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Abstract

We discuss Möbius transformations for general matrix polynomials over arbitrary
fields, analyzing their influence on regularity, rank, determinant, constructs such as com-
pound matrices, and on structural features including sparsity and symmetry. Results on
the preservation of spectral information contained in elementary divisors, partial multiplic-
ity sequences, invariant pairs, and minimal indices are presented. The effect on canonical
forms such as Smith forms and local Smith forms, on relationships of strict equivalence
and spectral equivalence, and on the property of being a linearization or quadratification
are investigated. We show that many important transformations are special instances
of Möbius transformations, and analyze a Möbius connection between alternating and
palindromic matrix polynomials. Finally, the use of Möbius transformations in solving
polynomial inverse eigenproblems is illustrated.
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1 Introduction

The fundamental role of functions of the form f(z) = (az + b)/(cz + d) in the theory of
analytic functions of a complex variable is well-established and classical. Such functions are
variously known as fractional linear rational functions [1, 17, 58], bilinear transformations
[7, 54, 55, 56] or more commonly, Möbius functions. A particularly important example is the
Cayley transformation, see e.g., [54] or the variant in [28, 50], which extends easily to matrix
pencils or polynomials. The Cayley transformation is widely used in many areas, such as in
the stability analysis of continuous and discrete-time linear systems [33, 36], in the analysis
and numerical solution of discrete-time and continuous-time linear-quadratic optimal control
problems [50, 59], and in the analysis of geometric integration methods [34].

The main goal of this paper is to present a careful study of the influence of Möbius trans-
formations on properties of general matrix polynomials over arbitrary fields. These include
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regularity, rank, determinant, constructs such as the compounds of matrix polynomials, and
structural properties such as sparsity and symmetry. We show when spectral information
contained in elementary divisors, partial multiplicity sequences, invariant pairs, minimal in-
dices, and minimal bases is preserved, or how its change can be tracked. We study the effect
on canonical forms such as Smith forms and local Smith forms, on the relations of strict
equivalence and spectral equivalence, and on the property of being a linearization or quadrat-
ification. Many of the results presented here are fundamental in that they hold for all matrix
polynomials, regular and singular, square and rectangular.

A variety of transformations exploited in the literature [2, 16, 18, 29, 35, 44, 45, 46, 47, 51]
will be seen to be special instances of Möbius transformations. The broader theory we present
here generalizes and unifies results that were hitherto observed for particular transformations,
and provides a more versatile tool for investigating fundamental aspects of matrix polynomi-
als. Important applications include determining the relationships between various classes of
structured matrix polynomials (alternating and palindromic, for example), investigating the
definiteness of Hermitian matrix polynomials [2], numerical methods for the solution of struc-
tured eigenvalue problems and continuous-time Riccati equations via doubling algorithms,
(see e.g., [31, 32, 52] and the references therein), the modeling of quantum entanglement
via matrix pencils [16], and the triangularization of matrix polynomials [62]. Our results
generalize and unify recent and classical results on how Möbius transformations change the
finite and infinite elementary divisors of matrix pencils and matrix polynomials [5, 15, 65, 66];
see also [53] for an extension to more general rational transformations. We note that Möbius
transformations are also used to study proper rational matrix-valued functions and the Smith-
McMillan form [4, 6, 24, 64], but we do not discuss this topic here.

After introducing some definitions and notation in Section 2, Möbius transformations are
defined and their fundamental properties established in Section 3. We then investigate the
behavior of the Smith form and Jordan characteristic of a matrix polynomial under a Möbius
transformation in Sections 4 and 5. The effect of Möbius transformations on invariant pairs is
studied in Section 6, on minimal indices and minimal bases in Section 7, and on linearizations
and quadratifications of matrix polynomials in Section 8. Section 9 discusses the preservation
of sparsity patterns, realization theorems, and the Möbius connection between alternating
and palindromic matrix polynomials.

2 Preliminaries

We use N to denote the set of non-negative integers, F for an arbitrary field, F[λ] for the
ring of polynomials in one variable with coefficients from the field F, and F(λ) for the field of
rational functions over F.

A matrix polynomial of grade k has the form P (λ) =
∑k

i=0 λ
iAi, where A0, . . . , Ak ∈

Fm×n. Here we allow any of the coefficient matrices, including Ak, to be the zero matrix. In
contrast to the degree of a nonzero matrix polynomial, which retains its usual meaning as the
largest integer j such that the coefficient of λj in P (λ) is nonzero, the grade indicates that
the polynomial P (λ) is to be interpreted as an element of the F-vector space of all matrix
polynomials of degree less than or equal to k, equivalently, of all m×n matrix polynomials of
grade k. Matrix polynomials that are considered with respect to grade, will be called graded
matrix polynomials. The notion of grade is crucial in the investigation of spectra of matrix
polynomials. As an example consider the matrix with polynomial entries

Q(λ) =

[
λ+ 1 0

0 λ+ 1

]
.

