Eigenvalue perturbation theory of classes of
structured matrices under generic structured rank
one perturbations *

Christian Meh] Volker Mehrmann! André C. M. Ran?
Leiba Rodman §

Dedicated to G.W. (Pete) Stewart on the occasion of his 70th birthday

Abstract

We study the perturbation theory of structured matrices under structured
rank one perturbations, and then focus on several classes of complex matri-
ces. Generic Jordan structures of perturbed matrices are identified. It is shown
that the perturbation behavior of the Jordan structures in the case of singular
J-Hamiltonian matrices is substantially different from the corresponding the-
ory for unstructured generic rank one perturbation as it has been studied in
[18, 28, 30, 31]. Thus a generic structured perturbation would not be generic
if considered as an unstructured perturbation. In other settings of structured
matrices, the generic perturbation behavior of the Jordan structures, within the
confines imposed by the structure, follows the pattern of that of unstructured
perturbations.
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1 Introduction

In this paper, we consider the perturbation theory for Jordan structures associated with
complex matrices in several classes of structured matrices under generic perturbations
that have rank one and are structure preserving. We also present results on the behavior
of Jordan structures under rank one structured perturbations for rather general classes
of structured matrices, both real and complex, that cover many particular cases and
support the perturbation theory developed in this paper, and will be used in subsequent
publications as well. The classes that we consider are defined as follows.

Let F denote either the field of complex numbers C or the field of real numbers R
and let I,, denote the n x n identity matrix. The superscript (-)7 denotes the transpose
and (-)* denotes the conjugate transpose of a matrix or vector; thus X* = X7 for
X e Rmxm,

Definition 1.1 Let J € F?"*?" pe an invertible skew-symmetric matriz. A matriz

A € F?2" s called J-Hamiltonian if JA = (JA)T.

The classical and most important example in applications, see Section 1.3, are the
classes obtained with the matrix

J:[_(}n Ig} (1.1)

Other types of symmetries are introduced using an invertible symmetric matrix
instead of a skew-symmetric J in Definition 1.1:

Definition 1.2 Let H € F™*™ be an invertible symmetric matriz. A matrixc A € F™"
is called H-symmetric if HA = (HA)T.

If J is skew-symmetric invertible, and N is such that JN = —(JN)T, then N is
called J-skew-Hamiltonian. Note that the rank of any .J-skew-Hamiltonian matrix is
even, and since we are concerned only with rank one perturbations in this paper, J-
skew-Hamiltonian matrices will not be considered here. For a similar reason, we do
not consider here matrices N such that HN = —(HN)?, where H is symmetric and
invertible.

In this paper we consider the complex case in the above definitions. The real
case, as well as rank one perturbation analysis of J-symplectic matrices (defined by
the equality STJS = J with invertible skew symmetric matrix .J) and H-orthogonal
matrices (defined by the equality STHS = H with invertible symmetric matrix H)
will be studied in subsequent papers. An analogous but different perturbation theory
for rank one structured perturbations can be also developed for the case when H is
taken to be Hermitian and the transpose is replaced by the conjugate transpose (in the
complex case) in Definition 1.2. This will be addressed elsewhere as well.



1.1 Notation

In the following the set of positive integers is denoted by N. 7,,(\) denotes an upper
triangular m x m Jordan block with eigenvalue A and R,, stands for the m x m matrix
with 1 on the leftbottom - topright diagonal and zeros elsewhere, i.e.,

Al 0 0 1
A
0 \ 1 0

The k-th standard basis vector of length n will be denoted by ey, or in short ey, if the
length is clear from the context. The spectrum of a matrix A € F"*", i.e., the set of
eigenvalues including possibly nonreal eigenvalues of real matrices, is denoted by o(A).
An eigenvalue A € o(A) is said to be simple if the corresponding algebraic multiplicity
is one, i.e., A is a simple root of the characteristic polynomial of A.

X(Z) = det (Z — «I) is the characteristic polynomial of a square size matrix Z.

Throughout the paper we will use a fixed matrix norm || - || which denotes the
spectral norm || - ||2, and a fixed vector norm || - ||, namely the Euclidean norm.

A block diagonal matrix with diagonal blocks X, ..., X, (in that order) is denoted
by X; & Xo @ --- & X,. We also use the notation X®* for X ® X @ --- & X (k times).

If o7 = [vy,...,v,]T € C" then Toep (v) denotes the n x n upper triangular Toeplitz
matrix
U1 Vo ... Up
Toep (v) = 0
: . . Vo
0 ... 0 U1
We also introduce the anti-diagonal matrices
0 0 (-107 [0 L]
-1
: Y
S A 1 — (- (1)
0 Lt . -1
(=D 0 0 0

i.e., X is symmetric if k£ is odd, and skew-symmetric if k is even.

1.2 Motivation

The perturbation theory for eigenvalues of matrices is well established [34]. This is also
the case if the perturbations are generic low rank matrices, see [4, 18, 20, 28, 30, 31].
But when the perturbations are restricted to be structure preserving then surprisingly
different effects may occur.



Example 1.3 Let

o L A )

Then A is J-Hamiltonian and has two Jordan blocks of size 3 associated with the eigen-
value zero. The perturbation analysis under unstructured generic rank 1 perturbations,
Theorem 3.1 in [28] (a particular case of which is part of Theorem 2.3 below), yields
that the perturbed matrix still has one block J3(0), while the other block has vanished
and split into three (generically different) nonzero eigenvalues.

In contrast to this (as we will show below) a generic J-Hamiltonian rank one per-
turbation will lead to a Jordan structure with a 4 x 4 block J4(0) plus two (generically)
nonzero simple eigenvalues. Thus the size of the largest block even increases. 0O

This example demonstrates that the classical understanding of perturbation theory
has to be changed for classes of structured matrices. The perturbation theory for
structured generic low rank perturbations is dominated by two conflicting effects, the
generic structured perturbation trying to destroy the most sensitive part in the Jordan
structure (which is the largest Jordan block) and the structure which requires certain
Jordan structures.

1.3 Applications

The perturbation theory that we present in this paper has several important applica-
tions in control.

Let us first discuss the problem of passivity of systems. Consider a linear time-
invariant control system

t = Ax+ Bu, z(0)=0,
y = Cx+ Du, (1.3)

with matrices A € F™»", B € F™»™ C € FP" D € FP™. Here u is the input, x the state,
and y the output. Let us assume that all eigenvalues of A are in the open left half
complex plane and that D is square and invertible. The system is called passive, see
e.g. [2], if there exists a nonnegative scalar valued function © such that the dissipation
inequality

t1

Ola(tr)) - Oalta)) < [ (wy+yu)de

to
holds for all t; > t, i.e., the system absorbs supply energy. It is well known, [2, 16],
that one can check whether the system is passive by checking whether the Hamiltonian
matriz

_ -1 _ —1 px*
H:{F G]::[A BR'C BR'B 14)

H —F —C*R'C  —(A - BR'C)*



has no purely imaginary eigenvalues, where R = D + D*.

In many real world applications the system model (1.3) is only an approximation
arising from a discretization of an infinite dimensional problem, a linearization of a
nonlinear system, a realization or a reduced order approximate model, see e.g. [12, 13,
16, 17, 29, 33], and often in this approximation process the passivity is lost, and one
tries to modify the non-passive approximate system by a small norm (typically also
small rank) perturbation to a nearby passive system. Our perturbation theory will be
important in understanding and computing minimal perturbations.

Another important application arises in robust control. Consider a control system

(t) = Ax(t) + Biw(t) + Bau(t), x(to) = 2°,
y(t) == sz(t) + Dglw(t) + DQQU(t).

In this system, x is again the state, u the input, and w is an exogenous input
that may include noise, linearization errors, and un-modeled dynamics. The vector y
contains measured outputs, while z is a regulated output or an estimation error.

The optimal H, control problem is the task of designing a dynamic controller that
minimizes (or at least approximately minimizes) the influence of the disturbances w on
the output z in the Ho,-norm, see [36]. The computation of this controller is usually
achieved by first solving two Hamiltonian eigenvalue problems that both are low rank
perturbations (rank one in the single input case) of other Hamiltonian matrices where
the perturbation matrices depend on the same parameter v that gives an upper bound
for the Hoo-norm to be minimized. Minimizing the value of v under certain constraints
then allows to find the optimal controller. Very often the optimal solution is obtained
when an eigenvalue of the Hamiltonian matrix (as a function of 7) hits the imaginary
axis, and thus becomes a multiple eigenvalue. The structured perturbation analysis
of the eigenvalues as functions of this low rank perturbation allows the analysis and
computation of the optimal controller, see [5, 27].

There are many further applications of the perturbation theory for structured matri-
ces, such as the analysis of numerical methods for the Hamiltonian eigenvalue problem
or its generalizations, see e.g. [1, 6, 7, 11, 26], or the solution of algebraic Riccati equa-~
tions [19, 21]. Although in most applications the system matrices are real, in this paper
we first study the complex case to lay down the basis for the structured perturbation
theory. The real case will be discussed in a subsequent paper.

