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Abstract

New perturbation results for the behavior of eigenvalues and Jordan forms of
real and complex matrices under generic rank one perturbations are discussed.
Several results that are available in the complex case are proved as well for the real
case and the assumptions on the genericity are weakened. Rank one perturbations
that lead to maximal algebraic multiplicities of the “new” eigenvalues are also
discussed.
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1 Introduction

The goal of this paper is to present new results on eigenvalues and Jordan forms of
real and complex matrices under generic rank one perturbations, where the genericity
is understood in various ways. This topic has been studied intensively in recent years.
Basic results were obtained in [10, 11, 18, 20, 21] but mostly for the complex case; we
extend these results to the real case.
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Our interest in the topic is motivated by the perturbation analysis of structured
matrices, in particular Hamiltonian matrices. Such perturbation problems arise in the
analysis of linear quadratic optimal control problems [13, 17] and in particular in the
passivation of linear systems [3, 4, 8, 19, 22]. It has been recently shown how to con-
struct minimum norm perturbations that move eigenvalues of Hamiltonian matrices
from the imaginary axis [2] and these perturbations typically turn out to be of low
rank. This has motivated the question of what happens to the eigenvalues of Hamil-
tonian matrices (and in particular to the purely imaginary eigenvalues) under generic,
Hamiltonian, low rank perturbations, see [15, 16].

In this paper, we study the general unstructured case. We combine the results for
real and complex matrices under weakened genericity assumptions in Section 2. In
Section 3 we extend these results to matrix polynomials and in Section 4 we study
generic low rank perturbations that lead to maximal algebraic multiplicities in the
perturbed eigenvalues.

2 Main Theorems

In order to state our results on the influence of generic rank one perturbations we
first recall from [15] the general concept of genericity. Let F = R or F = C. We say
that a set W ⊆ Fn (abbreviation for Fn×1) is algebraic if there exists a finite set of
polynomials f1(x1, . . . , xn), . . . , fk(x1, . . . , xn) with coefficients in F such that a vector
[a1, . . . , an]T ∈ Fn belongs to W if and only if

fj(a1, . . . , an) = 0, j = 1, 2, . . . , k.

In particular, the empty set is algebraic and Fn is algebraic. We say that a set W ⊆ Fn
is generic if the complement Fn \W is contained in an algebraic set which is not Fn.
Note that the union of finitely many algebraic sets is again algebraic.

We then have our main Theorems, in which F = R or F = C and the used Jordan
forms are understood over C, where in the following we denote by Jm(λ0) an m ×m
upper triangular Jordan block with eigenvalue λ0.

Theorem 2.1 Let A ∈ Fn×n be a matrix having pairwise distinct eigenvalues λ1, . . . , λp
with geometric multiplicities g1, . . . , gp and a Jordan canonical form

g1⊕
k=1

Jn1,k
(λ1)⊕ · · · ⊕

gp⊕
k=1

Jnp,k
(λp), (2.1)

where nj,1 ≥ · · · ≥ nj,gj , j = 1, . . . , p. Consider the rank one matrix B = uvT , with
u, v ∈ Fn. Then generically (with respect to the entries of u and v) the Jordan blocks of
A+B with eigenvalue λj are just the gj−1 smallest Jordan blocks of A with eigenvalue
λj, and all other eigenvalues of A+B are simple, i.e., of algebraic multiplicity one; if
gj = 1, then generically λj is not an eigenvalue of A+B.
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More precisely, the set Ω ⊆ Fn × Fn, consisting of all (u, v) ∈ Fn × Fn for which
the Jordan structure of A+ uvT is as described in the statements (a) and (b) below, is
generic.

(a) the Jordan structure of A+ uvT for the eigenvalues λ1, . . . , λp is given by

g1⊕
k=2

Jn1,k
(λ1)⊕ · · · ⊕

gp⊕
k=2

Jnp,k
(λp);

(b) the eigenvalues of A+uvT that are different from any of λ1, . . . , λp are all simple.

Note that in the case F = R, the distinct eigenvalues λ1, . . . , λp include the non-real
ones (if there are any).

In the complex case, different proofs of Theorem 2.1 were given in [10, 18, 15, 20]
(part (a)) and in [15, 20] (part (b)). To be more precise, in these references the existence

of a generic set Ω̃ was proved such that for every (u, v) ∈ Ω̃, the Jordan structure of
A + uvT is as described in the statements (a) and (b) of Theorem 2.1. However, the

genericity of the set Ω in Theorem 2.1 then immediately follows from Ω̃ ⊆ Ω. On the
other hand, the proof of the real case in Theorem 2.1 follows immediately from the
following lemma.

Lemma 2.2 Let W ∈ Cn be a proper (i.e., different from Cn) algebraic set. Then
Wr = W ∩ Rn is a proper algebraic set in Rn.