Viewed as a matrix polynomial of grade one or, in other words, as a matrix pencil , Q(λ) =
λI2 + I2 has a nonsingular leading coefficient and thus does not have infinite eigenvalues. By
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contrast, viewing Q(λ) = λ20 + λI2 + I2 as a matrix polynomial of grade two, the leading
coefficient is now singular and infinity is among the eigenvalues ofQ(λ). Therefore, throughout
this paper a matrix polynomial P must always be accompanied by a choice of grade, denoted
grade(P ). When the grade is not explicitly specified, then it is to be understood that any
choice of grade will suffice.

A polynomial P (λ) is said to be regular if it is square and invertible when viewed as a
matrix over F(λ), equivalently if detP (λ) 6≡ 0; otherwise it is said to be singular. The rank
of P (λ), sometimes called the normal rank, is the rank of P (λ) when viewed as a matrix with
entries in the field F(λ), or equivalently, the size of the largest nonzero minor of P (λ).

2.1 Compound matrices and their properties

For references on compound matrices, see [37, Section 0.8], [49, Chapter I.2.7], [57, Section 2
and 28]. We use a variation of the notation in [37] for submatrices of an m × n matrix
A. Let η ⊆ {1, . . . ,m} and κ ⊆ {1, . . . , n} be arbitrary ordered index sets of cardinality
1 ≤ j ≤ min(m,n). Then Aηκ denotes the j × j submatrix of A in rows η and columns κ,
and the ηκ-minor of order j of A is detAηκ. Note that A has

(
m
j

)
·
(
n
j

)
minors of order j.

Definition 2.1 (Compound matrices).
Let A be an m×n matrix with entries in an arbitrary commutative ring, and let ` ≤ min(m,n)
be a positive integer. Then the `th compound matrix (or the `th adjugate) of A, denoted by
C`(A), is the

(
m
`

)
×
(
n
`

)
matrix whose (η, κ)-entry is the `× ` minor detAηκ of A. Here, the

index sets η ⊆ {1, . . . ,m} and κ ⊆ {1, . . . , n} of cardinality ` are ordered lexicographically.

Observe that we always have C1(A) = A, and, if A is square, Cn(A) = detA. Basic
properties of C`(A) that we need are collected in the next theorem.

Theorem 2.2 (Properties of compound matrices).
Let A be an m× n matrix with entries in a commutative ring K, and let ` ≤ min(m,n) be a
positive integer. Then

(a) C`(AT ) =
(
C`(A)

)T
;

(b) C`(µA) = µ` C`(A), where µ ∈ K;

(c) det C`(A) = (detA)β, where β =
(
n−1
`−1
)
, provided that m = n;

(d) C`(AB) = C`(A) C`(B), provided that B ∈ Kn×p and ` ≤ min(m,n, p);

(e) if A is a diagonal matrix, then so is C`(A).

When the m × n matrix polynomial P (λ) has grade k, our convention will be that its
`th compound C`(P (λ)) has grade k`. This is because the degree of the `th compound of P
can be at most k`, so the smallest a priori choice for its grade that is guaranteed to work is
k`. In particular, when m = n, the scalar polynomial det(P (λ)) will have grade kn, since
this determinant is identical to Cn(P (λ)). In general, it will be advantageous to view C` as a
function from the vector space of m × n matrix polynomials of grade k to the vector space
of
(
m
`

)
×
(
n
`

)
matrix polynomials of grade k`. This will become clear in Section 3.4 when we

investigate the effect of Möbius transformations on compounds of matrix polynomials.

3



3 Möbius Transformations

In complex analysis, it is useful to define Möbius functions not just on C, but on the extended
complex plane C ∪ {∞}, which can be thought of as the Riemann sphere or the complex
projective line. We begin therefore with a brief development of F ∪ {∞} := F∞, where F is
an arbitrary field. The construction parallels that of C ∪ {∞}, and is included here for the
convenience of the reader.