1.4 Review of contents

Besides the introduction and the conclusion, the paper consists of four sections. In
Section 2 we focus on unstructured generic rank one perturbations, collect some known
canonical forms, as well as describe ranks of perturbations of nilpotent matrices (The-
orem 2.2). We refine the known results on generic rank one perturbations by showing
that the “disappearing” Jordan block splits into simple eigenvalues (Theorem 2.3). The



partial Brunovsky form leads to formulas for the characteristic polynomial of the per-
turbed matrices and for some of its coefficients (Theorem 2.10). The main results of
Section 3 (Theorems 3.1 and 3.2) provide descriptions of Jordan canonical forms under
generic rank one perturbations, in general settings of structured matrices that encom-
pass many particular structures, including complex J-Hamiltonian and H-symmetric,
as well complex H-selfadjoint and real structures (to be studied elsewhere). In Sec-
tions 4 and 5 we state and prove our main results on generic rank one perturbations
within the classes of complex J-Hamiltonian and of complex H-symmetric matrices,
respectively (Theorems 4.2 and 5.1).

2 General results

In this section we recall and/or derive some mathematical results on generic rank one
perturbations, with emphasis on the unstructured setting, that will become important
in the further analysis, in this and subsequent papers.

2.1 Perturbations of nilpotent matrices

We say that a set W C F" (abbreviation for F**!) is algebraic if there exists a finite

set of polynomials fi(z1,...,2,),..., fx(z1,...,2,) with coefficients in F such that a
vector [ay, ..., a,]" € F™ belongs to W if and only if
filar,...,a,) =0, j=1,2,... k.

In particular, the empty set is algebraic and F" is algebraic. We say that a set W C [F”
is generic if W is not empty and the complement F" \ W is contained in an algebraic
set which is not F". Note here that the union of finitely many algebraic sets is again
algebraic. Clearly, if the set W C F" is generic and if S € F"*" is invertible then
SW is also generic. In the following, we say that a set W C F" x F" is generic if W,
canonically identified with a subset of F2?" is generic as a subset of 7.

The following lemma is almost obvious, but useful.

Lemma 2.1 Let Y(zy,...,z,) € F"™"[xy,...,2,] be a matriz whose entries are poly-
nomials in the variables xy, ..., x,. If

rankY(ay,...,a,) =k
for some [ay, ..., a,)T € F", then the set
{[b1,...,b)" € F" : rank Y (by,...,b,) >k} (2.1)

18 generic.



Proof. Let
filx,. . x) =detY(zq,...,2,), j=1,2,...,s,

where Yi(zq,...,z.),...,Ys(21,...,2,) are the k x k submatrices of Y (xy,...,x,).
Then the complement of the set (2.1) consists of the common zeros of the polyno-
mials fi,..., fs, i.e., it is an algebraic set, and the set (2.1) is nonempty by hypothesis.
This shows that (2.1) is generic. [

In the following result we discuss ranks of powers of generic rank one perturbations
of nilpotent matrices.

Theorem 2.2 Consider a matriz A € F™*" satisfying A™ = 0 for some m € N.

(1) If X € F™™ is any rank one matriz, then

rank ((A+ X)™) < m.

(2) If in addition A™~1 £ 0, then

rank ((A +uw™)™) =m
for a generic set of vectors { z } € ",

(3) If in addition A™ ' #£ 0, then for every invertible B,C € F™ " we have
rank ((A+ Cuu’ B)™) = m
for a generic set of vectors u € F™.

Proof. Multiplying out (A + X)™ we obtain

(A+X)" = A"+ A" X £ A" 2X(A+ X) + A" 32X (A4 X)?
+ o AX A+ X)) X (A+ X)L (2.2)

Since A™ = 0 and all other summands in the right hand side of (2.2) have ranks at
most one, part (1) follows.

For part (2) let us assume without loss of generality that A is in Jordan canonical
form, i.e.,

A= J(0) ® J,(0) ® - @ Jr, (0), (2.3)

where k; < ki =m, j=2,3,...,1.
We obviously have that

rank ((A + e,el)™) = m,

so by Lemma 2.1, part (2) follows (note that we cannot have rank ((A + uv™)™) > m
by part (1)).



Finally, consider part (3). From
A+ Cuu’B = C(C'AC + uwu" BC)C,
we see that without loss of generality we may assume that C' = I. Furthermore,
A+uu”B = S(STAS + (S7ru) (v (STHT)(STBS))S™,

and choosing the invertible matrix S so that S7'AS is in Jordan canonical form, we
may also assume without loss of generality that A is given by (2.3). Denote by A(u),
u = [ug,...,u,]t € F" the determinant of the m x m upper left corner of the matrix
(A +uu”B)™. In view of Lemma 2.1, we only need to show that

Awy, ..., w,) #0 for some wy,...,w, € F. (2.4)
By (2.2) we have that
(A +uu”B)™

= A" B+ A" ?uu’ B(A + wu® B) + A" Buu’ B(A +wu’ B)* 4+ (2.5)
oo+ Auu" B(A 4+ uu" B)™? + uwu” B(A + uwu” B)" L

This formula shows that A(u) is a polynomial in us, ..., u, of the form
Au) = Agp(u) + Agpyo(u) + -+ - + Aoz (1),

where A, (u) is a homogeneous polynomial of degree p. Clearly, to prove (2.4), we only
need to find wy,...,w, € F such that

Agm(wl, ce ,U}n) 7é 0 (26)

(here we use the easily proved fact, that if one homogeneous component of a polynomial
in several variables takes a nonzero value, then the whole polynomial takes a nonzero
value).

Note that Ay, (u) is the determinant of the upper left m x m corner of the matrix

A" Yy B4+ A" 2uu BA+ A" uu BA* 4 - -+ Auu' BA™ 2 +uu” BA™(2.7)

(cf. formula (2.5)). Let [by,...,b,]" be the first column of B. Since the upper left
m X m corner of A is the nilpotent Jordan block .J,,(0), it follows that the upper left
m X m corner of the matrix (2.7) is an upper triangular m x m matrix with

U (U101 + . .. + uyby)
on the main diagonal. Clearly, one can choose wy, ..., w, € F so that
Wi (w1by + ... + wyby,) # 0,

(here we use the hypothesis that B is invertible, and therefore at least one of by, ..., b,
is nonzero), and (2.6) follows. O



2.2 Unstructured generic rank one perturbation theory

The general perturbation analysis for generic low rank perturbations has been studied
in [18, 20, 28, 30, 31, 32]. For the case of rank one perturbations - which is of interest
in this paper - we have the following result.

Theorem 2.3 Let A € C™" be a matriz having the pairwise distinct eigenvalues
A1, ..y Ap with geometric multiplicities g1, . .., g, and having the Jordan canonical form

g1 9p
PP T ().
k=1 k=1

where njy > -+ > nj,, j=1,...,p. Consider the rank one matriz B = wol', with
u,v € C". Then generically (with respect to the entries of u and v) the Jordan blocks of
A+ B with eigenvalue \; are just the g; —1 smallest Jordan blocks of A with eigenvalue
Aj, and all other eigenvalues of A+ B are simple; if g; = 1, then generically \; is not
an eigenvalue of A+ B.

More precisely, there is a generic set @ C C" x C" such that for every (u,v) € Q,
the Jordan structure of A+ uwv” is described in (a) and (b) below:

(a) the Jordan structure of A+ uv® for the eigenvalues My, ..., \, is given by
g1 9p
@ j”lk()\l) G- D @jnp,k(/\p>;
k=2 k=2

(b) the eigenvalues of A+uv® that are different from any of M1, ..., \,, are all simple.

Part (a) of Theorem 2.3 is the main theorem of [28] specialized to the case of rank
one perturbations; a result similar to that of [28] has been obtained in [30]. For the
proof of part (b) we need some preparations. We start with the following well known
example:

Example 2.4 Let

A1 0
20\ a) = TuN) +aeel = | 0 A lecmm dec aec\{o}
a ... 0 A

Then x(ZW (X, @) = (=1)™((x — \)™ — «); in particular, ZM (), ) has m distinct
eigenvalues. 0



Next, we note that by [28], it follows that there exists a generic set Q' of vectors
(u,v) € C* x C" for which Theorem 2.3 (a) holds. Clearly, we may assume 2’ is open;
indeed, if the complement of € is contained in an algebraic set = # C" x C", we
may replace " with a smaller open set whose complement is =. We then obtain the
following lemma.

Lemma 2.5 Let A be as in Theorem 2.3. Then there exists € > 0 and an open dense

(in {(u,v) € C* x C" : ||ul|, ||v|| < €}) set
Q" CAN{(u,v) €C*"x C" : |lul|,||v]|| < €}
such that for every (u,v) € ", the Jordan form of A+ uv® is as in Theorem 2.3.

Proof. Denote by D(z,¢) the closed disc of radius € centered at z € C. Fix ¢ > 0
so small that for every u,v € C" with ||ul|, [[v]| < €, all eigenvalues of A+ B = A+ uv”
are within the union of the closed pairwise nonintersecting discs of radius €*/™ centered
at each of the points Aj,...,\,. It will be assumed from now on that [jul], ||v| < e.