Proof. Clearly Wr is an algebraic set. Let

W = {(z1, . . . , zn) ∈ Cn : f1(z1, . . . , zn) = · · · = fk(z1, . . . , zn) = 0}, (2.2)

where the fj(z1, . . . , zn) are non-identically zero polynomials of z1, . . . , zn (with complex
coefficients). Write

fj(z1, . . . , zn) =
∑

(i1,...,in)∈Nn

c
(j)
i1,...,in

zi11 · · · zinn , c
(j)
i1,...,in

∈ C, j = 1, 2, . . . , k, (2.3)

(where we use the convention that the natural numbers include zero, that is, N =
{0, 1, 2, . . .}) and the sums in (2.3) are finite. Then

Wr = {(z1, . . . , zn) ∈ Rn :
∑

(i1,...,in)∈Nn

(
Re c

(j)
i1,...,in

)
zi11 · · · zinn

=
∑

(i1,...,in)∈Nn

(
Im c

(j)
i1,...,in

)
zi11 · · · zinn = 0, j = 1, . . . , k}.

To show that Wr is proper, we use induction on n. For n = 1, this is trivial because a
subset of F (where F = R or F = C) is a proper algebraic set if and only if it is finite.
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Assume that the assertion has been proved for proper algebraic sets in Cn−1, and let W
be given by (2.2). If all the fj(z1, . . . , zn) are independent of zn, then we are done by
the induction hypothesis. So, let us assume that at least one of fj(z1, . . . , zn) depends
on zn, say, without loss of generality,

f1(z1, . . . , zn) =

`0∑
`=0

d`(z1, . . . , zn−1)z
`
n,

where `0 ≥ 1 and the d0, . . . , d`0 are polynomials in z1, . . . , zn−1, with d`0 not identi-
cally zero. By the induction hypothesis, there exist (z′1, . . . , z

′
n−1) ∈ Rn−1 such that

d`0(z
′
1, . . . , z

′
n−1) 6= 0. Let z′n be any real number which is not a zero of the polynomial

`0∑
`=0

d`(z
′
1, . . . , z

′
n−1)z

`
n.

considered as a polynomial of zn. Then (z′1, . . . , z
′
n−1, z

′
n) does not belong to Wr.

Motivated from the situation arising in structured perturbations, in the following
we refine Theorem 2.1 by using a more restrictive notion of genericity.

Theorem 2.3 Let A ∈ Fn×n be as in Theorem 2.1. Suppose that a matrix X ∈ Fn×n
is such that for some vector u0 ∈ Fn the Jordan structure of A+ u0(Xu0)

T is given by
(a) and (b) of Theorem 2.1, where u = u0, v = Xu0.

Then the set Ω′ ⊆ Fn consisting of all u ∈ Fn, for which the Jordan structure of
A+u(Xu)T is as described in the statements (a) and (b) below, is generic (with respect
to the entries of u).

(a) the Jordan structure of A+ u(Xu)T for the eigenvalues λ1, . . . , λp is given by

g1⊕
k=2

Jn1,k
(λ1)⊕ · · · ⊕

gp⊕
k=2

Jnp,k
(λp);

(b) the eigenvalues of A + u(Xu)T that are different from any of λ1, . . . , λp, are all
simple.

Note that the genericity condition in Theorem 2.3 is not equivalent to the genericity
condition in Theorem 2.1.

We also have the following dual version of Theorem 2.3.

Theorem 2.4 Let A ∈ Fn×n be as in Theorem 2.1. Suppose a matrix Y ∈ Fn×n is
such that for some vector v0 ∈ Fn the Jordan structure of A + Y v0v

T
0 is given by (a)

and (b) of Theorem 2.1, where u = Y v0, v = v0.
Then the set Ω′′ ⊆ Fn consisting of all v ∈ Fn, for which the Jordan structure of

A + Y vvT is as described in the statements (a) and (b) below, is generic (with respect
to the entries of v).
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(a) the Jordan structure of A+ Y vvT for the eigenvalues λ1, . . . , λp is given by

g1⊕
k=2

Jn1,k
(λ1)⊕ · · · ⊕

gp⊕
k=2

Jnp,k
(λp);

(b) the eigenvalues of A + Y vvT that are different from any of λ1, . . . , λp, are all
simple.

For the proofs of Theorems 2.3 and 2.4 in the complex case we make use of the
following lemma.

Lemma 2.5 Let Ω be the generic set as in Theorem 2.1. Then the complement of Ω
in Cn × Cn is a proper algebraic set.

Proof. We have Ω = Ω1 ∩ Ω2, where Ω1 and Ω2 are defined as follows: Ω1 consists of
all pairs (u, v) ∈ Cn × Cn such that the matrix A + uvT has the following eigenvalue
structure:

(a) λj is an eigenvalue of A+uvT of algebraic multiplicity
gj∑
k=2

nj,k, for j = 1, 2, . . . , p;

(b) A+ uvT has exactly

n−
p∑
j=1

gj∑
k=2

nj,k

simple eigenvalues different from any of λ1, . . . , λp.

The set Ω2 consists of all pairs (u, v) ∈ Cn×Cn such that the partial multiplicities of λj
as an eigenvalue of A+uvT are exactly nj,2 ≥ · · · ≥ nj,gj , respectively, for j = 1, 2, . . . , p.
Evidently, it suffices to prove that the complement of each of Ω1 and Ω2 is an algebraic
set (the properness of this set is immediate because Ω is generic by Theorem 2.1).