On the punctured plane F2 \
{

(0, 0)
}

=: F̂2 define an equivalence relation: (e, f) ∼ (g, h)
if (e, f) = s(g, h) for some nonzero scalar s ∈ F, equivalently if eh = fg. Elements of the
quotient space F̂2/∼ can be bijectively associated with the 1-dimensional subspaces of F2.
This quotient space is often referred to as the “projective line” over F, and the mapping

F̂2 −−→ F∞[
e
f

]
7−→

{
e/f ∈ F if f 6= 0

∞ if f = 0 .

induces a well-defined bijection φ : F̂2/∼ −→ F∞.

3.1 Möbius Functions over Arbitrary Fields F

It is a classical result that Möbius functions can be characterized via the action of 2 × 2
matrices [12, 63] with entries in F. When A ∈ F2×2 is nonsingular, i.e., in GL(2,F), its action
on F2 can be naturally viewed as mapping 1-dimensional subspaces of F2 to one another, and
hence as mapping elements of F∞ to one another. This can be formally expressed by the
composition

F∞
φ−1

−−−→ F̂2/∼ A−−→ F̂2/∼ φ−→ F∞ , (3.1)

which we denote by mA(λ). One can show that mA is well-defined for all λ ∈ F∞ if and only
if A is nonsingular. Therefore we will restrict our attention to nonsingular matrices A, and
use the phrase “Möbius function” only for functions mA induced by such A, giving us the
following definition.

Definition 3.1. Let F be an arbitrary field, and A ∈ GL(2,F). Then the Möbius function
on F∞ induced by A is the function mA : F∞ → F∞ defined by the composition (3.1), that is,
mA(λ) := φ

(
Aφ−1(λ)

)
.

It immediately follows from the definition that the Möbius functions induced by A and A−1

are inverses of each other. We collect some additional useful properties of Möbius functions
that follow directly from (3.1).

Proposition 3.2 (Properties of Möbius functions).
Let A,B ∈ GL(2,F), and I be the 2× 2 identity matrix.

(a) mI is the identity function on F∞.

(b) mA ◦mB = mAB.

(c) (mA)−1 = mA−1.

(d) mβA = mA, for any nonzero β ∈ F.

Properties (a) – (c) of Proposition 3.2 say that the set M(F∞) of all Möbius functions
defined on F∞ is a group. Indeed, one can show that the mapping ψ : GL(2,F)→M(F∞) de-
fined by ψ(A) = mA is a surjective group homomorphism with kerψ = {βI : β ∈ F}, see [12].
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Thus the “Möbius group”M(F∞) is isomorphic to the quotient group GL(2,F)/ kerψ, which
is often referred to as the “projective linear group” PGL(2,F).

Consequently, two matrices induce the same Möbius function if and only if they are scalar
multiples of each other. For example, recall that when A is nonsingular, the classical adjoint
satisfies adj(A) = (detA)A−1. For 2× 2 matrices, the adjoint is simple to calculate,

A =

[
a b
c d

]
=⇒ adj(A) =

[
d −b
−c a

]
.

It follows that the Möbius functions associated with A and adj(A) are inverses of each other.

3.2 Möbius Rational Expressions

It is also useful to be able to work with and manipulate Möbius functions as formal algebraic
expressions. In particular, for a matrix A we can view mA(λ) not just as a function F∞ → F∞,
but also as the rational expression

mA(λ) =
aλ+ b

cλ+ d
, where A =

[
a b
c d

]
. (3.2)

Such expressions can be added, multiplied, composed, and simplified in a consistent way
by viewing them as formal elements of the field of rational functions F(λ). One can also
start with the formal expression (3.2) and use it to generate a function on F∞ by invoking
standard conventions such as 1/∞ = 0, 1/0 = ∞, (a · ∞ + b)/(c · ∞ + d) = a/c, etc.
Straightforward manipulations show that the function on F∞ thus obtained is the same as
the function mA(λ) : F∞ → F∞ in Definition 3.1. This correspondence between rational
expressions (3.2) and functions mA makes it reasonable to use the name Möbius function and
the notation mA(λ) interchangeably for both functions and expressions, over arbitrary fields.
The context will make clear which interpretation is intended.

As a first example illustrating the use of mA(λ) as a formal rational expression, we state
a simple result that will be needed later. The straightforward proof is omitted.

Lemma 3.3. Let R be the 2× 2 reverse identity matrix

R =

[
0 1
1 0

]
, with associated Möbius function mR(λ) =

1

λ
.

Then for any A ∈ GL(2,F) we have

mRAR

(
1

λ

)
=

1

mA(λ)
. (3.3)

3.3 Möbius Transformations of Matrix Polynomials

One of the main motivations for our work is the study of the relationships between different
classes of structured matrix polynomials. Clearly such a study can be greatly aided by
fashioning transformations that allow results about one structured class to be translated
into results about another structured class. Indeed, this has been done using particular
Möbius transformations in a number of instances [44, 51]. The development of general Möbius
transformations in this section will bring several previously unrelated techniques under one
umbrella, and set the stage for the main new results presented in later sections.

