigenvalue zero, the matrices Ĥ and H have 2γ2j + m2j + n2j−1, respectively 2γ2j +
2m2j−1 + 2n2j Jordan blocks of size 2j × 2j for j = 1, . . . , `, and 2γ2j+1 + 2m2j+1 + 2n2j,
respectively 2γ2j+1 + m2j + n2j+1 Jordan blocks of size (2j + 1) × (2j + 1) for j = 0, . . . , `.
Here m2`+1 = n2`+1 = 0, where 2` + 1 is the smallest odd number that is larger or equal to
the maximum of the index of Ĥ and the index of H. (Here, index refers to the maximal size
of a Jordan block associated with the eigenvalue zero.)

Furthermore, the form (5.3) is unique up to the simultaneous permutation of blocks in the
right hand side of (5.3).

Proof. The proof can be found in the Appendix.
For the special case that G is positive definite the condensed form simplifies considerably.

Corollary 5.3 Let A ∈ Rm×2n, let G ∈ Rm×m be symmetric and positive definite, and
let Ĝ ∈ R2n×2n be skew-symmetric and nonsingular. Then there exist nonsingular matrices
X ∈ Rm×m and Y ∈ R2n×2n such that

XT AY =
[

β1 0
0 β1

]
⊕ . . .⊕

[
βmı 0
0 βmı

]
⊕Om0×2n0 ⊕

[
On1 In1

]
,

XT GX = I2 ⊕ . . .⊕ I2 ⊕ Im0 ⊕ In1 = Im

Y T ĜY = J1 ⊕ . . .⊕ J1 ⊕ Jn0 ⊕ Jn1 ,

with βj > 0 for j = 1, . . . ,mı.
Moreover,

Y −1Ĝ−1AT G−1AY =
[

0 −β2
1

β2
1 0

]
⊕ . . .⊕

[
0 −β2

mi

β2
mı

0

]
⊕O2n0 ⊕

[
0 −In1

0 0

]
,

X−1G−1AĜ−1AT X = =
[

0 β2
1

−β2
1 0

]
⊕ . . .⊕

[
0 β2

mi

−β2
mı

0

]
⊕Om0+n1 .
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Proof. Because G is positive definite, due to the inertia index relation, in the canonical form
of Theorem 5.2, Gc, Gr, as well as Ac, Ĝc, Ar, Ĝr must be void. Furthermore, ρ1 = . . . =
ρmı = 1 and s1 = . . . = smı = 1. Concerning the blocks Az,k, Gz,k, Ĝz,k, the blocks for k = 1
may exist, but Gz,1 has to be the identity matrix Im0 ; the blocks for k = 2, 3, 4, 6 must be
void, and the blocks for k = 5 may only exist when j = 1. In this case Gz,5 has to be In1

and applying an appropriate permutation, we can achieve the forms Az,4 =
[
On1 In1

]
,

Gz,4 = In1 , and Ĝz,4 = Jn1 .
The result of Corollary 5.3 first appeared in [25], where an independent proof is given.

6 Canonical form for skew-symmetric G and Ĝ

When G ∈ Fm×m and Ĝ ∈ Fn×n are both skew-Hermitian, then in the complex case the
canonical form for the triple (A,G, Ĝ), where A ∈ Fm×n can easily be derived from the
Hermitian case in Section 4, by simply considering the related triple (A, ıG, ıĜ). The real
case, however, is different.

Theorem 6.1 Let A ∈ R2n×2n be nonsingular and let G, Ĝ ∈ R2n×2n be skew-symmetric and
nonsingular. Then there exist nonsingular matrices X, Y ∈ R2n×2n such that

XT AY = Ac ⊕Ar, XT GX = Gc ⊕Gr, Y T ĜY = Ĝc ⊕ Ĝr. (6.1)

Moreover, for the Ĝ-skew-Hamiltonian matrix Ĥ = Ĝ−1AT G−1A and for the G-skew-
Hamiltonian matrix H = G−1AĜ−1AT , we have that

Y −1ĤY = Ĥc ⊕ Ĥr, X−1HX = Hc ⊕Hr. (6.2)

The diagonal blocks in these decompositions have the following forms:

1) blocks associated with pairs (µ2
i , µ̄

2
i ) of nonreal eigenvalues of Ĥ and H:

Ac =
[
Jξ1(a1, b1) 0

0 Jξ1(a1, b1)

]
⊕ · · ·⊕

[
Jξmc

(amc , bmc) 0
0 Jξmc

(amc , bmc)

]
,

Gc =
[

0 R2ξ1

−R2ξ1 0

]
⊕ · · ·⊕

[
0 R2ξmc

−R2ξmc
0

]
,

Ĝc =
[

0 −R2ξ1

R2ξ1 0

]
⊕ · · ·⊕

[
0 −R2ξmc

R2ξmc
0

]
,

Ĥc =
[
J 2

ξ1
(a1, b1) 0
0 J 2

ξ1
(a1, b1)

]
⊕ · · ·⊕

[
J 2

ξmc
(amc , bmc) 0

0 J 2
ξmc

(amc , bmc)

]
,

Hc =
[
J 2

ξ1
(a1, b1) 0
0 J 2

ξ1
(a1, b1)

]T

⊕ · · ·⊕

[
J 2

ξmc
(amc , bmc) 0

0 J 2
ξmc

(amc , bmc)

]T

,

where ai ∈ R, bi > 0, µi = ai + ıbi, and ξi ∈ N for i = 1, . . . ,mc;
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2) blocks associated with real eigenvalues αj = δjβ
2
j of H and Ĥ:

Ar =
[
Jη1(β1) 0

0 Jη1(β1)

]
⊕ · · ·⊕

[
Jηmr

(βmr) 0
0 Jηmr

(βmr)

]
,

Gr =
[

0 Rη1

−Rη1 0

]
⊕ · · ·⊕

[
0 Rηmr

−Rηmr
0

]
,

Ĝr = δ1

[
0 −Rη1

Rη1 0

]
⊕ · · ·⊕ δmr

[
0 −Rηmr

Rηmr
0

]
,

Ĥr = δ1

[
J 2

η1
(β1) 0
0 J 2

η1
(β1)

]
⊕ · · ·⊕ δmr

[
J 2

ηmr
(βmr) 0
0 J 2

ηmr
(βmr)

]
,

Hr = δ1

[
J 2

η1
(β1) 0
0 J 2

η1
(β1)

]T

⊕ · · ·⊕ δmr

[
J 2

ηmr
(βmr) 0
0 J 2

ηmr
(βmr)

]T

,

where βj > 0, δj ∈ {+1,−1}, and ηj ∈ N for j = 1, . . . ,mr. (Here, δj is not a sign in
the sense of “sign characteristic”, but only depends on αj = δjβ

2
j being either positive

or negative.)

Furthermore, the form (6.1) is unique up to the simultaneous permutation of blocks in the
right hand side of (6.1).

Proof. Once again, we can restrict ourselves to the case that either σ(Ĥ) = {µ2, µ̄2} for some
µ ∈ C\R or σ(Ĥ) = {α}, where α ∈ R\{0}. The remainder of the proof then follows exactly
the same lines as the proof of Theorem 4.1 by constructing a skew-Hamiltonian square root
S of Ĥ that is a polynomial in Ĥ in the cases σ(Ĥ) = {µ2, µ̄2} or σ(Ĥ) = {α} and α > 0, or
by constructing a skew-Hamiltonian square root S of −Ĥ otherwise.