We start with Ω1. For u, v ∈ Cn, we denote by S(u, v) the Sylvester resultant matrix
of the two polynomials in the independent variable x given by

det (xI − (A+ uvT )),
∂det (xI − (A+ uvT ))

∂x
.

Recall (see, e.g., [1, 6, 9, 12, 14]) that S(u, v) is a (2n − 1) × (2n − 1) matrix, and its
rank defect, i.e., the difference 2n− 1− rankS(u, v), is equal to

k∑
j=1

((algebraic multiplicity of µj)− 1),

where µ1, . . . , µk are all the distinct eigenvalues of A + uvT (we omit in this notation
the dependence of these algebraic multiplicities as well as of the number k on u and v).
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Denote by rdS(u, v) the rank defect of the matrix S(u, v). By Theorem 2.1 we
have:

rdS(u, v) =
∑

j=1,...,p; gj≥2

((
gj∑
k=2

nj,k

)
− 1

)
for all (u, v) in a generic set in Cn × Cn. Since the rank defect of S(u, v) can only
increase when passing to the limit of a convergent sequence of vectors (u, v), it follows
that

rdS(u, v) ≥
∑

j=1,...,p; gj≥2

((
gj∑
k=2

nj,k

)
− 1

)
(2.4)

for all (u, v) ∈ Cn × Cn. On the other hand, since Ω is generic, there is (u0, v0) such
that

rdS(u0, v0) =
∑

j=1,...,p; gj≥2

((
gj∑
k=2

nj,k

)
− 1

)
.

Since S(u, v) depends continuously on u, the rank defect of S(u, v) may only decrease
for (u, v) in a sufficiently small neighborhood of (u0, v0). Thus, we obtain that

rdS(u, v) ≤
∑

j=1,...,p; gj≥2

((
gj∑
k=2

nj,k

)
− 1

)

for all (u, v) sufficiently close to (u0, v0). Comparing with (2.4), we see that

rdS(u, v) =
∑

j=1,...,p; gj≥2

((
gj∑
k=2

nj,k

)
− 1

)
:= Υ

for all (u, v) sufficiently close to (u0, v0). Let W be the algebraic set which consists of
all common zeros of the determinants of the (2n− 1−Υ)× (2n− 1−Υ) submatrices
of S(u, v). Since there is a least one (2n− 1−Υ)× (2n− 1−Υ) submatrix of S(u, v)
whose determinant is nonzero at (u = u0, v = v0), it follows that W is proper. Then it
follows that the complement of W coincides with Ω1.

As second step we prove that the complement of Ω2 is an algebraic set. For this we
shall use the Segre and Weyr characteristics of the matrix A+uvT . Recall that the Segre
characteristic of A+uvT corresponding to one of its eigenvalues λj is the non-increasing
list of sizes of Jordan blocks of A+uvT with eigenvalue λj. The Weyr characteristic, on
the other hand, is the non-increasing list of dimensions of the null spaces of the powers
of A+uvT −λj. Note that both these lists of numbers are partitions of n, in fact, they
are dual partitions, as can be seen most easily by representing both the Weyr and the
Segre characteristic in a so-called Ferrer diagram. For a nice introduction to the theory
of the Weyr and Segre characteristics and their relation see [23].
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Consider the set T of all (u, v) ∈ Cn ×Cn that satisfy the following inequalities for
j = 1, 2, . . . , p:

rd (A+ uvT − λjI) ≤ gj − 1;

rd ((A+ uvT − λjI)2) ≤ #{α ∈ {2, 3, . . . , gj} : nj,α ≥ 2}
+ #{α ∈ {2, 3, . . . , gj} : nj,α ≥ 1};

and so on, and finally

rd ((A+ uvT − λjI)nj,2) ≤
nj,2∑
k=1

#{α ∈ {2, 3, . . . , gj} : nj,α ≥ k}.

Note that because of duality between the Weyr and Segre characteristic

nj,2∑
k=1

#{α ∈ {2, 3, . . . , gj} : nj,α ≥ k} = nj,2 + . . .+ nj,gj .

We have
T = ∩pj=1 ∩

nj,2

k=1 Tj,k,

where Tj,k consists of all (u, v) ∈ Cn × Cn such that

rd ((A+ uvT − λjI)k) ≤
k∑
`=1

#{α ∈ {2, 3, . . . , gj} : nj,α ≥ `}.

As in the preceding paragraph, we now show that the complement of Tj,k is an algebraic
set, and therefore the complement of T is an algebraic set. The set

T ′j,k := {(u, v) ∈ Cn×Cn : rd ((A+uvT −λjI)k) ≥
k∑
`=1

#{α ∈ {2, 3, . . . , gj} : nj,α ≥ `}

is algebraic, and Theorem 2.1 shows that T ′j,k contains the generic set Ω. It follows that
T ′j,k = Cn×Cn for all k = 1, 2, . . . , nj,2 and all j = 1, 2, . . . , p. Thus, in fact, T consists
of all such pairs (u, v) ∈ Cn × Cn for which the identities

rd ((A+ uvT − λjI)k) =
k∑
`=1

#{α ∈ {2, 3, . . . , gj} : nj,α ≥ `}.

hold for all k = 1, 2, . . . , nj,2 and all j = 1, 2, . . . , p.
The set Ω2 is defined in terms of the Segre characteristic of A + uvT , whereas T

is defined in terms of the Weyr characteristic of the same matrix. Since these two
characteristics are each other’s duals, and the Weyr characteristic is expressed in the
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rank defects as above, it is easy to see that T = Ω2, and so the complement of Ω2 is an
algebraic set as required.