Definition 3.4 (Möbius Transformation).
Let V be the vector space of all m× n matrix polynomials of grade k over the field F, and let
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A ∈ GL(2,F). Then the Möbius transformation on V induced by A is the map MA : V → V
defined by

MA

(
k∑
i=0

Biλ
i

)
(µ) =

k∑
i=0

Bi (aµ+ b)i(cµ+ d)k−i, where A =

[
a b
c d

]
.

It is worth pointing out that a Möbius transformation acts on graded polynomials, re-
turning polynomials of the same grade (although the degree may increase, decrease, or stay
the same, depending on the polynomial). In fact, MA is a linear operator on V .

Proposition 3.5. For any A ∈ GL(2,F), MA is an F-linear operator on the vector space V
of all m× n matrix polynomials of grade k, that is,

MA(P +Q) = MA(P ) + MA(Q), and MA(βP ) = βMA(P ),

for any β ∈ F and for all P,Q ∈ V .

Proof. The proof follows immediately from Definition 3.4.
As in the case of a Möbius function mA on F∞, a Möbius transformation MA on V can

also be formally calculated via a rational expression:

(MA(P )) (µ) = (cµ+ d)kP

(
aµ+ b

cµ+ d

)
, where A =

[
a b
c d

]
, (3.4)

or equivalently,
(MA(P )) (µ) = (cµ+ d)kP (mA(µ)) . (3.5)

We now present several examples. The first example shows that a Möbius transformation
can change the degree of the matrix polynomial it acts on. The other examples illustrate how
operators previously used in the literature are special instances of Möbius transformations.

Example 3.6. Consider the Möbius transformation

MA : V → V, where A =

[
1 1
1 0

]
and V is the real vector space of all 2 × 2 matrix polynomials of grade 2. Computing the
action of MA on three polynomials in V ,

P = λI, Q = (λ2 + λ− 2)I, and S = λ2I,

we find
MA(P ) = λ(λ+ 1)I, MA(Q) = (3λ+ 1)I, MA(S) = (λ+ 1)2I.

Thus the degree of an input polynomial can increase, decrease, or stay the same under a
Möbius transformation. Note, however, that if the degree and grade of P are equal, then
deg MA(P ) ≤ degP .

Example 3.7. The reversal of a (matrix) polynomial is an important notion used to define
infinite elementary divisors and strong linearizations of matrix polynomials [29, 41, 45]. The
reversal operation revk , that reverses the order of the coefficients of a matrix polynomial with
respect to grade k, was defined and used in [47]. When viewed as an operator on the vector
space of all m × n matrix polynomials of grade k, revk is just the Möbius transformation
induced by the 2× 2 reverse identity matrix R :

R =

[
0 1
1 0

]
=⇒ (MR(P ))(µ) =

k∑
i=0

Biµ
k−i = µkP

(
1

µ

)
= (revkP )(µ).

This can be seen directly from Definition 3.4, or from the rational expression (3.4).
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Example 3.8. The map P (λ) 7→ P (−λ) used in defining T -even and T -odd matrix polyno-
mials [46] is a Möbius transformation, induced by the matrix

[−1 0
0 1

]
.

Example 3.9. Any translation P (λ) 7→ P (λ + b) where b 6= 0, is a Möbius transformation
induced by the matrix

[
1 b
0 1

]
.

Example 3.10. The classical Cayley transformation is a useful device to convert one matrix
structure (e.g., skew-Hermitian or Hamiltonian) into another (unitary or symplectic, respec-
tively). It was extended from matrices to pencils [42, 51], and then generalized to matrix
polynomials in [44]. Observe that the Möbius transformations induced by

A+1 =

[
1 1
−1 1

]
and A−1 =

[
1 −1
1 1

]
(3.6)

are the Cayley transformations

C+1(P )(µ) := (1− µ)kP

(
1 + µ

1− µ

)
and C−1(P )(µ) := (µ+ 1)kP

(
µ− 1

µ+ 1

)
, (3.7)

respectively, introduced in [44], where they were used to relate palindromic with T - even and
T -odd matrix polynomials.