Let x(Aj,u,v) for j = 1,2,...,p be the characteristic polynomials in the inde-
pendent variable x for the restrictions of A + B to its spectral invariant subspaces
corresponding to the eigenvalues of A + B within the disc D()\;, €¥/™). Notice that the
coefficients of x(\;,u,v) are analytic functions of the components of u and v. Indeed,
this follows from the formula for the projection onto the spectral invariant subspace

1

— [ (2 — (A+ B)) dz,

5 [G1=(4+B)

for a suitable closed simple contour I'. The integral is analytic as function of u and v;
to prove that, use approximation of the integral by Riemann sums, and within every
summand of the Riemann sum use the formula

(20 — (A+B))™" = (adj (20! — (A + B)))/(det (z0] — (A + B))),

where adj Z stands for the algebraic adjoint of a matrix Z.
Let q(\j, u,v) be the number of distinct eigenvalues of A+ B in the disc D();, e2/m).
Let

Gmax(Aj) = max {g(Nj,u,v)}.

u,veCn, lull[|v][<e

Next, we fix A\;. Denote by S(pi,ps) the Sylvester resultant matrix of the two
polynomials py(x), pe(z) (see e.g. [3, 15]); note that S(p1, p2) is a square matrix of size
degree (p1) + degree (p2) and recall the well known fact (see [23] for example) that the
rank deficiency of S(py, ps2) coincides with the degree of the greatest common divisor of
the polynomials p;(z) and pa(z). We have

aX()\jv u, U)

q(N\j,u,v) =rank S (X()\j,u,v), D

) —(njat -+ nyg) +1

10



The entries of S(x(A;,u,v), W) are scalar (independent of w,v) multiples of the

coeflicients of x(\;,u,v), and therefore the set Q(\;) of all vectors (u,v) € C* x C",
|ull, ||v]] < €, for which g(A;, u,v) = gmax(A;) is the complement of the set of common
zeros of finitely many analytic functions of the components of v and v. In particular,
Q();) is open and dense in

{(u,v) € C" x C" : lull, [[v]] <€}
On the other hand, still for a fixed A;, consider

U
up=—€e| |, (2.8)

where the vectors u;, € C™ 17 ™9 are such that all uy’s are zeros except for u; which
has 1 in the n;-th position and zeros elsewhere. Also let

U1
voi=—€e| |, (2.9)

partitioned conformably with (2.8), where all all v},’s are zeros except for v; which has 1
in the first position and zeros elsewhere. (The coefficient (1/2)e in (2.8) and in (2.9) is
chosen so that the properties (1) and (2) below can be guaranteed.) One checks easily
(cf. Example 2.4) that in the disc D();, €2/™) the matrix A + ugvl has:

(1) n;, simple eigenvalues different from A;; and
(2) the eigenvalue \; with partial multiplicities n;2,...,n;,,.

If by chance the pair (ug,vp) is not in €, then we slightly perturb (ug, vy) to obtain a
new pair (uf,v)) € € such that (1) and (2) are still valid for the matrix A + uf(vy)7.
Such choice of (ug,v)) is possible because Q' is generic, the property of eigenvalues
being simple persists under small perturbations of A + ugvl, and the total number
of eigenvalues of A + wv” within D();, €2/™), counted with multiplicities, is equal to
nj1 + -+ njg,, for every (u,v) € C*, [jul], [[v|| < e. Since Q' is open, clearly there
exists ¢ > 0 such that (1) and (2) are valid for every A + uv”, where (u,v) € C* x C"
and ||u — upl|, ||[v — vo|| < d. Since the set of all such pairs of vectors (u,v) is open in
C" x C", it follows from the properties of the set ();) established in the preceding

paragraph that in fact we have
g, U, V) = Gmax(Aj) =mjp+ 1, forall w,v e C”, |lu—upl,|v— ol <6.

So for the following open set
QM= Q) N

J

11



which is dense in {(u,v) € C" x C" : ||lu||,|v|| < €}, we have that the part of the
Jordan form of A + uv®, where (u,v) € Qg-l), corresponding to the eigenvalues within
D()\j, €™ consists of

j”j,2 ()‘J) DD Jnj,p]- ()‘])

and n;; simple eigenvalues different from A;.

Now let
p
_ W
Q= (ﬂQj > neY
j=1

to satisfy Lemma 2.5. Note that 2 is nonempty as the intersection of finitely many
open dense (in {(u,v) € C" x C™ : |lu||, |[v]| < €}) sets. O

Proof of Theorem 2.3. As noted above, in view of the main result of [28], we only
need to prove part (b). Let x(u,v) be the characteristic polynomial (in the independent
variable ) of A+ B. Then the number of distinct roots of x(u,v) is given by the rank
of the Sylvester resultant matrix S(x(u,v), %X(u,v)) minus n — 1 (cf. the proof of
Lemma 2.5). Therefore, the set 2y of all pairs of vectors (u,v) on which the number
of distinct roots of x(u,v) is maximal, is a generic set. By Lemma 2.5, the maximal
number of distinct roots of x(u,v) is equal to

p
nig 4+ np1+ Zmin{gj —1,1}.

=1

Thus, for the generic set U = Qg N Q' the Jordan structure of A + uv? is described by
(a) and (b), as required. 0O

We will re-prove the part (a) of Theorem 2.3 in Section 2.4, using the Brunovsky
canonical form.

2.3 Structured canonical forms

In the following we will recall the canonical forms for J-Hamiltonian and H-symmetric
matrices which is available in many sources, see e.g. [21, 24], or [22, 35] in the framework
of pairs of symmetric and skew-symmetric matrices.

Theorem 2.6 Let H € C"™™ be symmetric and invertible and let A € C"™ be H-
symmetric. Then there exists an invertible matriz P € C™*™ such that

P'AP=F,, (M) @ @ Tn,(A\n), P'HP=R, ®---®R,,, (2.10)

where ny,...,n, € N oand A, ..., N, € C are not necessarily pairwise distinct. The
form (2.10) is uniquely determined by the pair (A, H), up to a simultaneous permutation
of diagonal blocks in the right hand sides of (2.10).

12



Theorem 2.7 Let J € C"*" be skew-symmetric and invertible (i.e., n is even), and
let A € C"™" be J-Hamiltonian. Then there exists an invertible matriz P € C*™" such
that P~*AP and PTJP are block diagonal matrices

PUAP=A 0 A @ A;, PTIP=J,&J, & Js, (2.11)

where the blocks have the following forms.

(i) A = Jon,(0) @ -+ D T, (0),  J1=Xon, @+ D Yo,

with ny,...,n, € N;

I x72m +1(0) 0 :| |i \72771 +1(0) 0 :|
Ay = 1 q
(i) : { 0 o |0 B0 )
0 Egm +1 0 22m +1
Jo = 1 Ce a ,
2 |: _22m1+1 0 :| © © [ _22mq+1 0 :|

withml,...,mCIENU{O}f

(iii) A3 =A3:1 D - D A3, J3=J31D DSz,
where
To (A)) 0 Tt;.4,(A5) 0
Aq = 3,1\ 245
5 |: 0 _\7€j,1()‘j)T @ @ 0 _‘%j,qj (AJ)T ,
_ 0 Ifj,l 0 Igj,qj
J3; = { I, 0 } DD _]fj,qj 0 ] 5

with U1, ..., lie, € N and A\; € C with Re();) > 0 or Re();) = 0 and Im();) > 0
for 5 =1,..., k. Moreover, \,...,\; are pairwise distinct.

The form (2.11) is uniquely determined by the pair (A,J), up to a simultaneous per-
mutation of diagonal blocks in the right hand sides of (2.11).

2.4 The Brunovsky form

To analyze the effect of rank one perturbations, we will make use of the following theo-
rem, which follows directly from the Brunovsky canonical form, [9], see also [10] or [14]
for example, of general multi-input control systems & = Ax+ Bu under transformations

(A, B) — (CY(A+ BR)C, C'BD)

with invertible C, D, and arbitrary R of suitable sizes.

13



Theorem 2.8 Let A € C™™ be a matrix in Jordan canonical form

A= jm()‘l) DD jng()‘g> D jng+1()‘g+1) DD jnu()\l/)7 (2'12)
where A\; = -+ = A\, =: = C, Ag+1,--., A € (C\{X}, ny > --- > ng. Moreover, let
B = wv”, where

Uy Uy
u = S, ov= |, u,ueChia=1,... v
Uy Uy
Assume that the first component of each vector v;, i = 1,...,v is nonzero. Then the

matriz Toep (v1) & - - - @& Toep (v,) is invertible, and if we denote its inverse by S, then
ST1AS = A and

ST'BS = [wei,,,,...,we], |, (2.13)
where w = S~ u. Moreover, the matriz S~'(A + B)S has at least g — 1 Jordan chains
associated with X of lengths at least no, ..., n, given by

€1 — €ny+1, <oy €ny T Enydng;
€1 — en1+n2+17 ) eng - 6n1+n2+n3; (214)
€1 — €n1+...+ng71+1, ceey eng - €n1+--~+n971+n9-

Proof. Clearly Toep (v;) is invertible if the first component of v; is nonzero, so S exists.

Moreover, S commutes with A, and e, (Toep (v;)) = v], so we have

1
1pa_ o1, Ta_ [, T T
STBS=5"w"S = [wel,m, o ,welm}.

It is then straightforward to check that the given chains are indeed Jordan chains
associated with A. O

We emphasize that in Theorem 2.8 there is no claim whether the Jordan chains
(2.14) associated with A can be extended to a longer chain or not, nor is there a claim
whether (2.14) form a full basis of the corresponding root subspace or not.