We mention that the choice of the transformation matrices X, Y in Theorem 6.1 so that
XT GcX = −Y T ĜcY rather than XT GcX = Y T ĜcY is just a matter of taste and avoids the
occurrence of distracting minus signs in the forms for Hc and Ĥc.

For the general non square case we have the following result.

Theorem 6.2 Let A ∈ R2m×2n and let G ∈ R2m×2m, Ĝ ∈ R2n×2n be skew-symmetric and
nonsingular. Then there exists nonsingular matrices X ∈ R2m×2m and Y ∈ R2n×2n such that

XT AY = Anz ⊕Az,1 ⊕Az,2 ⊕Az,3 ⊕Az,4,

XT GX = Gnz ⊕Gz,1 ⊕Gz,2 ⊕Gz,3 ⊕Gz,4, (6.3)
Y T ĜY = Ĝnz ⊕ Ĝz,1 ⊕ Ĝz,2 ⊕ Ĝz,3 ⊕ Ĝz,4.

Moreover, for the Ĝ-skew-Hamiltonian matrix Ĥ = Ĝ−1AT G−1A ∈ R2n×2n and for the G-
skew-Hamiltonian matrix H = G−1AĜ−1AT ∈ R2m×2m we have that

Y −1ĤY = Ĥnz ⊕ Ĥz,1 ⊕ Ĥz,2 ⊕ Ĥz,3 ⊕ Ĥz,4,

X−1HX = Hnz ⊕Hz,1 ⊕Hz,2 ⊕Hz,3 ⊕Hz,4.

The diagonal blocks in these decompositions have the following forms:

0) blocks associated with nonzero eigenvalues of H and Ĥ:
Anz, Gnz, G̃nz have the forms as in (6.1) and Hnz, Ĥnz have the forms as in (6.2);
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1) one block corresponding to 2n0 Jordan blocks of size 1× 1 of H and 2m0 Jordan blocks
of size 1× 1 of Ĥ associated with the eigenvalue zero:

Az,1 = 02m0×2n0 , Gz,1 = Jm0 , Ĝz,1 = Jn0 , Ĥz,1 = 02n0 , Hz,1 = 02m0 ;

2) blocks corresponding to a pair of j × j Jordan blocks of Ĥ and H associated with the
eigenvalue zero:

Az,2 =
γ1⊕
i=1
J2(0) ⊕

γ2⊕
i=1
J4(0) ⊕ · · ·⊕

γ⊕̀
i=1
J2`(0) ,

Gz,2 =
γ1⊕
i=1

[
0 R1

−R1 0

]
⊕

γ2⊕
i=1

[
0 R2

−R2 0

]
⊕ · · ·⊕

γ⊕̀
i=1

[
0 R`

−R` 0

]
,

Ĝz,2 =
γ1⊕
i=1

[
0 R1

−R1 0

]
⊕

γ2⊕
i=1

[
0 R2

−R2 0

]
⊕ · · ·⊕

γ⊕̀
i=1

[
0 R`

−R` 0

]
,

Ĥz,2 =
γ1⊕
i=1

02 ⊕
γ2⊕
i=1

Γ̂4J 2
4 (0) ⊕ · · ·⊕

γ⊕̀
i=1

Γ̂2`J 2
2`(0) ,

Hz,2 =
γ1⊕
i=1

02 ⊕
γ2⊕
i=1

Γ4J 2
4 (0)T ⊕ · · ·⊕

γ⊕̀
i=1

Γ2`J 2
2`(0)T ,

where γ1, . . . , γ` ∈ N∪{0}, and Γ̂2j = (−Ij−1)⊕I1⊕(−Ij) and Γ2j = (−Ij)⊕I1⊕(−Ij−1)
for j = 2, . . . , `; thus, Ĥz,2 and Hz,2 both have each 2γj Jordan blocks of size j × j for
j = 1, . . . , `;

3) blocks corresponding to two j × j Jordan blocks of Ĥ and two (j + 1)× (j + 1) Jordan
blocks of H associated with the eigenvalue zero:

Az,3 =
m1⊕
i=1


0 I1

0 0
I1 0
0 0


4×2

⊕ · · ·⊕
m⊕̀
i=1


0 I`−1

0 0
I`−1 0
0 0


2`×(2`−2)

,

Gz,3 =
m1⊕
i=1

[
0 R2

−R2 0

]
⊕ · · ·⊕

m`−1⊕
i=1

[
0 R`

−R` 0

]
,

Ĝz,3 =
m1⊕
i=1

[
0 R1

−R1 0

]
⊕ · · ·⊕

m`−1⊕
i=1

[
0 R`−1

−R`−1 0

]
,

Ĥz,3 =
m1⊕
i=1

[
J1(0) 0

0 J1(0)

]
⊕ · · ·⊕

m`−1⊕
i=1

[
J`−1(0) 0

0 J`−1(0)

]
,

Hz,3 =
m1⊕
i=1

[
J2(0) 0

0 J2(0)

]T

⊕ · · ·⊕
m`−1⊕
i=1

[
J`(0) 0

0 J`(0)

]T

,

where m1, . . . ,m`−1 ∈ N ∪ {0}; thus, Ĥz,3 has 2mj Jordan blocks of size j × j and Hz,3

has 2mj Jordan blocks of size (j + 1)× (j + 1) for j = 1, . . . , `− 1;
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4) blocks corresponding to two (j + 1)× (j + 1) Jordan blocks of Ĥ and two j × j Jordan
blocks of H associated with the eigenvalue zero:

Az,4 =
n1⊕
i=1

[
0 0 0 I1

0 I1 0 0

]
2×4

⊕ · · ·⊕
n`−1⊕
i=1

[
0 0 0 I`−1

0 I`−1 0 0

]
(2`−2)×2`

,

Gz,4 =
n1⊕
i=1

[
0 R1

−R1 0

]
⊕ · · ·⊕

n`−1⊕
i=1

[
0 R`−1

−R`−1 0

]
,

Ĝz,4 =
n1⊕
i=1

[
0 R2

−R2 0

]
⊕ · · ·⊕

n`−1⊕
i=1

[
0 R`

−R` 0

]
,

Ĥz,4 =
n1⊕
i=1

[
J2(0) 0

0 J2(0)

]
⊕ · · ·⊕

n`−1⊕
i=1

[
J`(0) 0

0 J`(0)

]
,

Hz,4 =
n1⊕
i=1

[
J1(0) 0

0 J1(0)

]T

⊕ · · ·⊕
n`−1⊕
i=1

[
J`−1(0) 0

0 J`−1(0)

]T

,

where n1, . . . , n`−1 ∈ N ∪ {0}; thus, Ĥz,4 has 2nj Jordan blocks of size (j + 1)× (j + 1)
and Hz,4 has 2nj Jordan blocks of size j × j for j = 1, . . . , `− 1;

Then for the eigenvalue zero, the matrices Ĥ and H have 2γj + 2mj + 2nj−1 respectively
2γj + 2mj−1 + 2nj Jordan blocks of size j × j for j = 1, . . . , `. Here ` is the maximum of the
indices of H and Ĥ. (Here index refers to the maximal size of a Jordan block associated with
the eigenvalue zero.)

Furthermore, the form (6.3) is unique up to simultaneous block permutation of the blocks
in the diagonal blocks of the right hand side of (6.3).

Proof. The proof is presented in the Appendix.