Example 3.11. Recall that one of the classical Cayley transforms of a square matrix S
is S̃ := (I + S)(I − S)−1, assuming I − S is nonsingular. This can be viewed as formally
substituting S for λ in the Möbius function mA+1

(λ) = λ+1
−λ+1 , or as evaluating the function

mA+1
at the matrix S. Now if we consider the Möbius transformation MA−1 applied to the

pencil naturally associated with the matrix S, i.e., λI − S, then we obtain

MA−1(λI − S) = (λ+ 1)
[
mA−1

(λ)I − S
]

= (λ− 1)I − (λ+ 1)S = λ(I − S)− (I + S) .

When I − S is nonsingular, this pencil is strictly equivalent (i.e., under pre- and post-
multiplication with nonsingular constant matrices) to the pencil λI − S̃ naturally associated
with the classical Cayley transform S̃ = mA+1

(S). Thus the matrix Cayley transform asso-
ciated with A+1 is intimately connected to the pencil Cayley transformation associated with
A−1.

More generally, for any matrix A =
[
a b
c d

]
∈ GL(2,F), we define mA(S) to be the matrix

naturally obtained from the formal expression aS+b
cS+d

, i.e.,

mA(S) := (aS + bI)(cS + dI)−1 , (3.8)

as long as (cS + dI) is invertible. A straightforward calculation shows that the pencils

MA(λI − S) and λI −mA−1(S) (3.9)

are strictly equivalent, as long as the matrix (aI − cS) is nonsingular.

Example 3.12. Möbius transformations MA induced by rotation matrices

A =

[
cos θ − sin θ
sin θ cos θ

]
for some θ ∈ R

were called homogeneous rotations in [2, 35], where they played an important role in the
analysis and classification of Hermitian matrix polynomials with spectrum contained in the
extended real line R∞.

Example 3.13. To facilitate the investigation of the pseudospectra of matrix polynomials,
[18] introduces and exploits a certain Möbius transformation named reversal with respect to
a Lagrange basis.
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Example 3.14. The phenomenon of quantum entanglement is modelled in [16] using matrix
pencils. In this model the properties of Möbius transformations of pencils play a key role in
understanding the equivalence classes of quantum states in tripartite quantum systems.

Several basic properties of Möbius transformations follow immediately from Definition 3.4
and the following simple consequence of that definition — any Möbius transformation acts
entry-wise on a matrix polynomial P (λ), in the sense that[

MA(P )
]
ij

= MA

(
Pij
)
. (3.10)

Here it is to be understood that the scalar polynomial Pij(λ) has the same grade k as its
parent polynomial P (λ), and the Möbius transformations MA in (3.10) are both taken with
respect to that same grade k. This observation extends immediately to arbitrary submatrices,
so that [

MA(P )
]
ηκ

= MA

(
Pηκ
)
, (3.11)

for any row and column index sets η and κ. As a consequence it is easy to see that any MA

is compatible with direct sums, transposes, and conjugation, using the following definitions
and conventions.

Definition 3.15. Suppose P and Q are matrix polynomials (not necessarily of the same size)
over an arbitrary field F, and P (λ) =

∑k
j=0Bjλ

j. Then

(a) the transpose of P is the polynomial P T (λ) :=
∑k

j=0B
T
j λ

j ,

(b) for the field F = C, the conjugate of P is the polynomial P (λ) :=
∑k

j=0Bjλ
j, and

hence the conjugate transpose of P is P ∗(λ) =
∑k

j=0B
∗
jλ

j,

(c) if P and Q both have grade k, then P ⊕Q := diag(P,Q) has the same grade k.

Proposition 3.16 (Properties of Möbius transformations).
Let P and Q be any two matrix polynomials (not necessarily of the same size) of grade k over
an arbitrary field F, and let A ∈ GL(2,F). Then

(a) MA(P T ) =
(
MA(P )

)T
,

(b) if F = C and A ∈ GL(2,C), then MA(P ) = M
A

(P ) and
(
MA(P )

)∗
= M

A
(P ∗) ,

(c) MA(P ⊕Q) = MA(P )⊕MA(Q) .

Proof. The proofs are straightforward, and hence omitted.

Remark 3.17. Note that from Proposition 3.16(b) it follows that Hermitian structure of a
matrix polynomial is preserved by any Möbius transformation induced by a real matrix. In
other words, when P ∗ = P and A ∈ GL(2,R), then (MA(P ))∗ = MA(P ). Over an arbitrary
field F, it follows immediately from Proposition 3.16(a) and Proposition 3.5 that symmetric
and skew-symmetric structure is preserved by any Möbius transformation. That is, when
P T = ±P and A ∈ GL(2,F), then (MA(P ))T = ±MA(P ).