Example 2.9 If N = 0, v=g=3,n1 =4, ny =3, n3g =2, then the Brunovsky form
of A+ B and the corresponding Jordan chains associated with A = 0 of length 3 and 2
are given by

[w; 1 0 Ojw; 0 O|w; 0] 1] O] [ O] [ 1] [ 0]
w3 00 1lwg 0 Ojws O 0 0 1 0 0
ws 0 0 Olws 1 Olws O, | —=1|,l0],] 0], 0l,] o0
wg 0 0 Olwg 0O 1]|wg 0O 0 -1 0 0 0
wr; 00 Ojlwy, O Ofwy O 0 0 -1 0 0
wg 0 0 Ojlws 0 Ojwg 1 0 0 0 -1 0

L Wy 0 00 Wq 0 0 Wq 0 i L 0 i L 0 i L 0 i | 0 ] L 1 i

14



In the following, we want to apply Theorem 2.8 to the canonical forms in Section 2.3
which are close to but not quite in Jordan canonical form. Therefore, we will introduce
in the next theorem the so called partial Brunovsky form with respect to a particular
eigenvalue A. With this form, the characteristic polynomial associated with the eigen-
value A\ can be conveniently characterized. In the next section, we will need explicit
formulas for some of the coefficients of the characteristic polynomial of the perturbed
matrix. We establish those in the next theorem as well. For the ease of future reference,
we group together Jordan blocks of the same size in the Jordan canonical form of A.

Theorem 2.10 Let

A= (jm (X)%) @@ (jnm(X)@fm) @ AecCrn (2.15)

where ny > -+ > n,, and a(g) CC\ {X} Moreover, let a = liny + - - - + ,,n,, denote

-~

the algebraic multiplicity of X and let B = wv®, where u,v € C" and

e

ICAY
v = o | v = : oW e, j=1,...0, i=1,...,m.
v (0.4
v
Assume that the first component of each vector v, j = 1,... . ¢;, i = 1,...,m is

nonzero. Then the following statements hold:

-1
51 . L, .
(1) The matriz S := (@ Toep(v ) @ - @ @ Toep(v(mﬂ))) ® I,,_, exists and

J=1 J=1
satisfies

STTAS =A, ST'BS=w el €l €€l r (2.16)

IO 1€l 1 €l F
VvV TV 4
{1 times lm times

where w = S~'u and for some appropriate vector = € C"9.

(2) The matriz S~ (A + B)S has at least {1 + -+ + £, — 1 Jordan chains associated
with X given as follows:

a) {1 — 1 Jordan chains of length at least ny:

€1 — €py+1, ceey Eng T €24
(2.17)

€1 — €y —n1+1, -+ Cny = Coyng;

15



b) ¢; Jordan chains of length at least n; fori=2,... ,m:

€1 = €lnyttli_n_1+1, ceey Enp T g4l gng_1+ngs
€1 = Clynydtli_1ni—1+ni+1s sy Cnp T eyl ny 142045
(2.18)
€1 = Clhnyttlioan 1+ —Dni+1s <oy Eny T Cling el gng g Hing s
(3) Partition w = S™'u as
1)
w' i1 (4,9)
) w( ’ ) wl
W — : . w® = Cowl®) = : € Cni,
w™ : s
— w(z,&) w(zv.])
w i
and let Ay, ..., Ay be the pairwise distinct eigenvalues of A different from A having

the algebraic multiplicities vy, ..., 1y, Tespectively. Set p; =\ — X, 1 =1,2,...,q.
Then the characteristic polynomial p; of A+ B — N s given by

p(A) = (=A)"a(A)+ (H(,Ui - A)Ti)-((—A)“ + (—1)a—1zi: i w}(:',j)Aa_k>

=1

where q(\) is some polynomial;

(4) Write pz(A) = ¢y A" 4+ -+ + Compy 1A ™+ ¢y, A2 Then

q 5
Commy = (=1)" <H u?‘) <Z wéﬁ’ﬂ); (2.20)
i=1 j=1

and in the case ny > 1 we have in addition that

q q 141 q 2
o ) () ()
v=1 i=1 j=1 i=1

1
1#v J

(2.21)
ifni —1>ny or, if ny — 1 = ng, then

q q 41
Caomr = (0" | S r T (waﬁ’j))
v=1 i=1 j=1

i#v

q 0y 12
e (T (St o) e
i=1 j=1 j=1
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Proof. The parts (1) and (2) follow exactly as in Theorem 2.8.
For the proof of part (3), we need to work with individual Jordan blocks rather
than with groups of blocks. We simplify somewhat the notation, and denote

(w1, . wy) = (WD w2 ) )y g —

where the w;’s are column vectors
Wi 1
w; = : eC i=1,...,9.
Wi, s,
We may assume without loss of generality that A+ B is in Brunovsky form. Indeed, all

that is needed is another similarity transformation with a matrix of the form 7, oS1e
C™ " which leaves the vectors wy, ..., w, invariant in (I, ® S™')w. Thus, we let

A= T i(rgr) B @ T (W),

where 7441, ...,7, are not necessarily distinct. (Clearly, {vy11,..., %} = { 1, ..., A},
but we may have v — g > ¢.) Denote also m:%—X,z’:ngl,ngz,...,y.

With A+ B also A+ B — X[n is in Brunovsky form, and the list of the diagonal
elements of A — A[ is given by (0,...,0,K4¢1,...,K,). Let M denote the matrix that
is obtained from (A + B — Vi ) — Al by subtracting the first column from the columns
s14+1,81+82+1,...,81+8+---+s,_1+1. Note that the column s;+---+s;+1 then
becomes zero except for A in the first entry, for —\ in the (s; + -+ +s; + 1)-st entry if
i=1,2,...,9—1,and for 9,41 — A in the (s; +---+s;+ 1)-stentry ifi =g,...,v — 1.
Then clearly p;(A) = det M. If v > g, then partition M as

[ wi A BTN 0 0
o T 0 0 0
Wy 1 0 k,—A 1 0
M=1 w, 0 0 ks —»x 0o |
: : : R |
w,s, 0 0 0 Ky—A

where T € C=sv=Dx(n=sv=1) 'y — g, 4 45, is an upper triangular matrix whose first
a—1 diagonal elements are equal to —\. Thus, applying Laplace expansion successively,
we obtain that

- T
det M = \*G(\) + (k, — A)* det { wl’la A 5T } (2.23)

for some polynomial g(A). Indeed, for s, = 1 this is obvious and for s, > 1 we obtain

det M = (—1)"tw,q - 1-...-1L-(=1)"*'\det T + (k, — \) det M,,_;
sy — 1 times

= AqA) + (K, — A) det M,y
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where ¢(\) is some polynomial and M, is the principal (n — 1) x (n — 1) submatrix
of M. Note that M,_; has the same structure as M just with s, replaced with s,_;.
The claim then follows by induction. By further induction, we then obtain from (2.23)
that

det M = Xq(\) + ( H (ki — )\)81') det M, (2.24)
i=g+1

where M, is the principal a x a submatrix of M. It remains to compute the determinant
of M,. To this end, partition M, as

[ wii—XA 8 A 0 0 ]
a T 0 0 0
Ma _ Wqg,1 0 =X 1 0 ’
wee 0 0 =\ 0
: T |
| wgs, 00 ... 0 =X

Applying the cofactor expansion of det M, by the first column, and using detT =
(—=A)? %1 we obtain that

det M,
= (=1)" g, (1) N det T + (= A)(=1) 2wy, 1 (—=1)* > N det T

oo (=) (1) 50wy y (—1) 5 A det T+ (—A)* det [wl’l -

(< . —\ B
— _1a1 )\ak —)\)% det wi,1 o
o (o) a1

a
By induction, we finally obtain

g
det My = (=N + (=1)* 7D ) Jwipd*F, (2.25)

where the extra term (—\)* appears due to the fact that the first entry of the first
column of M, is not wy 1, but wy; — A. Combining (2.25) with (2.24), formula (2.19)
follows.

For part (4) observe that the lowest possible power of A associated with a nonzero
coefficient in p;(A) (given by (2.19)) is clearly a —ny, and a calculation shows that the
corresponding coefficient ¢, _,, is as in (2.20), while the coefficient ¢, ,, 11 of A"+
in p5(A) is as in (2.21) or (2.22) depending on whether ny —1 > ng or ny —1 =ny. O
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2.5 Extension of Jordan chains

In this section, we discuss the extension of some Jordan chains of a matrix in Brunovsky
form. This will be needed to prove our main results. However, it is not always possible
to extend a given set of Jordan chains to a set of Jordan chains that forms a basis as
we will illustrate in the following example.