Proof of Theorem 2.3. In the complex case, by Lemma 2.5 the complement of Ω
is an algebraic set W ; thus

W = {(u, v) ∈ Cn × Cn : fk(u1, . . . , un, v1, . . . , vn) = 0, k = 1, 2, . . . , q},

where f1, . . . , fq are polynomials in the components (u1, . . . , un) of u and (v1, . . . , vn)
of v. Then clearly Ω′ coincides with the complement of the algebraic set

W ′ := {u ∈ Cn : fk(u1, . . . , un, (Xu)1, . . . , (Xu)n) = 0, k = 1, 2, . . . , q}.

Since u0 6∈ W ′, the set W ′ is proper.
The real case again follows from the complex case by applying Lemma 2.2.

Proof of Theorem 2.4. The proof is a consequence of the fact that the Jordan
canonical form of a matrix A and that of AT are the same. Applying Theorem 2.3
to AT in place of A, Y in place of X and v in place of u, we arrive at the desired
conclusion.

We continue with several remarks.

Remark 2.6 The form of the rank one perturbation u(Xu)T in Theorem 2.3 appears
in studies of rank one perturbations of structured matrices, for particular choices of X,
see e.g. [15, 16] for applications to Hamiltonian matrices and to selfadjoint matrices in
an indefinite inner product space.

Remark 2.7 The following example shows that the hypothesis on X in Theorem 2.3,
namely, that there exists u0 ∈ Fn such that the Jordan structure of A + u0(Xu0)

T is
given by Theorem 2.1 (a), (b), is essential. For

A =

[
0 0
0 0

]
, X =

[
0 1
−1 0

]
∈ C2×2

this hypothesis does not hold. If u0 6= 0, then A + u0(Xu0)
T = u0(Xu0)

T has one
nilpotent Jordan block of size 2, and it is immediate that the conclusion of Theorem 2.3
does not hold either.

Remark 2.8 One can prove that, for a given A, the set X(A) of all matrices X ∈ Fn×n
for which the hypothesis in Theorem 2.3 holds is generic (with respect to the entries of
X). Note that this set depends on A. Indeed, let Ω be the generic set of Theorem 2.1.
Fix (u′, v′) ∈ Ω, where both u′ and v′ are nonzero. Then for any matrix X ′ such that
v′ = X ′u′ we have that the hypothesis on X in Theorem 2.3 holds. On the other hand,
we have that X ∈ X(A) provided that (u,Xu) ∈ Ω for some u. Let W be the proper
algebraic set such that the complement of Ω is contained in W , and let

W = {(x, y) ∈ Fn × Fn : fj(x1, . . . , xn, y1, . . . , yn) = 0 for j = 1, 2, . . . , k}.
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Here f1, . . . , fk are certain polynomials with coefficients in F, and by z1, . . . , zn we
denote the components of z ∈ Fn. Thus, if the matrix X is such that at least one of
the following inequalities holds

fj(v
′
1, . . . , v

′
n, (Xv

′)1, . . . , (Xv
′)n) 6= 0, j = 1, 2, . . . , k,

then X ∈ X(A). So, the complement of X(A) is contained in the union of two algebraic
sets (with respect to the entries of X), one defined by detX = 0, and the other algebraic
set is defined by the identities

fj(v
′
1, . . . , v

′
n, (Xv

′)1, . . . , (Xv
′)n) = 0, j = 1, 2, . . . , k.

The latter algebraic set is proper in view of the existence of an X ′ with (u′, X ′u′) ∈ Ω
(we select (u′, v′ = X ′u′) in the complement of W ). It follows that X(A) is generic.

For example, if A = 0 ∈ C2×2, then X =

[
x11 x12
x21 x22

]
∈ X(A) if and only if

x11x22 6= x12x21 and at least one of the numbers x11, x12 + x21, x22 is nonzero.

We now illustrate our main results by an example.

Example 2.9 Let F = R or F = C. Assume that every eigenvalue of A ∈ Fn×n has
geometric multiplicity one (including the nonreal eigenvalues of a real matrix A). Then
A is similar (with the similarity matrix in Fn×n) to a matrix in the companion form

0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
. . .

. . .
. . .

...
0 0 0 . . . 0 1
−c0 −c1 −c2 . . . −cn−2 −cn−1

 ∈ Fn×n, cj ∈ F. (2.5)

So we may assume without loss of generality that A is given by (2.5). Consider a rank
one perturbation of A given by

A+B =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
. . .

. . .
. . .

...
0 0 0 . . . 0 1

−c0 − ε −c1 −c2 . . . −cn−2 −cn−1

 , ε ∈ F.