We saw in Section 3.1 that the collection of all Möbius functions on F∞ forms a group that
is isomorphic to a quotient group of GL(2,F). It is then natural to ask whether an analogous
result holds for the set of Möbius transformations on matrix polynomials.

Theorem 3.18 (Further properties of Möbius transformations).
Let V be the vector space of all m× n polynomials of grade k, over an arbitrary field F. Let
A,B ∈ GL(2,F), and let I be the 2× 2 identity matrix. Then
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(a) MI is the identity operator on V.

(b) MA ◦MB = MBA.

(c) (MA)−1 = MA−1, so MA is a bijection on V .

(d) MβA = βk MA, for any β ∈ F.

Proof. Parts (a) and (d) are immediate from Definition 3.4. Part (c) follows directly from (b)
and (a), so all that remains is to demonstrate part (b). Letting

A =

[
a b
c d

]
and B =

[
e f
g h

]
,

we see that

MA

(
MB(P )

)
(µ) = MA

[
(gλ+ h)kP

(
mB (λ)

)]
(µ)

= (cµ+ d)k
[(
gmA(µ) + h

)k
P
(
mB(mA(µ))

)]
=

[
(cµ+ d)

(
gmA(µ) + h

)]k
P
(
mBA(µ)

)
=

[
(ga+ hc)µ+ (gb+ hd)

]k
P
(
mBA(µ)

)
= MBA(P )(µ) ,

as desired.

The properties in Theorem 3.18 say that the set of all Möbius transformations on V
forms a group under composition. Property (b) shows this group is an anti-homomorphic
image of GL(2,F), while (d) implies that A and βA usually do not define the same Möbius
transformation, by contrast with Möbius functions (see Proposition 3.2(d)).

We now revisit some of the examples presented earlier in this section, in the light of
Theorem 3.18.

Example 3.19. Observe that the matrix R associated with the reversal operator (see Ex-
ample 3.7) satisfies R2 = I. Thus the property

revk (revk (P )) = P for k ≥ deg(P )

used in [47] can be seen to be a special case of Theorem 3.18(b).

Example 3.20. Notice that the product of the matrices A+1 and A−1 introduced in (3.6) is
just 2I. Hence by Theorem 3.18,

MA+1 ◦MA−1 = M2I = 2k(MI).

When expressed in terms of the associated Cayley transformations, this yields the identity
C+1(C−1(P )) = C−1(C+1(P )) = 2kP , which was derived in [44]. The calculation presented
here is both simpler and more insightful.

Example 3.21. Since the set of rotation matrices in Example 3.12 is closed under multipli-
cation, then by Theorem 3.18 so are the corresponding Möbius transformations. Thus the set
of all homogeneous rotations forms a group under composition.

Remark 3.22. As illustrated in Example 3.6, a Möbius transformation can alter the degree
of its input polynomial. If Möbius transformations were always defined with respect to degree,
then the fundamental property in Theorem 3.18(b) would sometimes fail, as an examination
of its proof will show. By defining Möbius transformations with respect to grade, we obtain
a property of uniform applicability.
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We now bring two types of matrix polynomial products into play.

Proposition 3.23 (Möbius transforms of products).
Let P and Q be matrix polynomials of grades k and `, respectively, over an arbitrary field.

(a) If PQ is defined and of grade k + `, then MA(PQ) = MA(P )MA(Q).

(b) If P ⊗Q has grade k + `, then MA(P ⊗Q) = MA(P )⊗MA(Q).

Proof. (a) Recall that by definition, each Möbius transformation is taken with respect to the
grade of the corresponding polynomial. Thus, using (3.5) we have

MA(P )(µ) = (cµ+ d)kP (mA(µ)) and MA(Q)(µ) = (cµ+ d)`Q(mA(µ)).

Taking their product yields

MA(P )(µ) ·MA(Q)(µ) = (cµ+ d)k+`P (mA(µ))Q(mA(µ))

= (cµ+ d)k+`PQ(mA(µ))

= MA(PQ)(µ) , (3.12)

as desired.

(b) The proof is formally the same as for part (a); just replace ordinary matrix multiplication
everywhere by Kronecker product.

These results motivate the adoption of two conventions: that the grade of the Kronecker
product of any two graded matrix polynomials is equal to the sum of their individual grades,
and if those polynomials are conformable for multiplication, then the grade of their ordinary
product is also equal to the sum of their individual grades. A subtle point worth mentioning
is that the equality in (3.12) can fail if Möbius transformations are taken with respect to
degree, rather than grade. When P , Q are matrix polynomials (as opposed to scalar ones) of
degree k and ` respectively, the degree of their product PQ can drop below the sum of the
degrees of P and Q. If Möbius transformations were taken only with respect to degree, then
we would have instances when

MA(PQ)(µ) = (cµ+ d)jPQ(mA(µ)) with j < k + `

6= MA(P )MA(Q) .