Example 2.11 Consider the rank one perturbation of A = J5(0)® J2(0)® J1(0) given

by
a l a 0 a
B b 0O b0 b
A= c 0 ¢ 1 ¢, bd#0
b 0 —b 0 =0
d 0 d 0 d

which is obviously in Brunovsky form. By Theorem 2.8 we know that A has at least
two Jordan chains associated with zero of lengths at least 2 and 1, given by

e1 —e3, 6o —eyq, and e} —es, (2.26)

respectively. Let us check whether the first chain can be extended to a Jordan chain
of length three. For this, we would have to show that e; — e4 is in the range of A.
However, the linear system

0 al a 0 a T To + a(xy + w3 + x5)
1 0 b 0 b ) b($1 +.Z'3—|—$5)
0| = 0 1 ¢ xg | = | x4+ c(z1 + 23+ 25)
—1 b 0 —=b 0 —=b Ty —b(xl + 23+ ZE5)
0 d 0 d 0 d T5 d(fEl +I’3+ZE5)
with unknowns z1, ..., x5 does not have a solution, because d # 0, so the chain e; —

e3, ea — €4 cannot be extended to a Jordan chains of length 3. Nevertheless, it can
be shown that A does have a Jordan chain of length at least 3 associated with the
eigenvalue zero. To this end, consider the vectors

1 o
0 1
-1 1, 0
0 -1
0 —

that form a Jordan chain of A associated with zero of length 2. We now show that this
chain can be extended for a particular choice of a. Indeed, for o = —d/b the linear
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system

o a1l a 0 a T xo + a(zy + x5 + x5)

1 b 0 b 0 b ) b(l’l + x3 +LL’5)

0| = c 0 ¢c1 ¢ x3 | = | x4+ c(zg + 23+ x5)
-1 -b 0 =b 0 —b T4 —b(z1 + x5 + x5)
e d 0 do0 d s d(x1 + x5+ x5)

has 1 = 1/b, 29 = —d/b—a/b, x3 =0, x4 = —c/b, x5 = 0 as a solution.

Note that the Jordan chain that could be extended in Example 2.11 can be consid-
ered as a “linear combination” of the two Jordan chains in (2.26). We will need similar
constructions later in this paper and therefore, we introduce the following “sum” of
Jordan chains.

Definition 2.12 Let A € C™" and let X = (x1,...,2,) and Y = (y1,...,y,) be two

Jordan chains of A associated with the same eigenvalue X of (possibly different) lengths p
and q. Then the sum X+Y of X andY is defined to be the chain Z = (21, . .., Zmax(p.qg))

where
Ty ifp>q 4
zZ; = ; ) =1,....|p—
j {% ifp<q’ lp —q|

and
T4y ifp > .
Zj:{ Y P2 , J=Ip—ql+1,...,max(p,q).

Yj + Tj—gtp ifp<q

To illustrate this construction, consider e.g. X = (1, x2,x3,24) and Y = (y1,y2), then
X+Y = ($1,I2,$3+y171‘4+y2)

It is straightforward to check that the sum Z = X + Y of two Jordan chains
associated with an eigenvalue N is again a Jordan chain associated with X of the given
matrix A, but it should be noted that this sum is not commutative.

With these preliminary results, we have now set the stage to derive the desired
perturbation theorems for structured matrices under generic rank one perturbations in
the following sections.

3 Generic structured rank one perturbations for
general classes of matrices with symmetries

In this section we state and prove general theorems concerning generic structured rank
one perturbations. Although we focus on symmetry structures with respect to bilinear
forms in this paper, the theorems cover a much wider class of structured matrices
including matrices that are structured with respect to sesquilinear forms. To this end
in the next two theorems, we will use the notation * to denote either the transpose ”
or the conjugate transpose *
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Theorem 3.1 Let A € F™*" and let T, H € F™"*" be invertible such that
AT = (7,0)°") @ (F.00%%) @ 0 (L, W) 0 4 (3.1)

4
T*HT = (EB H(lﬂ')) oHY e .- o H™ o H, (3.2)
j=1

where X\ € F and the decompositions (3.1) and (3.2) have the following properties:

(1) ny >ng >+ >ny;

(2) HU) ¢ Fbmixtni j =2 ... m and the matrices

— 1’ . =3
0o ... 0 Ay
: . (1,5) (1,9)
H(Lj) _ . . h2yn1—1 h?,nl ) ] — 17 2’ . 761;
0o . ;
D B S

are anti-triangular (necessarily invertible);

(3) H, Ac Fn=a)x(m=a) “where a = 3 ¢;n; and U(Z) CcC\ {X}

Jj=1

If B € F™" is a rank one matriz of the form B = uu*H, then generically (with
respect to the components of u if x = T, and with respect to the real and imaginary
parts of the components of u if x = %) A+ B has the Jordan canonical form

(7 FE) & (7M)2) &0 (7,0 ) & J. (33)
where/\j contains all the Jordan blocks of A+ B associated with eigenvalues different

from A.

Proof. Without loss of generality, let A, H be in the forms (3.1) and (3.2) already.
In view of Theorem 2.10 it is sufficient to show that the algebraic multiplicity of the
eigenvalue A of A+ B is a — n; generically. Let

(1) . ..
u' 2, (i) ugm)
U = (: o ul?) = : o ulh) = : cF", uelF"",
ulm ; S
(i,65) (4,)
01 " Un,
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and

vt CAY) UYJ)
v = H*u = (2 . @ — 7 o) — : eF™, ©vel
v (054 wm
v i

Generically (in the sense of the theorem), we have vﬁi’j ) 20, because H is invertible.
In particular, we have

@) hil Dl if =T,

1
WD uf? i % = .

So by Theorem 2.10 we can compute S~! =S I, _,, where

1
S = @Toep(v( @@Toep cF*™  if x=T,

S = @Toep @@Toep J) e C™ if x=x.

Thus, we obtain that
ST A+ B)S = STYA+w™)S

is in partial Brunovsky form (2.16) with respect to X and

w® w®D wgi,j)
wi= S = ( ) | w = : ) w9 = : e F*, welF"°,
UJ{D w(i,fi) wg;j)
where 2
(Lg) (, (L,4) e
(1) — = (v (1,3)) (1,5) _ hml (unlj > ifx="1T,
o = (L3))2 .
nl 1 ‘u ' | lf * = %k,

By Theorem 2.10, and taking into account formula (2.13), the characteristic polynomial
of A+ B — A is given by

n

PX(A)Z Z Ci/\i,

i=a—n1

where

A\ 2
Z ) () ife=T

Z hflll’]l) Um )| if % = *;

7j=1
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here M # 0 is a constant independent of B. Clearly, ¢,_,, is generically (in the sense
stated in the theorem) nonzero and hence the algebraic multiplicity of the eigenvalue
Nof A+ Bisa— ny. Together with Theorem 2.10, we obtain that the only possible
Jordan canonical forms for A + B are given by (3.3). O

Theorem 3.2 Let A € F"*" and let T, H € F™*"™ be invertible matrices such that

—~ o ~ I ~
THW:A®A@A,TWH:[%.S]@E (3.5)

where the decomposition (3.5) has the following properties:

(a)
;4\: (jnl(/):)@h) DD <~7nm(3\\)®em> ’
where ny > ng > -+ > Ny, andXEF;

(b) a= 3" £n; and H,A e Foxa, H ¢ Fln-20)x(n-2a).

(c) a(A),a(A) CC\ {A}.

If B € F™*" is a rank one perturbation of the form B = uwu*H, u € F", then generically
(with respect to the components of u if x = T, and with respect to the real and imaginary
parts of the components of u if x = %) A+ B has the Jordan canonical form (3.3).

Note that H ) H are necessarily invertible.
Proof. As in the proof of Theorem 3.1, we may assume that A and H are in the
forms (3.5). Partition

- Ne) ey agm‘)
u=|a |, a=| : |, a%=| : |, @™ =] : | eFm,
u am 7(4) 7
and ,
) 461 ﬁgm)
i = , a0 = |, aW =] | ePm
i(m) i) Vgij)



Generically (in the sense of the theorem), we can now form the matrix S = S® I,
where

41
= (@ Toep (ﬁ(l’j))) (@Toep ™)) ) if x=T,
j=1

(@ Toep (4(1:9) ) (@ Toep (i ) if x = *.

Then S™Y(A + B)S = S71(A + uww*)S is in partial Brunovsky form (2.16) as in Theo-
rem 2.10. Next, consider the vector

) iy @y’j)

: : , {D(i,j) — c ™.
om) i) l/U\(i’j)

ng

w:=S"tu=

SESIEN
g)
Il
5
I

Then we obtain o .
D = ()3

nz

By Theorem 2.10, the characteristic polynomial p; of A+ B — A has the form
Ps(A) = A"+ -+ Cany i A\ ey AT

where

2 4
oy = M (Z @&ﬂ) =M (Z(a‘ b*Ai};ﬂ)) ,
j=1 Jj=1
M # 0 is a constant independent of B. Clearly, ¢, ,, is generically (in the sense
indicated in the statement of Theorem 3.2) nonzero and thus @ = a — ny is generically
the algebraic multiplicity of the eigenvalue Xof A+ B. Together with Theorem 2.10,
it follows that the only possible Jordan canonical forms for A + B are as in (3.3). O

Note that the scenario in Theorems 3.1 and 3.2 corresponds exactly to the scenario
under arbitrary unstructured rank one perturbations; cf. Theorem 2.3.

Observe that the case when F = R and A nonreal is covered in these theorems: Just
apply the complex version of the theorems to this particular case.