7 Conclusion

We have presented canonical forms for matrix triples (A,G, Ĝ), where G, Ĝ are nonsingular
and either complex and Hermitian or skew Hermitian or real and symmetric or skew sym-
metric. These results generalize the canonical forms for matrices that are Hermitian, skew
Hermitian or real symmetric, skew symmetric with respect to indefinite scalar products as
they are studied in detail in [6, 7, 15, 16, 17].
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Appendix: Proof of Theorem 4.2

We present a constructive and recursive proof in several steps. The proof uses the same
strategy as in the case of G and Ĝ being complex symmetric, see [18]. Although this requires
a lot of repetition of the ideas published in [18], we decided to give the full proof of Theorem 4.2
and ideas of proof for the other main theorems, because of two reasons. First, we want
this paper to be self-contained, and secondly, the case of complex sesquilinear forms or real
bilinear forms is more involved than the case of complex bilinear forms. For example, any
complex symmetric matrix is congruent to the identity matrix, but the same is not true
for complex Hermitian matrices under congruence or real symmetric matrices under real
congruence. This fact results in the existence of the so-called sign characteristic of real
eigenvalues of G-Hermitian matrices. It is this point that makes the development of the
canonical forms more challenging in the case that G and Ĝ are complex Hermitian or real
symmetric or skew-symmetric.

Step 1) Reduction to a stair-case-like form

Let (π, ν, 0) and (π̂, ν̂, 0) be the Sylvester inertia indices of G and Ĝ, respectively. Applying
appropriate congruence transformations to G and Ĝ otherwise, we may assume that G = Σπ,ν

and Ĝ = Σπ̂,ν̂ . Let
A = B1C

∗
1

be a full rank factorization of A, i.e., B1 ∈ Cm×r, C1 ∈ Cn×r, rankB1 = rank C1 = r.
Applying Lemma 3.1 to B1 and C1, respectively, we can determine nonsingular matrices
X1 ∈ Cm×m and Y1 ∈ Cn×n such that

X∗
1B1 =

 0
0

B1,0

 π0 + ν0

δ1

r

, X∗
1Σπ,νX1 = Σπ0,ν0 ⊕

 0 0 Iδ1

0 Σp1,q1 0
Iδ1 0 0

 ,

Y ∗
1 C1 =

 0
0

C1,0

 π̂0 + ν̂0

δ̂1

r

, Y ∗
1 Σπ̂,ν̂Y1 = Σπ̂0,ν̂0 ⊕

 0 0 Iδ̂1
0 Σp̂1,q̂1 0

Iδ̂1
0 0

 ,
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where B1,0, C1,0 ∈ Cr×r are both invertible, p1, q1, δ1, p̂1, q̂1, δ̂1 ≥ 0, and

p1 + q1 + δ1 = p̂1 + q̂1 + δ̂1 = r.

Partition

B1,0C
∗
1,0 =

[ p̂1 + q̂1 δ̂1

p1 + q1 A3,3 A3,4

δ1 A4,3 A4,4

]
,

then

X∗
1AY1 =


0 0 0 0
0 0 0 0
0 0 A3,3 A3,4

0 0 A4,3 A4,4

 , X∗
1Σπ,νX1 =


Σπ0,ν0 0 0 0

0 0 0 Iδ1

0 0 Σp1,q1 0
0 Iδ1 0 0

 ,

Y ∗
1 Σπ̂,ν̂Y1 =


Σπ̂0,ν̂0 0 0 0

0 0 0 Iδ̂1
0 0 Σp̂1,q̂1 0
0 Iδ̂1

0 0

 .

Applying the same procedure to the triple (A3,3, Σp1,q1 , Σp̂1,q̂1), we can construct nonsingular
matrices X2, Y2 such that

X̂∗
2A3,3Ŷ2 =


0 0 0 0
0 0 0 0
0 0 A5,5 A5,6

0 0 A6,5 A6,6

 , X̂∗
2Σp1,q1X̂2 =


Σπ1,ν1 0 0 0

0 0 0 Iδ2

0 0 Σp2,q2 0
0 Iδ2 0 0

 ,

Ŷ ∗
2 Σp̂1,q̂1 Ŷ2 =


Σπ̂1,ν̂1 0 0 0

0 0 0 Iδ̂2
0 0 Σp̂2,q̂2 0
0 Iδ̂2

0 0

 ,

where p2, q2, δ2, p̂2, q̂2, δ̂2 ≥ 0, A6,6 ∈ Fδ2×δ̂2 , A5,6 ∈ F(p2+q2)×δ̂2 , A6,5 ∈ Fδ2×(p̂2+q̂2), A5,5 ∈
F(p2+q2)×(p̂2+q̂2), p2 + q2 + δ2 = p̂2 + q̂2 + δ̂2 = rankA3,3, and where the matrix[

A5,5 A5,6

A6,5 A6,6

]
∈ F(p2+q2+δ2)×(p2+q2+δ2)

is nonsingular. Letting

X2 = X1(Iπ0+ν0+δ1 ⊕ X̂2 ⊕ Iδ1), Y2 = Y1(Iπ̂0+ν̂0+δ̂1
⊕ Ŷ2 ⊕ Iδ̂1

),
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we then have

X∗
2AY2 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 A3,7

0 0 0 0 0 0 A4,7

0 0 0 0 A5,5 A5,6 A5,7

0 0 0 0 A6,5 A6,6 A6,7

0 0 A7,3 A7,4 A7,5 A7,6 A7,7


,

X∗
2Σπ,νX2 =



Σπ0,ν0 0 0 0 0 0 0
0 0 0 0 0 0 Iδ1

0 0 Σπ1,ν1 0 0 0 0
0 0 0 0 0 Iδ2 0
0 0 0 0 Σp2,q2 0 0
0 0 0 Iδ2 0 0 0
0 Iδ1 0 0 0 0 0


,

Y ∗
2 Σπ̂,ν̂Y2 =



Σπ̂0,ν̂0 0 0 0 0 0 0
0 0 0 0 0 0 Iδ̂1
0 0 Σπ̂1,ν̂1 0 0 0 0
0 0 0 0 0 Iδ̂2

0
0 0 0 0 Σp̂2,q̂2 0 0
0 0 0 Iδ̂2

0 0 0
0 Iδ̂1

0 0 0 0 0


,

where the matrix X∗
2AY2 has been partitioned conformably with X∗

2Σπ,νX2 (row-wise) and
Y ∗

2 Σπ̂,ν̂Y2 (column-wise). The submatrix of X∗
2AY2 that is obtained by deleting the leading

two rows and columns is then nonsingular, because it is equivalent to B1,0C
∗
1,0. Thus, [A3,7

A4,7
]

has full row rank and [A7,3 A7,4] has full column rank.
We can repeat the procedure for the triple (A5,5, Σp2,q2 , Σp̂2,q̂2) which finally yields nonsin-

gular matrices X3 and Y3 such that (after renaming some blocks in A and using the canonical
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notation corresponding to the notation in the previous step), we have

X∗
3AY3 =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 A3,10

0 0 0 0 0 0 0 0 0 A4,10

0 0 0 0 0 0 0 0 A5,9 A5,10

0 0 0 0 0 0 0 0 A6,9 A6,10

0 0 0 0 0 0 A7,7 A7,8 A7,9 A7,10

0 0 0 0 0 0 A8,7 A8,8 A8,9 A8,10

0 0 0 0 A9,5 A9,6 A9,7 A9,8 A9,9 A9,10

0 0 A10,3 A10,4 A10,5 A10,6 A10,7 A10,8 A10,9 A10,10


,

X∗
3Σπ,νX3 =



Σπ0,ν0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 Iδ1

0 0 Σπ1,ν1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 Iδ2 0
0 0 0 0 Σπ2,ν2 0 0 0 0 0
0 0 0 0 0 0 0 Iδ3 0 0
0 0 0 0 0 0 Σp3,q3 0 0 0
0 0 0 0 0 Iδ3 0 0 0 0
0 0 0 Iδ2 0 0 0 0 0 0
0 Iδ1 0 0 0 0 0 0 0 0