In contrast to this, for scalar polynomials we always have equality.

Corollary 3.24 (Multiplicative and divisibility properties).
Let p, q be nonzero scalar polynomials over F, with grades equal to their degrees, and let
A ∈ GL(2,F). Then

(a) MA(pq) = MA(p)MA(q).

(b) p | q =⇒ MA(p) |MA(q).

(c) p is F-irreducible =⇒ MA(p) is F-irreducible.

(d) p, q coprime =⇒ MA(p) and MA(q) are coprime.

For each of the implications in (b), (c), and (d ), the converse does not hold.
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Proof. Part (a) is a special case of Proposition 3.23. For part (b), since p|q, there exists a
polynomial r such that q = pr. Then (a) implies MA(q) = MA(p)MA(r), from which the
desired result is immediate.

To prove (c) we show the contrapositive, i.e., if MA(p) has a nontrivial factor over F, then
so does p. So let

MA(p) = r(λ)s(λ) with 1 ≤ deg r, deg s < deg MA(p) , (3.13)

and observe that deg MA(p) ≤ deg p by the remark in Example 3.6. Applying MA−1 with
respect to grade MA(p) = deg p (rather than with respect to deg MA(p)) to both sides of the
equation in (3.13) then yields p(λ) = MA−1(r(λ)s(λ)), or equivalently

p(λ) = (eλ+ f)deg p−degMA(p)MA−1(r)MA−1(s) , (3.14)

where (eλ + f) is the denominator of the Möbius function mA−1 , and the transformations
MA−1 on the right-hand side of (3.14) are once again taken with respect to degree. Since the
first factor on the right-hand side of (3.14) has degree at most deg p− deg MA(p), we have

deg
(
MA−1(r)MA−1(s)

)
≥ deg MA(p) = deg r + deg s ≥ 2 .

But deg MA−1(r) ≤ deg r and deg MA−1(s) ≤ deg s by the remark in Example 3.6, so we
must have the equalities deg MA−1(r) = deg r and deg MA−1(s) = deg s. Thus both MA−1(r)
and MA−1(s) are nontrivial factors of p, and the proof of (c) is complete.

For part (d) we again show the contrapositive; if MA(p) and MA(q) have a nontrivial
common factor r(λ), then from the proof of (c) we know that MA−1(r) will be a nontrivial
common factor for p and q, and we are done.

Finally, it is easy to build counterexamples to show that the converses of (b), (c), and (d)
fail to hold. For all three cases take p(λ) = λ2 + λ and MA = rev; for (b) let q(λ) = λ2 − 1,
but for (d) use instead q(λ) = 2λ2 + λ.

Remark 3.25. It is worth noting that alternative proofs for parts (c) and (d) of Corollary 3.24
can be fashioned by passing to the algebraic closure F and using Lemma 5.6.

Example 3.26. The multiplicative property of reversals acting on scalar polynomials [47,
Lemma 3.9]

revj+` (pq) = revj (p) · rev` (q)

where j ≥ deg p, and ` ≥ deg q, is just a special case of Proposition 3.23.

3.4 Interaction of Möbius Transformations with Rank and Compounds

The first step in understanding how Möbius transformations affect rank and compounds of
matrix polynomials is to see how they interact with determinants. The next proposition
shows that determinants commute with any Möbius transformation.

Proposition 3.27. Let P be any n× n matrix polynomial of grade k. Then

det
(
MA(P )

)
= MA(detP ) (3.15)

for any A ∈ GL(2,F).

Proof. Recall that det(P ) is a polynomial of grade kn, by the convention established at the
end of Section 2.1. Thus the operators MA on the two sides of (3.15) operate with respect

11



to different grades in general, grade k on the left hand side, and grade kn on the right hand
side. Then we have

det
(
MA(P )

)
= det

[
(cµ+ d)kP (mA(µ))

]
= (cµ+ d)kn det

[
P (mA(µ))

]
= (cµ+ d)kn(detP )(mA(µ)) = MA(detP ) ,

and the proof is complete.

As an immediate corollary we see that regularity of a matrix polynomial is preserved by
Möbius transformations.

Corollary 3.28. Let P be any n × n matrix polynomial of grade k, and let A ∈ GL(2,F).
Then P is regular if and only if MA(P ) is regular.

More generally, Möbius transformations preserve the normal rank of a matrix polynomial.