The particular forms of the matrix H in Theorems 3.1 and 3.2 are set with a view
for applications to many types of structured matrices. The two theorems apply to the
cases of symmetric complex matrix H and H-symmetric matrices (see Theorem 2.6)
discussed in Section 5, and also to the case of H-selfadjoint matrices discussed in [25].
Finally, they apply to the case where J is skew-symmetric, and A is J-Hamiltonian and
invertible (case (iii) in Theorem 2.7). Thus, for J-Hamiltonian matrices it remains to
study the case of the eigenvalue zero. This will be done in the next section.
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4 Generic structured rank one perturbations for
complex J-Hamiltonian matrices

In this section we state and prove one of the main results of the paper concerning
perturbations of complex J-Hamiltonian matrices. According to Theorem 2.7, if A #£ 0
is an eigenvalue of a complex J-Hamiltonian matrix A, then so is —\ (with the same
partial multiplicities), and for every odd k, the number of Jordan blocks in the Jordan
form of A of size k corresponding to the zero eigenvalue is even.

As Theorem 4.2 shows, in the case the largest partial multiplicity of the zero eigen-
value is odd, the generic behavior of the Jordan structure of the perturbed matrix
contrasts sharply with the unstructured situation (Theorem 2.3). To motivate the
main result, consider an example first:

Example 4.1 Consider the matrix

J2m+1(0) 0 T 0 Yom+1 (4m+2) X (4m+2)
= + eC .
0 Jom+1(0) o —Yom1 0

Z(w)
We will show that generically (with respect to the components of w € C*™*2) Z(w)
has the Jordan from of type Jom12(0) @ k1 @ ko & - - - @ ko, where the k;’s are distinct
nonzero complex numbers.

A standard transformation allows us to consider the J-Hamiltonian (see (1.1)) ma-
trix

o o | Jom+1(0) 0 u T T
M = M(u,v) := _ 0 — Tomar (0)7 1, [ —v" W]
instead of Z(w). Indeed, one verifies that
L 0] 0 Yomt1 || damsr O _J
0 Yomyr | —Yom+1 0 0 Yot ’
and
y Py 0 Iopmi1 0 ' /
- Z(w) - = M(u', Yopmi1?'),
[ 0 Xomn } (w) [ 0 Xomt1 1 (s Bami1t)
/
where we have put w = Z, ,u', v € C* 1 (Note that Sop1 = S5, = Somii-)
We shall denote the entries of v and v by wy, ..., us,1 and vy, ..., V941, TESPec-

tively. Clearly, M is singular for all v and v. It is easy to see that for some choice of
u and v the rank of M is equal to 4m + 1, and therefore there exists a generic (with
respect to the entries of u and v) set  such that for every (u,v) € Q the rank of M is
equal to 4m + 1 (cf. Lemma 2.1).

Next, we introduce the (2m + 1) x (2m + 1) matrix T:

T=YmRom1=1@ (=)@l (-1)D---®(~1) D1
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It is useful to note that Jo,11 := Jom+1(0) and T anti-commute:

Tj2m+1 = _j2m+1T.

Our first observation is that the vector

— jm-‘rlu
T = [ (F2m T ] € Ker M.

Indeed, Az, = 0, where

A — t72m+1 (0) O
0 —Tom+1(0)T |7
and [ T } x1 = 0 as well. Now define for j = 2,...,2m + 1 the vectors

TJQ:L‘HJ J
z; = (=17 [ (jzm%rlﬂ)TTv

2m+1

Note that for all j we have [ —ol T } x; = 0, and so

) 2m+1— j ] 2m+2— j
MiL‘j — ij — (_1)]+1 |: j2m+1Tj2m+1 } — (_1)3 { (Tj2m+1 :| =Zj_1.

2m+2— 2m+2
(‘7272?1 j)TT *-7277le v
Thus we see that 1, ..., 2,11 is a Jordan chain of M corresponding to zero.
Next, note that
Tu
Tom+1 = To |

We now define for some complex numbers a and b, still to be determined, the vector

—(I+ T)jQY;n—i-lu 1 .

Tom+2 = a€1 + b€4m+2 + (I + T)jz v

Then

Aty = A { —(I + 1) Topi1tt } _ [ —Tom 1 (I + 1) Tgpy v }
" (I + 1) Toms1v —Tsi1 (I + 1) Tomi1v

o I T j2m+1‘72m+1u -_ —([ — T)U — . u
- 1 NIh i Fomirv | | —(I =Ty | — 72 v |’

So

Mxopyo = <$2m+1—[



If we can choose a and b so that
[ —UT UT ] Toam42 = —aU; + bU2m+1 + 2uT(I + T)ijHv = 1,

then we have constructed a Jordan chain of length 2m + 2 for M corresponding to the
eigenvalue zero. But it is easily seen that a and b can be chosen as desired, whenever not
both wug,,11 = 0 and v; = 0. So, generically this can be done. Note that x1,..., Zom12
are linearly independent as one easily verifies using the properties x; # 0 (generically),
Mz, =xjfor j=1,2,...,m+1, and Mz; = 0.

The next step is to see that generically the Jordan block with eigenvalue zero of M
has size 2m + 2. Here we make essential use of the fact that we already know that the
rank of M generically is 4m + 1, and hence there can be at most one Jordan block with
eigenvalue zero in the Jordan normal form of M. Then for any Jordan chain it must
be possible to extend it to a Jordan chain of length equal to the algebraic multiplicity
(this follows, for example, from general results on marked invariant subspaces in [8]).
So, it suffices to show that the Jordan chain we have constructed cannot be extended
further. For this, observe that vectors { Z } in the range of M are such that [ 22;”1+1 }
2m+1

" . S0, in order for xg,,, 2 to be in the range of M it is necessary
1

is a multiple of [ Y

and sufficient that [ —:)Lzm } is a multiple of [ ui:”“ } . Obviously, generically this will
2 1

not be the case.
Next, we show that generically all nonzero eigenvalues are simple eigenvalues. The
characteristic polynomial of M is, by what we have shown, generically of the form

oIm42/, 2 2m—2 2
(2P 4 2P g0 + .+ 2Pag + ag)

(we also use that M is J-Hamiltonian matrix, and so its characteristic polynomial is a
polynomial in z?), and generically, ay # 0.

Now we find particular vectors ug and vy such that for the characteristic polynomial
of M(ug,vy) we have ag = ay = ... = ag,_2 = 0. Indeed, take ug, vy with zero entries,
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except for (ug)am, (40)2m+1, (V0)1, (Vo)2. Then

det (A—muuo] [~ ud ]> —

- det{(A—:l:I) (ijxf)l{z(f][vg uﬂ)}
— det (A —oT) det (I+(A—a:l)1{:j§1[—“g uOT}>

= det (A —zI) (1+[—vg uOT](A—xJ)lus D -

= gimt? <1+ = ug}(A—a:[)l{uO D =

Vo

= 2" (1 — vf (Fomsr — 1) " ug — ud (Tohr + 1) 0p).

Now take ug and vy as above, so vy having only the first two entries nonzero and wuy
having only the last two entries nonzero. Then it is clear that we are interested in the
2 x 2 block in the right upper corner of (Jony1 — ), and the 2 x 2 block in the left
lower corner of (73,1 +xl)~'. It is easily computed that

(v0)1 (o) 2m + (Vo)2(uo)2m+1  (V0)2(Uo)2m  (V0)1(U0)2m+1

T -1 _
—Vy (Jomy1 —xl)ug = 22m + z2m—1 + p2m+1 )
_ (Uo)l(uo)2m + (Uo)z(uo)2m+1 (Uo)z(uo)zm (Uo)l(uo)2m+1
_UoT(jzz;nH + 1) oy = z2m o p2mel B 22m+1

Because the terms with odd powers cancel, the characteristic polynomial of M (ug, vg)
is given by

det (M(uo, Vo) — x]) = g?m+2 <x2m + 2((1)0)1(uo)2m + (UO)Q(UO)QW—H))a

and so for such a perturbation the nonzero eigenvalues are all simple.

Now, there is an open neighborhood U of the pair (ug, vg) such that for all matrices
M (u,v) with (u,v) € U all nonzero eigenvalues are simple. Choosing (u,v) € U so that
also the multiplicity of zero of M (u,v) is equal to 2m + 2, we have found an open set of
vectors w with the property that Z(w) has the Jordan form of the required type. But
then the set of all vectors w for which Z(w) has the Jordan form of the required type is
generic; to see that use the Sylvester resultant matrix of the characteristic polynomial
of Z(w) and of its derivative, as it was done in the proof of Lemma 2.5. U

The next theorem shows that the situation of Example 4.1 is typical for the case of
odd largest partial multiplicity corresponding to the zero eigenvalue. We assume in the
next theorem that A has zero as an eigenvalue; if A is invertible, then all statements
concerning the zero eigenvalue should be considered as void.
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Theorem 4.2 Let J € C™™ be skew-symmetric and invertible, let A € C™*™ be J-

Hamiltonian, with pairwise distinct eigenvalues i, Ag, -+ , Ap, A\py1 = 0 and let B be a
rank one perturbation of the form B = uu®J € C™",
For every A\;, j = 1,2,...,p+ 1, let ny; > ngj > ... > ng,; be the sizes of

Jordan blocks in the Jordan form of A associated with the eigenvalue \;, and let there
be exactly {y ; Jordan blocks of size ny j associated with \; in the Jordan form of A, for
k = 1,2,...,mj.