Since the characteristic polynomials of A and A+B are given by

det (xI − A) = xn +
n−1∑
j=0

xjcj, det (xI − (A+B)) = xn + (c0 + ε) +
n−1∑
j=1

xjcj,
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respectively, it follows that for all values of ε, with the possible exception of at most
n − 1 values, the polynomial det (xI − (A + B)) has all roots (in the complex plane)
simple. Indeed, the Sylvester resultant (2n− 1)× (2n− 1) matrix of det (xI− (A+B))
and that of

∂(det (xI − (A+B)))

∂x
has the form

R :=



1 cn−1 cn−2 . . . c0 + ε . . . 0
0 1 cn−1 . . . c1 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . . . . c1 c0 + ε
n (n− 1)cn−1 (n− 2)cn−2 . . . c1 . . . 0
0 n (n− 1)cn−1 . . . 2c2 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . . . . 2c2 c1


,

and it is easy to see that the determinant p(ε) of R is a polynomial of ε of degree n− 1
whose leading term is ±nnεn−1. Thus, for every ε ∈ F that is not a root of p(ε), the
polynomial det (xI − (A+B)) has all roots simple, and hence for those values of ε the
matrix A + B has all eigenvalues (including the nonreal ones in case A + B is real)
distinct.

3 A generalization and an application to matrix

polynomials

The setup of Theorem 2.3 can be extended (with essentially the same proof) to the
following situation. Let K be any F-subspace of Fn×Fn. Then for a given matrix A as in
Theorem 2.1, generically the Jordan structure of matrices A + uvT , where (u, v) ∈ K,
is described by (a) and (b) of Theorem 2.3, provided that for at least one element
(u0, v0) ∈ K the Jordan structure of A + u0v

T
0 is given by (a) and (b) of Theorem 2.1.

The genericity is understood with respect to the coefficients of (u, v) in some basis for
K. Thus, Theorems 2.3 and 2.4 are stated for

K = K(X) = {(u, v) : v = Xu, u ∈ Fn},
K = K(Y ) = {(u, v) : u = Y v, v ∈ Fn},

respectively.
As an application we consider rank one perturbations for matrix polynomials as

they were studied in [24]. We restrict our attention here to monic matrix polynomials,
i.e., having leading coefficient I. Let

L(λ) = λmIn +
m−1∑
j=0

λjAj, Aj ∈ Fn×n (3.1)
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be a matrix polynomial, where F = R or F = C. We say that λ0 ∈ C is an eigenvalue of
L(λ) if detL(λ0) = 0. A Jordan chain of length m with eigenvector v0 of L(λ) associated
with the eigenvalue λ is, by definition, see e.g., [14], a chain of vectors v0, . . . , vm−1 ∈ Cn

such that
k∑
j=0

1

j!
L(j)(λ0)vk−j = 0, k = 0, 1, . . . ,m− 1, v0 6= 0,

where L(j)(λ0) stands for the j-th derivative of L(λ) with respect to λ. Partial multi-
plicities of L(λ) at the eigenvalue λ0 are the lengths of Jordan chains in any collection
of Jordan chains associated with λ0 of maximal total length, subject to the restriction
that the eigenvectors in the collection of Jordan chains are linearly independent. One
can prove that the partial multiplicities of L(λ) at λ0 do not depend on the choice of
the collection of Jordan chains with the above properties, see [7] for more details.

Theorem 3.1 Let L(λ) be a matrix polynomial (3.1), with pairwise distinct eigenvalues
λ1, . . . , λp, and partial multiplicities nj,1 ≥ · · · ≥ nj,gj corresponding to eigenvalues λj,
j = 1, 2, . . . , p, respectively. Fix X0, . . . , Xm−1 ∈ Fn×n, and consider matrix polynomials
of the form

Ku(λ) := L(λ) +
m−1∑
j=0

λju(Xju)T , u ∈ Fn. (3.2)

Assume that for some u0 ∈ Fn, we have the following properties.

(a) the partial multiplicities of Ku0(λ) at λj are nj,2 ≥ · · · ≥ nj,gj , for j = 1, . . . , p; if
gj = 1, then λj is not an eigenvalue of K(λ);

(b) all eigenvalues of Ku0(λ) that are different from λ1, . . . , λp are simple, i.e., simple
roots of detKu0(λ).

Then (a) and (b) hold for a generic (with respect to the entries of u) set of vectors u.

Proof. The proof follows by combining several facts. First, it is clear that the Jordan
form of the companion matrix CL of L(λ) is given by (2.1), and similarly for the
companion matrices of the matrix polynomials Ku(λ) (see, e.g., [7] for details). Recall
that

CL =


0 I 0 . . . 0 0
0 0 I . . . 0 0
...

...
. . .

. . .
. . .

...
0 0 0 . . . 0 I
−A0 −A1 −A2 . . . −Am−2 −Am−1

 ∈ Fmn×mn.

We can then employ the remarks made at the beginning of this section concerning the
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subspaces K and apply Theorem 2.3, with

K =





0
...
0
u

 , v

 ∈ Fmn × Fmn : v =


X0u
X1u
...

Xm−1u


 . 2

Theorem 2.4 can be also extended to matrix polynomials in a fashion analogous to
Theorem 3.1, with a proof similar to that of Theorem 3.1. We omit the statement and
proof of this extension.