, (7.1)

Y ∗
3 Σπ̂,ν̂Y3 =



Σπ̂0,ν̂0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 Iδ̂1

0 0 Σπ̂1,ν̂1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 Iδ̂2

0
0 0 0 0 Σπ̂2,ν̂2 0 0 0 0 0
0 0 0 0 0 0 0 Iδ̂3

0 0
0 0 0 0 0 0 Σp̂3,q̂3 0 0 0
0 0 0 0 0 Iδ̂3

0 0 0 0
0 0 0 Iδ̂2

0 0 0 0 0 0
0 Iδ̂1

0 0 0 0 0 0 0 0


,

where [A10,3 A10,4] and [A9,5 A9,6] have full column rank,[
A3,10

A4,10

]
and

[
A5,9

A6,9

]
have full row rank, and

[
A7,7 A7,8

A8,7 A8,8

]
is nonsingular.

Continuing recursively, the process clearly has to stagnate after finitely many steps. Using
the canonical notation corresponding to the notation in the first two steps of the process, we
find that stagnation occurs after the `th step either when A2`+1,2`+1 is nonsingular or when
p` = q` = p̂` = q̂` = 0. In both cases we obviously have that p` + q` = p̂` + q̂`, and we end up
with a nonsingular matrix[

A2`+1,2`+1 A2`+1,2`+2

A2`+2,2`+1 A2`+2,2`+2

]
∈ F(p`+q`+δ`)×(p̂`+q̂`+δ̂`),

full row rank matrices[
A2k+1,3`+2−k

A2k+2,3`+2−k

]
∈ F(πk+νk+δk+1)×δ̂k , k = 1, . . . , `− 1,
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and full column rank matrices [A3`+2−k,2k+1 A3`+2−k,2k+2] ∈ Fδk×(π̂k+ν̂k+δ̂k+1) for k =
1, . . . , `− 1. Also, we have

δ` = δ̂`, (7.2)

because p` + q` + δ` = p̂` + q̂` + δ̂`. Finally, we obtain that due to the full rank properties, we
have that

δk−1 ≥ π̂k−1 + ν̂k−1 + δ̂k, δ̂k−1 ≥ πk−1 + νk−1 + δk (7.3)

for k = 2, . . . , `. On the other hand from the reduction process we have

pk + qk + δk = p̂k + q̂k + δ̂k, (7.4)

for k = 1, 2, . . . , `, and

pk−1 + qk−1 = πk−1 + νk−1 + 2δk + pk + qk,

p̂k−1 + q̂k−1 = π̂k−1 + ν̂k−1 + 2δ̂k + p̂k + q̂k,

for k = 2, . . . , l. The latter two equations can be rewritten as

pk−1 + qk−1 + δk−1 = πk−1 + νk−1 + δk + δk−1 + (pk + qk + δk),
p̂k−1 + q̂k−1 + δ̂k−1 = π̂k−1 + ν̂k−1 + δ̂k + δ̂k−1 + (p̂k + q̂k + δ̂k).

By using (7.4) we then obtain

πk−1 + νk−1 + δk + δk−1 = π̂k−1 + ν̂k−1 + δ̂k + δ̂k−1,

or, equivalently,

δ̂k−1 − πk−1 − νk−1 − δk = δk−1 − π̂k−1 − ν̂k−1 − δ̂k ≥ 0 (7.5)

for k = 2, . . . , `, where the nonnegativity follows from (7.3).

Step 2) Further reduction of the staircase form

We now isolate the nonsingular block A2`+1,2`+1 from the other blocks and compress the
remaining part of X∗

` AY` to a more condensed form. We set π` = p`, ν` = q`, π̂` = p̂`, ν̂` = q̂`

and

mk :=
{

πk + νk if k is even
π̂k + ν̂k if k is odd

, nk :=
{

πk + νk if k is odd
π̂k + ν̂k if k is even

for k = 0, . . . , `. Moreover, (using (7.2) and (7.5)), we define γ` := δ` = δ̂` and

γk := δ̂k − πk − νk − δk+1 = δk − π̂k − ν̂k − δ̂k+1, k = 1, . . . , `− 1.

For the sake of readability of the paper, we will not carry out the proof for the general case,
but we will illustrate the procedure for the special case that ` = 3, where we have the matrices
as in (7.1). The general case proceeds in a completely analogous way.

If not void, then A7,7 in X∗
3AY3 in (7.1) is nonsingular, and hence, we can annihilate A7,8

by post-multiplying X∗
3AY3 with the matrix

Z1 := In0 ⊕ Iδ̂1
⊕ Im1 ⊕ Iδ̂2

⊕ In2 ⊕ Iδ̂3
⊕

[
I −A−1

7,7A7,8

0 I

]
⊕ Iδ̂2

⊕ Iδ̂1
.
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Correspondingly updating Y ∗
3 Σπ̂,ν̂Y3 this leads to a fill-in in the (7, 8) and (8, 7) block posi-

tions in Z∗
1Y ∗

3 Σπ̂,ν̂Y3Z1 given by −Σπ̂3,ν̂3A
−1
7,7A7,8 and −A∗

7,8A
−∗
7,7Σπ̂3,ν̂3 , respectively. We can

annihilate these two fill-ins by using the (8, 6) block entry Iδ̂3
as a pivot, i.e., by applying a

congruence transformation to Z∗
1Y ∗

3 Σπ̂,ν̂Y3Z1 with

Z2 = In0 ⊕ Iδ̂1
⊕ Im1 ⊕ Iδ̂2

⊕ In2 ⊕
[

I A∗
7,8A

−∗
7,7Σπ̂3,ν̂3

0 I

]
⊕ Iδ̂3

⊕ Iδ̂2
⊕ Iδ̂1

.

It is then easy to check that Z∗
2Z∗

1Y ∗
3 Σπ̂,ν̂Y3Z1Z2 = Y ∗

3 Σπ̂,ν̂Y3 and that the correspondingly
updated matrix X∗

3AY3Z1Z2 has no further fill-ins. Finally, we update Y3 ← Y3Z1Z2.
Similarly, we can annihilate A8,7 by working on the rows of X∗

3AY3 and applying congru-
ence transformations to X∗

3Σp1,q1X3. Then, we can proceed and annihilate the blocks A7,9,
A9,7, A7,10, and A10,7 in X∗

3AY3. Since originally the matrix[
A7,7 A7,8

A8,7 A8,8

]
is nonsingular, we find that after the above reductions the updated block A8,8 is nonsingular
(or even void). With A8,8 as the pivot, we can then annihilate A8,9, A9,8, A8,10, A10,8 and
recover X∗