(1) If nypi1 is even (in particular, if A is invertible), then generically with respect to
the components of u, the matrix A+ B has the Jordan canonical form

p+1
D <(‘7n17j(/\j)@e1,j—1) & (JTon,(\)P2) & - @ (jnmj’j()\j)@fmjvj)) o J,
j=1

where J contains all the Jordan blocks of A+ B associated with eigenvalues
different from any of A1, ..., Apy1.

(2) If n1py1 is odd (in this case {41 is even), then generically with respect to the
components of u, the matriz A+ B has the Jordan canonical form

p

@ ((jm,j <>\j)®el’j_1) © (jnz,j()‘j)@ez’j) DD (jnmj,j ()\j)@fmj,j>>

j=1
@ (jnl,erl (0)@£1’p+1_2) @ (an,p+1 (O)@Zz’p+1) @ et @ (j”mp+1,p+1 (O)@gmp+1yp+1>
S Tnipr+1(0) J, (4.1)

where J contains all the Jordan blocks of A+ B associated with eigenvalues
different from any of A1, ..., Apy1.

(3) In either case (1) or (2), generically the part J has simple eigenvalues.

Proof. If (1) holds, then it follows from Theorem 2.7 that we can apply Theorem 3.1
or Theorem 3.2, and we immediately obtain the desired result; here we also use the
easily verifiable fact that the intersection of finitely many generic sets is again generic.

Consider the case (2). In this case, generically the part of the Jordan form of
A + B that involves nonzero eigenvalues has again the form as given in (2), in view of
Theorems 2.7, 3.1, and 3.2. It remains to prove that generically the part of the Jordan
form of A + B corresponding to the zero eigenvalue has the form

Tu+1(0) & (7, (0)°77%) @ (7,(0°%) & - & (7,,(0)° ") & T (4.2)
Here, we let m = Mpi1; M = Nkpi for k = 1,2,...,m; and {, = {ypq1 for kb =
1,2,...,m, and J contains all the Jordan blocks of A + B associated with nonzero
eigenvalues.
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To this end, we may assume without loss of generality that A and J are in the form
(2.11), where we assume in addition that the diagonal blocks of A and J have been
permuted in such a way that the blocks associated with the eigenvalue zero appear first
and that they are ordered with decreasing sizes. Thus, we assume that A and J have
the forms

A= (T (0)FY) @ - & (T, (02 @ 4, (4.3)
where o(A) C C\ {0} and

0 %, 1997 N
J:{_Z 3} DHD I ®J. (4.4)

Then the algebraic and geometric multiplicity a and g of the eigenvalue zero of A are

given by
azzgsnsa g:Z£S7
s=1 s=1

respectively. The corresponding J-Hamiltonian rank one perturbation B has the form
B = ww” = wu'J, where we partition

1) . ,
u CAY) (4,5)

. UI
u = (Z : ’ u(i) — 7 u(i,s) — c Cni’
u\m ) )
(szi) (’L,S)
fors=1,....0;1=1,...,m. Thus, u € C" % We will now show in two steps that

generically A + B has the Jordan canonical form (4.2). By Theorem 2.10 we know
that generically A + B has ¢; — 1 Jordan chains of length n; and ¢; Jordan chains of
length n;, j = 2,...,m associated with the eigenvalue zero. (Theorem 2.10 is applicable
because the hypothesis that the first component of each vector v(*/) in the notation of
Theorem 2.10, is nonzero, is satisfied in our situation.) In the first step, we will show
that generically there exists a Jordan chain of length n; + 1. In the second step, we
will show that the algebraic multiplicity of the eigenvalue zero of A + B generically is
a= (3", lns) —ny +1=a—n;+ 1. Both steps together obviously imply that (4.2)
represents the only possible Jordan canonical forms for A + B.

Step 1. Existence of a Jordan chain of length n; + 1.

Generically, the hypothesis of Theorem 2.10 is satisfied (i.e., specific entries of
vectors are nonzero), so generically the matrix S as in Theorem 2.10 exists so that
S7Y(A + B)S is in partial Brunovsky form. We first investigate the structure of the
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vector vT = uT.J. From (4.4), we obtain that v has the form

¢9) : -
U‘ U(z’l) U%z,s)
v= W' = —Ju= (: . v = : . o = : e C™,
p\m | )
(i,6:) (i,5)
v ’ Un,
(4.5)
fors=1,....¢;and i = 1,...,m, where
_uglzs) uglll,Qs—l)
(1,2s) b2
pL25=D) = 3 g (128) n1—.1 o120 =3 (12D m—'1
F o +
_ugLQS) ug1,2s—1)
for s=1,...,¢;/2. Thus, S7! takes the form
0 lm
S = <@ Toep (v(l’s))> @D <@ Toep (U(m’s))> & Ih_q,
s=1 s=1
and it follows that
STIBS =w(e] - s €lns s Clpse s €lm 2 ) (4.6)
%ﬁ - ~~ >
¢1 times lr, times
for some z € C"~*. Thus,
1) . -
w. U)(Z’l) wgl,s)
w=S5tu= ( uE w = : ;o w®) = : e C™, (4.7)
v w () wi®
w (2
fors=1,...,¢;and i =1,...,m, where
w7(111,2571) _ _u§111,25)u211,2371)7 wgl,zs) _ ugl,zsfl)ugl,zs) _ _w7(111,2571) (4.8)
and, provided that n; > 1,
1(111,351—1) _ Uv(@lisfugf%_l) _ u£111,25)u£11,3sl—1)’ (4.9)
wgl,zsl) _ —Uq(q,ll’%)ugfisfl) +u211’351)u£}1’25_1) _ wﬁi,i&;l)) (4.10)
for s =1,...,¢;/2. Consider the following Jordan chains associated with the eigenvalue
zero of S™'(A + B)S and denoted by C; :
length ni: Cl,s : €2(s—1)n14+1 — €(2s—)n1+1y - -+ €(2s—1)ny — €2sny5 S = 17 SRR %
length n; : Ci,s T —ep+ eEZjlﬁknkJr(sfl)nﬂrl’ e, —€p, T ezi;ﬁfknwrsm’ s=1,...,4;,
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where 7 = 2,...,m. Observe that C;, ¢ # 1, are just the Jordan chains from Theo-
rem 2.10 multiplied by —1 while the chains '  are linear combinations of the Jordan
chains from Theorem 2.10. Namely, in the notation of (2.14), and numbering the
chains in (2.14) first, second, etc., from the top to the bottom, we see that the chains
Ci1,-..,Chy 2 are the first chain, the negative of the second chain plus the third chain,
..., the negative of the (¢; — 2)-th chain plus the (¢; — 1)-th chain, respectively. Now
consider the Jordan chain

51/2 m Kl'
C:= § al,scl,s + E E ai,sOi,s
s=1 1=2 s=1

of length ny (see Definition 2.12), and let y denote the n;-th (and thus last) vector
of this chain. We next show that the Jordan chain C' can be extended by a certain
vector to a Jordan chain of length n; + 1 associated with the eigenvalue zero, for some
particular choice of the parameters «; s (depending on u) such that generically at least

one of ay1,... a2 is nonzero. To see this, we have to show that y is in the range of
S~1(A + B)S. First, partition

(1) . ;
y' y(z,l) y§ 8)
y=1 | yW=1 |, y=1  |ecm
y (%Zz) (ivs)
7 Y Yn;

fors=1,...,¢;i=1,...,m. Then by the definition of y, we have y =0 € C"¢,

y7(111728_1) = Oz, y7(~011728) = 014, S= 17 oo 761/27
Yo =y, s=1,..00; i=2,...,m.
We have to solve the linear system
S™H A+ B)Sz =y. (4.11)
Partitioning
1
ZE( ) fL’(i’l) ZL‘%Z s)
T = (: E @ = .oz = eC™,
- 2054 (i,5)
x i
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and making the ansatz T = 0, then equation (4.11) becomes (we use here (4.6, (4.7))):

(i.5) (ZZx“) ) =y k=1 =1 s=1,.,4; i=1,.,m, (4.12)

v=1 p=1

m 4y,

wq(/Li;S) (ZZZ’%MM)) g ai,S) S:]"?€Z7 Z‘:Q’”'?m’ (413)
v=1 p=1

123 1) (szll/u> = ays, 5:1,_._781/27 (4_14)
v=1 p=1

128) (ZZ:E(”’“) =—a, s=1,..,01/2. (4.15)
v=1 pu=1

Set 2\ = 1 and 2 =0 for p=1,....0;v=1..m (V,,u) # (1,1), as well
as als—wm fors—l Slivi=2,...,mand a; s = Wy, fors—l /2.
Then (4.13) and (4.14) are satisﬁed and so is (4.15), because by (4.8) we have

(1,2s) _ u(l 25)u(1,2371) _ _w(1,2371) = —qys, S= 1’ o ’£1/2.

Wy, ni - ni

Finally, (4.12) can be solved by choosing x,(;fl) = y,Ef’S) — w,(:’s) for k =1,...,n; — 1;
s=1,....0;1=1,...,m.

Step 2: We show that the algebraic multiplicity of the eigenvalue zero of A + B
generically is @ = (3 bns) — i +1=a—mny + 1.