4 Perturbations with maximal total algebraic mul-

tiplicity at new eigenvalues

Let A ∈ Fn×n have the Jordan canonical form (2.1). Theorems 2.1, 2.3, and 2.4
assert that generically (understood in various senses) matrices A + B, where B is of
rank one, have the sum of the algebraic multiplicities at distinct eigenvalues different
from λ1, . . . , λp, equal to n1,1 + · · · + np,1. This is in fact the maximal total algebraic
multiplicity at “new” eigenvalues under rank one perturbations, see Proposition 4.1
below. It is of interest therefore to find out the Jordan forms of all (in contrast with
a generic set) matrices of the form A + B, where B is of rank one and have the
above mentioned property of the total algebraic multiplicity at eigenvalues other than
λ1, . . . , λp. In this section a complete answer to this problem is given.

Recall that the partial multiplicities of an eigenvalue λ of A ∈ Fn×n are just the
sizes of Jordan blocks with eigenvalue λ in the Jordan form of A, each multiplicity m
repeated as many times as the number of Jordan blocks Jm(λ) indicates.

We start with some information about algebraic and geometric multiplicities at the
“new” eigenvalues:

Proposition 4.1 Let A ∈ Fn×n be as in Theorem 2.1. Assume that B ∈ Fn×n is a rank
one matrix such that the total algebraic multiplicity of A + B at eigenvalues different
from λ1, . . . , λp is at least n1,1 + . . .+ np,1. Then:

(1) the sum of the algebraic multiplicities of A+B at its pairwise distinct eigenvalues
different from λ1, . . . , λp is equal to n1,1 + · · ·+ np,1;

(2) each eigenvalue of A+B different from λ1, . . . , λp has geometric multiplicity one.

Proof. Assume that the total algebraic multiplicity of A+B at the eigenvalues different
from λ1, . . . , λp is actually larger than n1,1 + . . .+np,1. Approximate B with a sequence
{Bm = umv

T
m}∞m=1 so that for each A+umv

T
m the statements (a) and (b) of Theorem 2.1

hold. By continuity of the eigenvalues, for the limit A+B = limm→∞(A+Bm) we have
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that the total algebraic multiplicity of A + B at eigenvalues different from λ1, . . . , λp
cannot exceed that of A+Bm, namely n1,1 + . . .+ np,1, which is a contradiction.

If for some rank one B the matrix A+B would have geometric multiplicity at least
two at some eigenvalue µ 6∈ {λ1, . . . , λp}, then A = (A + B) − B, being a rank one
perturbation of A + B, must have µ as an eigenvalue, which contradicts the original
hypothesis that σ(A) = {λ1, . . . , λp}. This proves (2).

The following simple example shows that in Proposition 4.1 (2) the geometric mul-
tiplicity cannot be replaced by algebraic multiplicity.

Example 4.2 Let

A =

[
0 1
0 0

]
, B =

[
0 0
−b2 −2b

]
,

where b ∈ F \ {0}. Then A+B has an eigenvalue −b of geometric multiplicity one and
algebraic multiplicity two.

More detailed information in terms of partial multiplicities at “old” eigenvalues is
given in the following theorem. We state the result for the complex field (the case of
the real field is subsumed as a particular situation).

Theorem 4.3 Let A ∈ Cn×n be as in Theorem 2.1. Then for every B ∈ Cn×n with the
properties (a) and (b) below:

(a) the rank of B is one;

(b) the sum of the algebraic multiplicities of the matrix A + B at its distinct eigen-
values different from λ1, . . . , λp, is at least n1,1 + · · ·+ np,1;

the following holds: the matrix A + B has the partial multiplicities nj,2 ≥ · · · ≥ nj,gj
for the eigenvalue λj, for j = 1, 2, . . . , p.

The proof is based on the following result.

Theorem 4.4 Let

A =

(
`1⊕
j=1

Jn1(λ)

)
⊕ · · · ⊕

(
`m⊕
j=1

Jnm(λ)

)
⊕ Ã ∈ Cn×n, (4.1)

where n1 > · · · > nm, Ã ∈ Cñ×ñ, and σ(Ã) ⊆ C \ {λ}. Let B ∈ Cn×n be an arbitrary
rank one matrix. Then the matrix A + B has at least `1 − 1 Jordan chains of lengths
at least n1 and `i Jordan chains of lengths at least ni for i = 2, . . . ,m, associated
with the eigenvalue λ, and the set of vectors obtained from all those chains is linearly
independent.
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For the proof of Theorem 4.4, we introduce the following notation. If

w = [w1, . . . , wn]T ∈ Cn,

then we denote by Toep (w, k, p), p ≤ n, the upper triangular p × p Toeplitz matrix
with [

wk+1 wk+2 . . . wk+p
]
.

as its first row, where we define wj = 0 for j > n. Note that Toep (w, k, p) is invertible
if and only if wk+1 6= 0. E.g., for w = [w1, w2, w3, w4, w5]

T , then

Toep (w, 0, 4) =


w1 w2 w3 w4

0 w1 w2 w3

0 0 w1 w2

0 0 0 w1

 and Toep (w, 2, 4) =


w3 w4 w5 0
0 w3 w4 w5

0 0 w3 w4

0 0 0 w3

 .
We also let B = uvT , and partition v as follows:

v =


v(1)

...
v(m)

ṽ

 , v(i) =

 v(i,1)

...
v(i,`i)

 , v(i,j) =

 v
(i,j)
1
...

v
(i,j)
ni

 ∈ Cni , j = 1, . . . , `i, i = 1, . . . ,m.