3Σπ,νX3 and Y ∗
3 Σπ̂,ν̂Y3. Observe that this does not change the zero blocks in

X∗
3AY3. Finally post-multiplying X∗

3AY3 with the matrix

Z3 = In0 ⊕ Iδ̂1
⊕ Im1 ⊕ Iδ̂2

⊕ In2 ⊕A∗
8,8 ⊕ Ip̂3+q̂3 ⊕A−1

8,8 ⊕ Iδ̂2
⊕ Iδ̂1

,

we then obtain

X∗
3AY3 =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 A3,10

0 0 0 0 0 0 0 0 0 A4,10

0 0 0 0 0 0 0 0 A5,9 A5,10

0 0 0 0 0 0 0 0 A6,9 A6,10

0 0 0 0 0 0 A7,7 0 0 0
0 0 0 0 0 0 0 Iδ3 0 0
0 0 0 0 A9,5 A9,6 0 0 A9,9 A9,10

0 0 A10,3 A10,4 A10,5 A10,6 0 0 A10,9 A10,10


,

while X∗
3Σπ,νX3 and Y ∗

3 Σπ̂,ν̂Y3 are as in (7.1). (Indeed, observe that the congruence trans-
formation with Z3 leaves Y ∗

3 Σπ̂,ν̂Y3 invariant.) Since the original block [A9,5 A9,6] has full
column rank, it easily follows that the corresponding updated entry[

A9,5 A9,6

]
←

[
A9,5 A9,6A

∗
8,8

]
has full column rank as well. Then there exists a nonsingular matrix W1 such that

[
A9,5 A9,6

]
←W ∗

1

[
A9,5 A9,6

]
=

 In2 0
0 Iδ̂3
0 0

 . (7.6)

Transforming then X∗
3AY3 and X∗

3Σπ,νX3 with a multiplication from the left and congruence
transformation, respectively, with a block diagonal matrix having W−1

1 in the (4, 4)-block posi-
tion and W ∗

1 in the (9, 9)-block position, we obtain the desired update in the block [A9,5 A9,6]
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while X∗
3Σπ,νX3 and zero block-structure of X∗

3AY3 are invariant under that transforma-
tion. We then continue by taking this updated block [A9,5 A9,6] as a pivot to annihilate
[A10,5 A10,6]. Again, this can be done without changing X∗

3Σπ,νX3.
Similarly, due to a full row rank argument, there exists a nonsingular matrix W2 such that[

A5,9

A6,9

]
:=

[
A5,9

A6,9

]
W2 =

[
Im2 0 0
0 Iδ3 0

]
. (7.7)

and applying appropriate transformation matrices, the corresponding change in X∗
3AY3 can

be made without changing Y ∗
3 Σπ̂,ν̂Y3. Then, A5,10 and A6,10 can be annihilated.

Also, we use the pivots [A5,9
A6,9

] and
[

A9,5 A9,6

]
, respectively, to annihilate the leading

m2 + δ3 columns of A9,9 and A10,9, and the leading n2 + δ̂3 rows of A9,9 and A9,10. So these
three blocks become

A9,9 ←

 0 0 0
0 0 0
0 0 Ã9,9

 , A9,10 ←

 0
0

Ã9,10

 , A10,9 ←
[

0 0 Ã10,9

]
,

where Ã9,9 ∈ Fγ2×γ2 , Ã9,10 ∈ Fγ2×δ̂1 , Ã10,9 ∈ Fδ1×γ2 . Since originally the submatrix
0 0 0 0 A5,9

0 0 0 0 A6,9

0 0 A7,7 A7,8 A7,9

0 0 A8,7 A8,8 A8,9

A9,5 A9,6 A9,7 A9,8 A9,9


was nonsingular, we have that Ã9,9 is nonsingular. We then use Ã9,9 as pivot block to
annihilate Ã9,10 and Ã10,9, and transform Ã9,9 to Iγ2 .

In a similar way we can perform the reductions

[
A3,10

A4,10

]
←

[
In1 0 0
0 Iδ2 0

]
,

[
A10,3 A10,4

]
←

 Im1 0
0 Iδ̂2
0 0

 ,

and use them as pivots to reduce A10,10 to

A10,10 :=

 0 0 0
0 0 0
0 0 Ã10,10

 ,

where Ã10,10 ∈ Fγ1×γ1 , and finally transform Ã10,10 to Iγ1 . After all this, the matrix X∗
3AY3
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has the form

X∗
3AY3 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 In1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 Iδ2 0
0 0 0 0 0 0 0 0 Im2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 Iγ3 0 0 0 0
0 0 0 0 0 0 A7,7 0 0 0 0 0 0 0
0 0 0 0 0 0 0 Iγ3 0 0 0 0 0 0
0 0 0 0 In2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 Iγ3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 Iγ2 0 0 0
0 0 Im1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 Iδ̂2

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 Iγ1



,

while X∗
3Σπ,νX3 and Y ∗

3 Σπ̂,ν̂Y3 are still as in (7.1). We partition

Iδ1 = Im1 ⊕ Im2 ⊕ Iγ3 ⊕ Iγ2 ⊕ Iγ1 , Iδ2 = In2 ⊕ Iγ3 ⊕ Iγ2 ,

Iδ̂1
= In1 ⊕ In2 ⊕ Iγ3 ⊕ Iγ2 ⊕ Iγ1 , Iδ̂2

= Im2 ⊕ Iγ3 ⊕ Iγ2 ,

and replace Iδ1 , Iδ2 , Iδ̂1
, and Iδ̂2

in the matrix triple with these partitions. We then get
X∗

3AY3, X∗
3Σπ,νX3, and Y ∗

3 Σπ̂,ν̂Y3 partitioned in 22 block rows and columns. Let PR be the
block permutation that re-arranges the block columns of X∗

3AY3 in the order

13, 1, 6, 22, 5, 10, 17, 21, 4, 9, 12, 14, 16, 20, 2, 7, 18, 3, 8, 11, 15, 19.

Let PL be another block permutation such that P ∗
L re-arranges the block rows of X∗

3AY3 in
the same order. Set

X̃ := X3PL, Ỹ := Y3PR.

Then we obtain that

X̃∗AỸ = Ans⊕A0⊕ (A1⊕A2⊕A3)⊕ (A1,2⊕A2,3),

X̃∗Σπ,νX̃ = Gns ⊕ G0 ⊕ (G1 ⊕ G2 ⊕ G3) ⊕ (G1,2 ⊕ G2,3),

Ỹ ∗Σπ̂,ν̂ Ỹ = Ĝns ⊕ Ĝ0 ⊕ (Ĝ1 ⊕ Ĝ2 ⊕ Ĝ3) ⊕ (Ĝ1,2 ⊕ Ĝ2,3),

where
Ans = A2`+1,2`+1, Gns = Σπ`,ν`

, Ĝns = Σπ̂`,ν̂`
, ` = 3 (7.8)

A0 = 0m0×n0 , G0 = Σπ0,ν0 , Ĝ0 = Σπ̂0,ν̂0 , (7.9)

A1 ⊕A2 ⊕A3 =
[

0 0
0 Iγ1

]
⊕


0 0 0 0
0 0 0 Iγ2

0 0 Iγ2 0
0 Iγ2 0 0

⊕


0 0 0 0 0 0
0 0 0 0 0 Iγ3

0 0 0 0 Iγ3 0
0 0 0 Iγ3 0 0
0 0 Iγ3 0 0 0
0 Iγ3 0 0 0 0

 ,
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G1 ⊕ G2 ⊕ G3 = Ĝ1 ⊕ Ĝ2 ⊕ Ĝ3