Let p11, . .., puq denote the pairwise distinct nonzero eigenvalues of A and let rq,..., 7,
be their algebraic multiplicities. By Theorem 2.10, the lowest possible power of A
associated with a nonzero coefficient in py(\) is a —ny and the corresponding coefficient

Ca—ny 18
q
Cany = (_1)a71 (H M:z) <Zw (1, s)) =0,
=1

because of (4.8). If ny = 1 then @ = a and there is nothing to show as the algebraic
multiplicity of the eigenvalue zero cannot increase when a generic perturbation is ap-
plied. Otherwise, we distinguish the cases nys <n; —1and no =ny — 1. Ilf no <nqy —1,
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then by Theorem 2.10 the coefficient ¢, ,, 11 of A*™™+ in py(N) is

151
s = 0| S T | (k)
s=1

v=1
'L;élf
= 0 using (4.8)

q 141
_ ri 1,s
! <H oy ) (Z w£1)1>
i=1 s=1
( £1/2
using (4.10) 1,2s S— s 1,2s—1
et (I (St - sz
s=1

which generically is nonzero. If, on the other hand, ny = ny — 1, then again by Theorem
2.10 the coefficient ¢, p, 11 of A*™ ™+ in py(N) is

o= 0 (T ) (ki + o).

Since ny > 1 is odd, ny > 2 is even and the block J; in (4.4) takes the form
Jo=2n, D D Xp,.

Hence, for the component vy in (4.5) we obtain that

(2,5)

_un2

(2,5)

u, "

,U(Z,S) — _EnQ,U/(Q,S) — 2 ' 1 ’ S = 1, . ’62
F o
ug?,s)
and thus
S 2,8 s
(2,5) u7(12) (2,8) _ (uff? ))27

which gives

q £1/2 12
Camprr = (=1)°! (Hu?) D 2= ) = 3 ()
i=1

Again, this is nonzero generically. In all cases, we have shown that zero is a root of
po(A) with multiplicity a — ny + 1. Thus, the algebraic multiplicity of the eigenvalue
zero of A+ B is a —ny + 1. Together with Step 1, we obtain that (4.2) generically are
the only possible Jordan canonical forms of A + B.

Finally, we prove part (3) by following the arguments of the proof of part (b) of
Theorem 2.3, and using Examples 4.3-4.5 and Lemma 4.6 (instead of Lemma 2.5 that
was used the proof of Theorem 2.3) presented in the remainder of the section. O
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Example 4.3 Let
Z(Q)(oz) = Jom(0) + (aean)(aed )Xo, € C2m o € C\ {0}.

Analogously to Example 2.4, we have x(Z®(a)) = 2?™ + o2, in particular, Z® («a) has
2m distinct nonzero eigenvalues. [

Example 4.4 Consider the (4m + 2) x (4m + 2) matrix

3) | Jam+1(0) 0 T 0 Yom+1
7N, w) = 0 Tomsa (0) + (aw)(aw") S 0 ,

where o € C\ {0}. It follows from Example 4.1 that there exist a nonzero vector w and
¢ > 0 with the property that the matrix Z® (o, w) has the Jordan form Ja,,2(0) ® K,
where K is a diagonal invertible matrix with distinct diagonal entries, for every « in
the punctured disc 0 < |o| <e. O

Example 4.5 Let

Z90a) = | TN jf(A)T]+(au)(au)T{_(}m Ig]ecmmﬂ,

AeC\ {0}, aeC\ {0}

&

U= .

€1

We shall prove that there exists ¢ > 0 which depends only on A and on m, such that
for all a with 0 < |a| < ¢, the matrix Z( (), a) has 2m distinct eigenvalues and none
of them is equal to £\.

Using the Laplace theorem for determinants with respect to the first m rows of
det (zI — ZW(X, a)), and omitting terms that are obviously zeros, we easily compute

X(ZW(a)) = ((z = 2™ +a®)((z + A" + (=1)"a?) + (1) a' =
(x =Nz + )"+ (@ + )"+ (=)™ (@ — \)™.

Clearly, £\ are not zeros of x(Z™W(\ a) because A # 0, a # 0. Assuming that
X(ZW (X, @)) and 8% X(ZM (X, @)) have a common root o, we have the equalities

Let

(50 = N (0 + A)™ + Blzo + A" + (—)"Blzg — )™ =0, (4.16)
(20 =A™ 2o+ M)+ (20— N)™ (2o +N)™ " 4 Blag + N+ (=1)"B(xg— N =0,
(4.17)

where 3 = a?. Multiplying (4.17) by xo — A and using (4.16) yields after simple algebra
(2o — A1 = 20,

Analogously (zo+ )™ = (—1)™"128\ is obtained. These equalities are contradictory
if |a is sufficiently small. O
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Using Examples 4.3, 4.4, and 4.5, and the already proved parts (1) and (2) of
Theorem 4.2, the following lemma is proved in the same way as Lemma 2.5. We omit
the details of proof.

Lemma 4.6 Let Q) be the (open) generic set of vectors uw € C" for which (1) or (2)
of Theorem 4.2 holds. Then there is € > 0 and an open dense (in the ball {u € C" :
[ull <€}) set

Q" CUN{uelC: ||ju| <e}

such that for every u € Q", the Jordan form of A+ wu®J is of the type described in
items (1) - (3) of Theorem 4.2.

We conclude that in case (1) of Theorem 4.2 generically all Jordan blocks associated
with eigenvalues Ay, ..., A,41 remain unchanged except for one block of the largest size
for every eigenvalue \; which disappears (leading to eigenvalues different from ;). In
the case (2), the generic behavior of Jordan blocks of nonzero eigenvalues is the same
as in the case (1), whereas all Jordan blocks associated with the zero eigenvalue remain
unchanged except for two of the largest size ones of which one of them disappears
(leading to nonzero eigenvalues), while the other one increases its size by one.

5 Generic structured rank one perturbations for
complex H-symmetric matrices

Our next result concerns perturbations of H-symmetric matrices. In view of Theorem
2.6 every matrix X € C™*" is similar to an H-symmetric matrix, for any fixed symmet-
ric invertible matrix H. Indeed, assuming (without loss of generality) that X is in the
Jordan form as in (2.10), we see that X is R-symmetric, where R=R,,, & --- ® R, ;
on the other hand, there exist an invertible (complex) matrices S; and Sy such that
STHS, = I = STRS, (as follows by applying Theorem 2.6 to the R-symmetric and
H-symmetric zero matrix), and so S;S; ' X/ S»S; " is H-symmetric.

Theorem 5.1 Let H € C™*" be symmetric and invertible, A € C"*" be H-symmetric,

with pairwise distinct eigenvalues Ay, Ag, -+ , A\, and having the Jordan canonical form
p
Iy o b
@ ((Jnu(}‘j)ea 1’]) 8% (jm,j()‘j)@ 2’]) G- D (j"mgvi()‘j)@ ],]))
j=1
where nyj > ngj > ... >Ny, i, J = 1,...p. Let B € C™" be a rank one perturbation

of the form B = wu”H, w € C*. Then:

(1) generically (with respect to the components of u), the matrix A+ B has the Jordan
canonical form
P

D ((jnlJ(Aj)@‘v’lfl) B (Tny, M)E2) B - @ (Jnmj,j(%)@fmf’j» SV

j=1
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where J contains all the Jordan blocks of A+ B associated with eigenvalues
different from any of A1, ..., Ap;

(2) generically, all eigenvalues of A+ B different from any of \i,...,\,, are simple.

Proof. Part (1) follows immediately from Theorem 2.6 and Theorem 3.1.

Part (2) is proved completely analogously to the proofs of part (b) of Theorem 2.3
and part (3) of Theorem 4.2 by using Lemma 5.2 below which is based on Example
2.4. We omit details. O

Lemma 5.2 Let Y be the open generic set of vectors uw € C™ for which (1) of Theorem
5.1 holds. Then there is € > 0 and an open dense (in the ball {u € C" : ||lu|| < €}) set

Q" CUN{ueC: ||ju| <e}

such that for every u € Q' the Jordan form of A + uu® H is of the type described in
items (1) and (2) of Theorem 5.1.

6 Conclusion

We have presented several results on Jordan structures of matrices under structured
and unstructured rank one perturbations in a general context, and studied the per-
turbation analysis for the Jordan structures of complex J-Hamiltonian and complex
H-symmetric matrices under structured rank one perturbations. We have shown that
as in the case of unstructured perturbations, generically only (one of) the largest Jordan
blocks is destroyed; genericity here is understood in the sense of structured rank one
perturbations. However in the structured case, there is a particular situation, where
the effect of generic structured perturbation differs from the effect of generic unstruc-
tured perturbations. If the largest Jordan block associated with the eigenvalue zero
of a complex J-Hamiltonian matrix has odd size, then this Jordan block must occur
an even number of times. As the result of a generic rank one complex J-Hamiltonian
perturbation, one of the largest Jordan blocks is destroyed and the size of one other
largest Jordan block is increased by one.

In subsequent papers, this perturbation analysis will be extended to the cases of
H-selfadjoint matrices under generic H-selfadjoint rank one perturbations [25], and real
H-symmetric matrices under real perturbations.

Acknowledgments. We thank the referees for very careful reading of the manuscript
and many useful suggestions, and S.V. Savchenko for pointing out to us the paper [18].
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