(4.2)

Lemma 4.5 Suppose that Theorem 4.4 holds for all matrices of the form (4.1) with
smaller values of `1 + · · · + `m and all rank one matrices B′ of suitable size. Let the
vector v ∈ Cn be given, and let it be partitioned as in (4.2). If one of the v(i,j) is the zero
vector, then Theorem 4.4 also holds for A given by (4.1) and for any rank one matrix
B ∈ Cn×n of the form B = uvT (where u ∈ Cn is non-zero but otherwise arbitrary).

Proof. As above, let B = uvT , and let v be partitioned as in (4.2). Assume that
v(i,k) = 0 for some index k, k ∈ {1, 2, . . . , `i} and for some i, i = 1, 2, . . . ,m. Then
setting p = `1n1 + · · ·+ `i−1ni−1 +(k−1)ni, it follows that the columns p+1, . . . , p+ni
of the matrix A coincide with the columns p+ 1, . . . , p+ ni of the matrix A+ B. But
then a Jordan chain of length at least ni for the eigenvalue λ of A+B is given by the
standard basis vectors ep+1, . . . , ep+ni

. We then arrive at the assertion of Lemma 4.5
by applying Theorem 4.4 to the matrix A′ obtained from A by deleting the kth Jordan
block in

⊕`i
j=1 Jni

(λ), and to the matrix B′ = u′(v′)T , where v′, resp. u′, is obtained

from v, resp. u, by deleting the vector v(i,k), resp. by deleting the corresponding part
of u.

Proof of Theorem 4.4. In the proof, we will use the fact that in Theorem 4.4
one can apply simultaneous similarity

A 7→ S−1AS, B 7→ S−1BS = S−1u(STv)T , (4.3)
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where the invertible matrix S ∈ Cn×n commutes with A, so that S−1AS = A, without
affecting the hypotheses or the conclusions of the theorem. Note that under transfor-
mation (4.3), the vector v is replaced by STv.

Step 1. In view of Lemma 4.5, and using induction on `1 + · · ·+ `m, we may (and
do) assume that

v(i,j) 6= 0, j = 1, . . . , `i; i = 1, 2, . . . ,m.

(Note that the base of induction, i.e., the case when m = 1 and `1 = 1 in Theorem 4.4,
is trivial.) Let

ki := min
j=1,2,...,`i

{
max

{
k
∣∣ v(i,j)1 = v

(i,j)
2 = · · · = v

(i,j)
k = 0

}}
, i = 1, . . . ,m.

Note that ki = 0 is possible. Then we have ki < ni, so v
(i,j)
ki+1 6= 0 for some j ∈ {1, . . . , `i}.

Without loss of generality, we may assume that v
(i,1)
ki+1 6= 0, otherwise we can apply a

suitable permutation (as in (4.3)). Let

S = S1 ⊕ · · · ⊕ Sm ⊕ Iñ,

where
Si := Toep (v(i,1), ki, ni)

−1 ⊕ I(`i−1)ni
, i = 1, . . . ,m.

Note that Toep (v(i,1), ki, ni) is invertible and eTki+1,ni
Toep (v(i,1), ki, ni) = (v(i,1))T , where

eki+1,ni
denotes the (ki + 1)st standard basis column vector of length ni. Therefore,

(v(i,1))TToep (v(i,1), ki, ni)
−1 = eTki+1,ni

.

Thus, S is well defined, invertible, S−1AS = A and

STv =


v̌(1)

...
v̌(m)

ṽ

 , v̌(i) =


eki+1,ni

v(i,2)

...
v(i,`i)

 , i = 1, . . . ,m.

Furthermore, note that

eTki+1,ni
Toep (v(i,j), ki, ni) =

[
0, . . . , 0︸ ︷︷ ︸
ki times

, v
(i,j)
ki+1, . . . , v

(i,j)
ni

]
= (v(i,j))T ,

because by the definition of ki, all nonzero entries of v(i,j) are among the v
(i,j)
ki+1, . . . , v

(i,j)
ni .

Thus, setting
Š = Š1 ⊕ · · · ⊕ Šm ⊕ Iñ,
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where

Ši =


Ini

−Toep (v(i,2), ki, ni) . . . −Toep (v(i,`i), ki, ni)
0 Ini

0 0
...

. . .
. . .

...
0 . . . 0 Ini

 ,
we obtain that Š−1AŠ = A, (SŠ)−1A(SŠ) = A, and

(SŠ)Tv = ŠTSTv =


v̆(1)

...
v̆(m)

ṽ

 , v̆(i) =


eki+1,ni

0
...
0

 ∈ C`ini , i = 1, . . . ,m.