=
[

0 Iγ1

Iγ1 0

]
⊕


0 0 0 Iγ2

0 0 Iγ2 0
0 Iγ2 0 0

Iγ2 0 0 0

⊕


0 0 0 0 0 Iγ3

0 0 0 0 Iγ3 0
0 0 0 Iγ3 0 0
0 0 Iγ3 0 0 0
0 Iγ3 0 0 0 0

Iγ3 0 0 0 0 0

 ,

A1,2⊕A2,3 =

 0 0 0
0 0 In1

0 Im1 0

 ⊕


0 0 0 0 0
0 0 0 0 In2

0 0 0 Im2 0
0 0 In2 0 0
0 Im2 0 0 0



G1,2 ⊕ G2,3 =

 0 0 Im1

0 Σπ1,ν1 0
Im1 0 0

⊕


0 0 0 0 Im2

0 0 0 In2 0
0 0 Σπ2,ν2 0 0
0 In2 0 0 0

Im2 0 0 0 0



Ĝ1,2 ⊕ Ĝ2,3 =

 0 0 In1

0 Σπ̂1,ν̂1 0
In1 0 0

 ⊕


0 0 0 0 In2

0 0 0 Im2 0
0 0 Σπ̂2,ν̂2 0 0
0 Im2 0 0 0

In2 0 0 0 0


Step 3) Extraction of Jordan blocks from the staircase-like-form

Completely analogous to the case ` = 3, we proceed in the case ` 6= 3 and obtain the staircase-
like-form as

X̃∗AỸ = Ans⊕A0⊕
⊕̀
j=1

Aj ⊕
`−1⊕
j=1

Aj,j+1,

X̃∗Σπ,νX̃ = Gns ⊕ G0 ⊕
⊕̀
j=1

Gj ⊕
`−1⊕
j=1

Gj,j+1,

Ỹ ∗Σπ̂,ν̂ Ỹ = Ĝns ⊕ Ĝ0 ⊕
⊕̀
j=1

Ĝj ⊕
`−1⊕
j=1

Ĝj,j+1,

where Ans,Gns, Ĝns are as in (7.8), A0,G0, Ĝ0 are as in (7.9),

Aj =
(
R2jJ2j(0)

)
⊗ Iγj =


0 0 0 0
0 0 0 Iγj

0 0 . .
.

0
0 Iγj 0 0


(2j)×(2j) blocks

, (7.10)

Gj = Ĝj = R2j ⊗ Iγj =

 0 0 Iγj

0 . .
.

0
Iγj 0 0


(2j)×(2j) blocks

, (7.11)
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Aj,j+1 =



0 0
0 Inj

. .
.

Imj

. .
.

. .
.

0 Inj

0 Imj 0


(2j+1)×(2j+1) blocks

, (7.12)

Gj,j+1 =



0 Imj

Inj

. .
.

Σπj ,νj

. .
.

Inj

Imj 0


(2j+1)×(2j+1) blocks

, (7.13)

Ĝj,j+1 =



0 Inj

Imj

. .
.

Σπ̂j ,ν̂j

. .
.

Imj

Inj 0


(2j+1)×(2j+1) blocks

. (7.14)

The blocks Ans, Gns, Ĝns, A0, G0, and Ĝ0 are already in the form as indicated in Theo-
rem 4.2. Next, let us investigate in detail the blocks of the form (7.10)–(7.11). Let Pj be the
permutation such that premultiplication with P ∗

j reorders the rows of Aj in the order

2jγj , (2j − 1)γj , . . . , γj ,
2jγj − 1, (2j − 1)γj − 1, . . . , γj − 1,

...
...

. . .
...

2jγj − γj + 1, (2j − 1)γj − γj + 1, . . . , 1;

and let P̃j be the permutation such that postmultiplication with P̃j reorders the columns of
Aj in the order

γj , . . . , (2j − 1)γj , 2jγj ,
γj − 1, . . . , (2j − 1)γj − 1, 2jγj − 1,

... . .
. ...

...
1, . . . , (2j − 1)γj − γj + 1, 2jγj − γj + 1.

Then it is easily verified that

P ∗
j AjP̃j =

γj⊕
i=1

J2j(0), P ∗
j GjPj = P̃ ∗

j ĜjP̃j =
γj⊕

i=1

R2j .
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Finally, let us return to the blocks of the forms (7.12)–(7.14). Let Zj be the permutation such
that premultiplication with Z∗

j reorders the rows of Aj,j+1 in the order

(j + 1)mj + jnj , jmj + (j − 1)nj , . . . , 2mj + nj , mj ,
(j + 1)mj − 1 + jnj , jmj − 1 + (j − 1)nj , . . . , 2mj − 1 + nj , mj − 1,

...
...

. . .
...

...
jmj + 1 + jnj , (j − 1)mj + 1 + (j − 1)nj , . . . , mj + 1 + nj , 1,

jmj + jnj , (j − 1)mj + (j − 1)nj , . . . , mj + nj ,
jmj + jnj − 1, (j − 1)mj + (j − 1)nj − 1, . . . , mj + nj − 1,

...
...

. . .
...

jmj + (j − 1)nj + 1, (j − 1)mj + (j − 2)nj + 1, . . . , mj + 1,

and let Z̃j+1 be the permutation such that postmultiplication with Z̃j+1 reorders the columns
of Aj,j+1 in the order

mj + nj , 2mj + nj , . . . , jmj + jnj ,
mj − 1 + nj , 2mj − 1 + nj , . . . , jmj − 1 + jnj ,

...
...

. . .
...

1 + nj , mj + 1 + nj , . . . , (j − 1)mj + 1 + jnj ,
nj , mj + 2nj , . . . , (j − 1)mj + jnj , jmj + (j + 1)nj ,

nj − 1, mj + 2nj − 1, . . . , (j − 1)mj + jnj − 1, jmj + (j + 1)nj − 1,
...

...
. . .

...
...

1, mj + nj + 1, . . . , (j − 1)mj + (j − 1)nj + 1, jmj + jnj + 1.

Then it is easily verified that

Z∗
jAj,j+1Z̃j+1 =

mj⊕
i=1

[
Ij

0

]
(j+1)×j

⊕
nj⊕
i=1

[
0 Ij

]
j×(j+1)

,

Z∗
j Gj,j+1Zj =

νj⊕
i=1

R̃j+1 ⊕
mj⊕

i=νj+1

Rj+1⊕
nj⊕
i=1

Rj ,

Z̃∗
j+1Ĝj,j+1Z̃j+1 =

mj⊕
i=1

Rj ⊕
ν̂j⊕

i=1

R̃j+1 ⊕
nj⊕

i=ν̂j+1

Rj+1,

(7.15)

if j is even and

Z∗
jAj,j+1Z̃j+1 =

mj⊕
i=1

[
Ij

0

]
(j+1)×j

⊕
nj⊕
i=1

[
0 Ij

]
j×(j+1)

,

Z∗
j Gj,j+1Zj =

mj⊕
i=1

Rj+1 ⊕
νj⊕

i=1

R̃j ⊕
nj⊕

i=νj+1

Rj ,

Z̃∗
j+1Ĝj,j+1Z̃j+1 =

ν̂j⊕
i=1

R̃j ⊕
mj⊕

i=ν̂j+1

Rj ⊕
nj⊕
i=1

Rj+1,

(7.16)
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if j is odd, where

R̃2q+1 =

 0 0 Rq

0 −1 0
Rq 0 0

 . (7.17)

The matrices in (7.15) and (7.16) are block diagonal (with rectangular diagonal blocks in
Z∗

jAj,j+1Z̃j+1) and it is straightforward to check that with appropriate transformation matri-
ces it is possible to simultaneously transform, say, the kth block in all three matrices without
changing the other blocks. We use this observation to finally show that the form (7.15)
or (7.16) is equivalent to the corresponding form in Theorem 4.2. It only remains to show
that the odd-sized blocks R̃j and R̃j+1 in (7.15) and (7.16) can be replaced by −Rj and
−Rj+1, respectively, without changing the other blocks. We show this by an induction argu-
ment for the triple ([0 Ij ], R̃j , Rj+1) and j odd, the proof in the other cases is similar. For
j = 1 there is nothing to show, so let j = 3, i.e.,

A =

 0 1 0 0
0 0 1 0
0 0 0 1

 , G =

 0 0 1
0 −1 0
1 0 0

 , Ĝ =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .

Then G can be transformed to −R3 by the congruence transformation with the transfor-
mation matrix diag(1, 1,−1). Updating A accordingly (i.e., by premultiplying A with the
transformation matrix), we obtain

A =

 0 1 0 0
0 0 1 0
0 0 0 −1

 , G =

 0 0 −1
0 −1 0
−1 0 0

 , Ĝ =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .

The negative entry in A can then be reset to +1 by postmultiplication with diag(−1, 1, 1,−1).
Observe that the congruence transformation with this matrix leaves Ĝ invariant. Next, con-
sider the case j = 5, i.e.,

A =

 0 1 0 0
0 0 I3 0
0 0 0 1

 , G =

 0 0 1
0 R̃3 0
1 0 0

 , Ĝ =

 0 0 1
0 R4 0
1 0 0

 .

Applying the transformations of the previous step (embedded in slightly larger transformation
matrices), we obtain that

A =

 0 −1 0 0
0 0 I3 0
0 0 0 1

 , G =

 0 0 1
0 −R3 0
1 0 0

 , Ĝ =

 0 0 1
0 R4 0
1 0 0

 .

Premultiplying A with diag(−1, I4) and applying the corresponding congruence transforma-
tion on G yields

A =

 0 1 0 0
0 0 I3 0
0 0 0 1

 , G =

 0 0 −1
0 −R3 0
−1 0 0

 , Ĝ =

 0 0 1
0 R4 0
1 0 0

 .

The remainder of the proof then follows by induction using alternately the arguments as in
the cases j = 3 and j = 5.
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Step 4) Getting the canonical form for H and Ĥ

Up to this point, we have proved the existence of the canonical form for the triple (A,G, Ĝ).
The corresponding forms for Ĥ and H then immediately follow by forming the products
Ĝ−1A∗G−1A and G−1AĜ−1A∗. These forms are already very close to the actual canoni-
cal forms of Theorem 2.2, and further reducing them to that canonical form leads to the
statements on the eigenvalues and attached signs of Ĥ and H.

Step 5) Uniqueness of the form

We highlight that once uniqueness of the parameters γj ,mj , nj has been proved, then all
other parameters are already uniquely defined by the unique canonical forms of H and Ĥ
as G-Hermitian, respectively Ĝ-Hermitian matrices. (Indeed, the signs s

(i)
j and ŝ

(i)
j can be

immediately reconstructed from the sign characteristics of the eigenvalue 0 of H and Ĥ.) The
proof of uniqueness of γj ,mj , nj follows the same lines as the proof for the corresponding case
of complex symmetric G and Ĝ given in [18]. For the sake of selfcontainedness of this paper,
we reproduce this proof here.

Note that there exists a unique sequence of subspaces

Eig `(H, 0) ⊆ Eig `−1(H, 0) ⊆ · · · ⊆ Eig 1(H, 0) = kerH

where Eig j(H, 0) consists of the zero vector and all eigenvectors ofH associated with zero that
can be extended to a Jordan chain of length at least j. Define κ` = dim

(
Eig `(H, 0) ∩ ker A

)
and

κj = dim
(
Eig j(H, 0) ∩ ker A

)
− dim

(
Eig j+1(H, 0) ∩ ker A

)
, j = 1, . . . , `− 1.

Then any eigenvector of H that is associated with a Jordan block of size j × j in the
canonical form and that is also in the kernel of A contributes to κj . Similarly, we define
κ̂` = dim

(
Eig `(Ĥ, 0) ∩ ker A∗) and

κ̂j = dim
(
Eig j(Ĥ, 0) ∩ ker A∗)− dim

(
Eig j+1(Ĥ, 0) ∩ ker A∗), j = 1, . . . , `− 1.

Then elementary counting yields

κj = γj + nj−1 and κ̂j = γj + mj−1, j = 1, . . . , `.

If τj , respectively τ̂j denotes the number of Jordan blocks of size j × j in the canonical form
of H and Ĥ, respectively, we also have that

τj = 2γj + mj + nj−1 and τ̂j = 2γj + mj−1 + nj , j = 1, . . . , `.

Hence, we obtain

τj − κj − κ̂j = mj −mj−1, and τ̂j − κj − κ̂j = nj − nj−1, j = 1, . . . , `,

from which we can successively compute mj , nj , j = ` − 1, . . . , 0 using m` = n` = 0. We
furthermore obtain that

γj =
1
2
(τj −mj − nj−1)

for j = 1, . . . , `. Thus, the numbers γj ,mj , nj are uniquely determined by the invariant
numbers τj , τ̂j , κj , κ̂j , j = 1, . . . , `.

This concludes the proof of Theorem 4.2.
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Proof of Theorem 5.2

Applying appropriate congruence transformations to G and Ĝ otherwise, we may assume that
G = Σπ,ν and Ĝ = Jn. Let

A = B1C
T
1

be a full rank factorization of A, i.e., B1 ∈ Rm×r, C1 ∈ R2n×r, rankB1 = rankC1 = r.
Repeatedly applying Proposition 3.1 to B1 and Proposition 3.2 to C1, respectively, we can
determine a staircase-like form that can be further reduced to canonical form. The proof
follows the same lines as in the steps 1) and 2) of the proof of Theorem 4.2 and yields the
reduced staircase-like form

X̃T AỸ = Ans⊕A0⊕
⊕̀
j=1

Aj ⊕
`−1⊕
j=1

Aj,j+1,

X̃T Σπ,νX̃ = Gns ⊕ G0 ⊕
⊕̀
j=1

Gj ⊕
`−1⊕
j=1

Gj,j+1,

Ỹ T JnỸ = Ĝns ⊕ Ĝ0 ⊕
⊕̀
j=1

Ĝj ⊕
`−1⊕
j=1

Ĝj,j+1,

where
Ans = A2`+1,2`+1, Gns = Σπ`,ν`

, Ĝns = Jπ̂`
,

with π` + ν` = 2π̂` and A2`+1,2`+1 ∈ C2π̂`×2π̂` being nonsingular,

A0 = Om0×2n0 , G0 = Σπ0,ν0 , Ĝ0 = Jn0 ,

Aj =
(
R2jJ2j(0)

)
⊗ Iγj , Gj = R2j ⊗ Iγj , Ĝj =

[
0 Rj

−Rj 0

]
⊗ Iγj ,

and Aj,j+1, Ĝj,j+1, and Ĝj,j+1 are (2j + 1) × (2j + 1) block matrices, where, if j is odd, the
block rows have alternating sizes nj , 2mj and the forms

Aj,j+1 =



0 0
0 Inj

. .
.
I2mj

. .
.

. .
.

0 Inj

0 I2mj 0


,Gj,j+1 =



0 I2mj

Inj

. .
.

Σπj ,νj

. .
.

Inj

I2mj 0


, (7.18)

Ĝj,j+1 =



0 Inj

I2mj

. .
.

Jmj

. .
.

−I2mj

−Inj 0


, (7.19)
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or, if j is even, then the block rows have alternating sizes 2nj ,mj and the forms

Aj,j+1 =



0 0
0 I2nj

. .
.
Imj

. .
.