Using a suitable transformation (4.3), Lemma 4.5, and induction on `1 + · · · + `m, we
may assume therefore that `1 = · · · = `m = 1, and

v =


ek1+1,n1

...
ekm+1,nm

ṽ

 . (4.4)

Step 2. Assume that there exist indices i1, i2 such that i1 < i2 and ki1 ≤ ki2 .
Then setting Ti1,i2 the (ni2 + (ni1 − ni2))× ni2 matrix with as first ni2 rows the matrix
Toep (−eki2−ki1+1,ni2

, 0, ni2), and as last ni1 − ni2 rows zeros, that is,

Ti1,i2 :=

[
Toep (−eki2−ki1+1,ni2

, 0, ni2)
0

]
,

we obtain that eTki1+1,ni1
Ti1,i2 = −eTki2+1,ni2

. Thus, letting

T̃ = T ⊕ Iñ,

where T is the m ×m block matrix with In1 , . . . , Inm as diagonal blocks, Ti1,i2 as the
block in the (i1, i2)-block position and zero blocks elsewhere, we obtain from [5, Chapter

VIII] that A and T̃ commute, so T̃−1AT̃ = A, and

T̃ Tv =
[
eTk1+1,n1

, . . . , eTki2−1+1,ni2−1
, 0, eTki2+1+1,ni2+1

, . . . , eTkm+1,nm

]
.

Using again Lemma 4.5 and induction on `1 + · · ·+ `m as many times as necessary, we
reduce the proof to the situation where A and v have the forms

A = Jn1(λ)⊕ · · · ⊕ Jnm(λ)⊕ Ã ∈ Cn×n, v =


ek1+1,n1

...
ekm+1,nm

ṽ

 , (4.5)
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where n1 > · · · > nm, Ã ∈ Cñ×ñ, σ(Ã) ⊆ C \ {λ}, ṽ ∈ Cñ, and where in addition we
have k1 > · · · > km.

Step 3. Finally, we are able to construct the necessary Jordan chains working
with A and B = uvT as in (4.5). Observe that indeed the following are Jordan chains
associated with λ of A+B:

e1, . . . , ek1−k2 , ek1−k2+1 − en1+1, . . . , ek1+n2−k2 − en1+n2 ; (4.6)

en1+1, . . . , en1+k2−k3 , en1+k2−k3+1 − en1+n2+1, . . . , en1+k2−k3+n3 − en1+n2+n3 ; (4.7)

and so on, the last Jordan chain being

ey+1, . . . , ey+km−1−km , ey+km−1−km+1 − ey+nm−1+1, . . . , ey+km−1−km+nm − ey+nm−1+nm ,
(4.8)

where we have set y = n1 + · · ·+nm−2. So we have constructed a total of m− 1 Jordan
chains, of lengths k1−k2 +n2 > n2, k2−k3 +n3 > n3, and so on, km−1−km+nm > nm,
respectively. Notice also that the vectors in the union of chains (4.6) throughout (4.8)
are clearly linearly independent. We have satisfied all the requirements of Theorem 4.3
and the proof is complete

Example 4.6 Let

A =


0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

 , u =


u1
u2
u3
u4
u5

 , v =


0
1
0
1
0

 .
Then n1 = 3, n2 = 2, k1 = 1, k2 = 0. Then the Jordan chain of the matrix

A+ uvT =


0 1 + u1 0 u1 0
0 u2 1 u2 0
0 u3 0 u3 0
0 u4 0 u4 1
0 u5 0 u5 0


mentioned in Step 3 of the proof is e1, e2− e4, e3− e5 and it has length k1−k2 +n2 = 3.

Note that the result of Theorem 4.4 is valid for any matrix similar to (4.1). In-
deed, use the transformation analogous to (4.3) but with the invertible matrix S not
necessarily commuting with A.

Proof of Theorem 4.3. It will be convenient to use the notation am (X,λ) for the
algebraic multiplicity of the eigenvalue λ of a complex matrix X. Under the hypotheses
of Theorem 4.3, and using Proposition 4.1, we have∑

am (A+B, µ) = n1,1 + · · ·+ np,1, (4.9)
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where the sum is taken over all distinct eigenvalues µ of A+B which are different from
any of the λj’s. On the other hand,

am (A+B, λj) ≥ nj,2 + · · ·+ nj,gj , j = 1, 2, . . . , p. (4.10)

Indeed, (4.10) holds for a generic set U of rank one matrices by Theorem 2.1, and if
B does not belong to U , then (4.10) follows by using approximations of B by elements
of U (cf. the proof of Proposition 4.1). Combining (4.9) and (4.10) we see that in
fact the equalities hold in (4.10), for j = 1, 2, . . . , p. It follows that the Jordan chains
constructed in Theorem 4.4 (with λ replaced by λj) form a basis for the eigenspace of
A+B associated with the eigenvalue λj. The result of Theorem 4.3 follows.

5 Conclusion

We have studied the perturbation analysis for real and complex matrices as well as
monic matrix polynomials under generic rank one perturbations. We have shown that
previous results for the complex case also hold in the real case and we have also proved
analogous results for a different form of generic rank one perturbations that is ex-
tremely useful in structured perturbations. Furthermore, we have analyzed in detail
rank one perturbations for which the total algebraic multiplicity becomes maximal for
the perturbed eigenvalues. The resulting Jordan structure of perturbed matrices is
fully described.
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