. .
.

0 I2nj

0 Imj 0


,Gj,j+1 =



0 Imj

I2nj

. .
.

Σπj ,νj

. .
.

I2nj

Imj 0


, (7.20)

Ĝj,j+1 =



0 I2nj

Imj

. .
.

Jnj

. .
.

−Imj

−I2nj 0


, (7.21)

The blocks A0, G0, and Ĝ0 are already in the form as indicated in Theorem 4.2, for the
blocks Ans, Gns, Ĝns, we can apply Theorem 5.1, and for the blocks Aj , Ĝj , and Ĝj we
can apply an analogous permutation as it has been done for the corresponding blocks in
the proof of Theorem 4.2. Moreover, if j is odd, then let Zj be the permutation such that
premultiplication with ZT

j reorders the rows of Aj,j+1 in the order

2(j + 1)mj + jnj , 2jmj + (j − 1)nj , . . . , 4mj + nj , 2mj ,
2jmj + mj + jnj , 2(j − 1)mj + mj + (j − 1)nj , . . . , 2mj + mj + nj , mj ,

2(j + 1)mj −1 + jnj , 2jmj −1 + (j − 1)nj , . . . , 4mj −1 + nj , 2mj −1,
2jmj + mj −1 + jnj , 2(j − 1)mj + mj −1 + (j − 1)nj , . . . , 2mj + mj −1 + nj , mj −1,

...
...

. . .
...

...
2jmj + mj +1 + jnj , 2(j − 1)mj + mj +1 + (j − 1)nj , . . . , 2mj + mj +1 + nj , mj +1,

2jmj + 1 + jnj , 2(j − 1)mj + 1 + (j − 1)nj , . . . , 2mj + 1 + nj , 1,
2jmj + jnj , 2(j − 1)mj + (j − 1)nj , . . . , 2mj + nj ,

2jmj + jnj − 1, 2(j − 1)mj + (j − 1)nj − 1, . . . , 2mj + nj − 1,
...

...
. . .

...
2jmj + (j − 1)nj + 1, 2(j − 1)mj + (j − 2)nj + 1, . . . , 2mj + 1,

and let Z̃j+1 be the permutation such that postmultiplication with Z̃j+1 reorders the columns
of Aj,j+1 in the order

mj + nj , 2mj + mj + 2nj , . . ., 2(j − 1)mj + mj + jnj ,
2mj + nj , 4mj + nj , . . ., 2jmj + jnj ,

mj −1 + nj , 2mj + mj −1 + 2nj , . . . , 2(j − 1)mj + mj −1 + jnj ,
2mj −1 + nj , 4mj −1 + nj , . . . , 2jmj −1 + jnj ,

...
...

. . .
...

1 + nj , 2mj + 1 + nj , . . . , 2(j − 1)mj + 1 + jnj ,
mj +1 + nj , 2mj + mj +1 + nj , . . . , 2(j − 1)mj + mj +1 + jnj ,

nj , 2mj + 2nj , . . . , 2(j − 1)mj + jnj , 2jmj + (j + 1)nj ,
nj − 1, 2mj + 2nj − 1, . . ., 2(j − 1)mj + jnj − 1, 2jmj + (j + 1)nj − 1,

...
...

. . .
...

...
1, 2mj + nj + 1, . . . , 2(j − 1)mj + (j − 1)nj + 1, 2jmj + jnj + 1.
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Then it is easily verified that

ZT
j Aj,j+1Z̃j+1 =

mj⊕
i=1


0 Ij

0 0
Ij 0
0 0


2(j+1)×2j

⊕
nj⊕
i=1

[
0 Ij

]
j×(j+1)

,

ZT
j Gj,j+1Zj =

mj⊕
i=1

[
0 Rj+1

Rj+1 0

]
⊕

νj⊕
i=1

R̃j ⊕
nj⊕

i=νj+1

Rj ,

Z̃T
j+1Ĝj,j+1Z̃j+1 =

mj⊕
i=1

[
0 Rj

−Rj 0

]
⊕

nj⊕
i=1

[
0 R j+1

2

−R j+1
2

0

]
,

(7.22)

where R̃j is as in (7.17). Then analogously as in the proof of Theorem 4.2, we can transform
R̃j to −Rj without changing any of the other blocks. Thus, we finally obtain blocks as in 4)
and 5) in Theorem 5.2. Similarly, an analogous permutation extracts blocks as in 3) and 6)
in Theorem 5.2 for the case that j is even, i.e., if we consider the blocks (7.20)–(7.21).

Concerning uniqueness, as in the proof of Theorem 4.2 it remains to show uniqueness
of the numbers `j , 2mj , and nj . This is done exactly in the same way as in the proof of
Theorem 4.2. Note that the paired blocks in 4) and 6) in Theorem 5.2 cannot be decomposed
into two smaller blocks of equal size, because of the fact that nonsingular skew-symmetric
matrices must have even size.

Proof of Theorem 6.2

Applying appropriate congruence transformations to G and Ĝ otherwise, we may assume that
G = Jm and Ĝ = Jn. Again, we then compute a staircase-like form for A by considering the
full rank factorization

A = B1C
T
1

of A, i.e., B1 ∈ R2m×r, C1 ∈ R2n×r, rankB1 = rank C1 = r, and repeatedly applying
Proposition 3.2 to B1 and C1. Then continuing as in step 2) of the proof of Theorem 4.2
yields the reduced staircase-like form

X̃T AỸ = Ans⊕A0⊕
⊕̀
j=1

Aj ⊕
`−1⊕
j=1

Aj,j+1,

X̃T JmX̃ = Gns ⊕ G0 ⊕
⊕̀
j=1

Gj ⊕
`−1⊕
j=1

Gj,j+1,

Ỹ T JnỸ = Ĝns ⊕ Ĝ0 ⊕
⊕̀
j=1

Ĝj ⊕
`−1⊕
j=1

Ĝj,j+1,

where
Ans = A2`+1,2`+1, Gns = Jπ`

, Ĝns = Jπ̂`
= Jπ`

,

with A2`+1,2`+1 ∈ R2π`×2π` being nonsingular,

A0 = 02m0×2n0 , G0 = Jm0 , Ĝ0 = Jn0 ,
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Aj =
(
R2jJ2j(0)

)
⊗ Iγj , Gj = Ĝj =

[
0 Rj

−Rj 0

]
⊗ Iγj ,

and Aj,j+1, Ĝj,j+1, and Ĝj,j+1 are (2j + 1) × (2j + 1) block matrices, where the block rows
have alternating sizes 2nj , 2mj and the forms

Aj,j+1 =



0 0
0 I2nj

. .
.

I2mj

. .
.

. .
.

0 I2nj

0 I2mj 0


, Gj,j+1 =



0 I2mj

I2nj

. .
.

Jπj

. .
.

−I2nj

−I2mj 0


, (7.23)

Ĝj,j+1 =



0 I2nj

I2mj

. .
.

Jπ̂j

. .
.

−I2mj

−I2nj 0


, (7.24)

The remainder of the proof then proceed as the proof of Theorem 5.2 by adapting the per-
mutation used on the blocks of the forms (7.23)–(7.24) similarly as in the proof of Theorem 5.2
in order to allow to group together paired blocks.

Concerning uniqueness, as in the proof of Theorem 4.2 it remains to show uniqueness
of the numbers `j , 2mj , and 2nj . This is done exactly in the same way as in the proof of
Theorem 4.2.
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