Proposition 3.29. Let P be any m × n matrix polynomial of grade k. Then for any A ∈
GL(2,F),

rank MA(P ) = rank(P ).

Proof. Consider a general `×` submatrix Pηκ of P and the corresponding submatrix
(
MA(P )

)
ηκ

of MA(P ), where η and κ are row and column index sets, respectively, of cardinality `.
Since MA acts entry-wise, by (3.11) we have

(
MA(P )

)
ηκ

= MA(Pηκ). Taking determi-
nants and then using Proposition 3.27 we get

det
(
MA(P )

)
ηκ

= det
(
MA(Pηκ)

)
= MA

(
det(Pηκ)

)
. (3.16)

Thus by Theorem 3.18(c) we have

det
(
MA(P )

)
ηκ

= 0 ⇔ MA

(
det(Pηκ)

)
= 0 ⇔ det(Pηκ) = 0 ,

and we conclude that nonsingular submatrices (i.e., matrices that are nonsingular over the
field F(λ)) occur in exactly the same locations in P and MA(P ). Since rank is the size of the
largest nonsingular submatrix, the desired conclusion now follows.

We saw earlier in Proposition 3.27 that Möbius transformations and determinants com-
mute. The observation that the determinant of an n×n matrix is its nth compound prompts
one to investigate whether this commuting property holds for other compounds.

Theorem 3.30. Let P be an m × n matrix polynomial of grade k, and let A ∈ GL(2,F).
Then

C`
(
MA(P )

)
= MA

(
C`(P )

)
for ` = 1, 2, . . . ,min{m,n}. (3.17)

Proof. Recall from Section 2.1 that the `th compound C`(P ) has grade k`. This means that
in (3.17), the Möbius transformation on the right hand side is with respect to grade k`, while
the one on the left hand side is with respect to grade k. We will establish (3.17) by showing
that corresponding entries of the matrices in question are equal.

Consider arbitrary row and column index sets η and κ, respectively, of cardinality `.
Then by definition the (η, κ)-entry of C`(MA(P )) is just det

(
MA(P )

)
ηκ

, and by (3.16) we

have det
(
MA(P )

)
ηκ

= MA

(
det(Pηκ)

)
. Since det(Pηκ) is the (η, κ)-entry of C`(P ), we see

that (
C`(MA(P ))

)
ηκ

= MA

(
(C`(P ))ηκ

)
=
(
MA(C`(P ))

)
ηκ
,

by the observation in (3.10). Thus the matrices on each side in (3.17) agree entry-by-entry,
and the proof is complete.
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We remarked at the end of Section 2.1 that a priori, the only sensible choice for the grade
of the `th compound of a grade k matrix polynomial was k`. The results of this subsection
reinforce that choice, demonstrating that rank, determinant and compounds cohere nicely
with Möbius transformations once we use the framework of graded polynomials; and they
make a case, in hindsight, for defining the grade of detP and C`(P ) as kn and k` respectively,
where k is the grade of P .

4 Jordan Characteristic of Matrix Polynomials

In this section we introduce the Jordan characteristic of a matrix polynomial, develop some
tools for calculating this invariant, and see how the Jordan characteristic of a polynomial P
is related to that of its reversal revP .

4.1 Smith Form and Jordan Characteristic

Recall that an n×n matrix polynomial E(λ) is said to be unimodular if detE(λ) is a nonzero
constant. Two m× n matrix polynomials P (λ), Q(λ) are said to be unimodularly equivalent,
denoted by P ∼ Q, if there exist unimodular matrix polynomials E(λ) and F (λ) of size m×m
and n× n, respectively, such that

Q(λ) = E(λ)P (λ)F (λ) . (4.1)

If E(λ) and F (λ) in (4.1) are nonsingular constant matrices, then P and Q are said to be
strictly equivalent.

Theorem 4.1 (Smith form (Frobenius, 1878)[26]).
Let P (λ) be an m×n matrix polynomial over an arbitrary field F. Then there exists r ∈ N, and
unimodular matrix polynomials E(λ) and F (λ) over F of size m×m and n×n, respectively,
such that

E(λ)P (λ)F (λ) = diag(d1(λ), . . . , dmin {m,n}(λ)) =: D(λ),

where dr+1(λ), . . . , dmin {m,n}(λ) are identically zero, while d1(λ), . . . , dr(λ) are monic and
satisfy the divisibility chain property, i.e., dj(λ) is a divisor of dj+1(λ) for j = 1, . . . , r − 1.
Moreover, D(λ) is unique.

The nonzero diagonal elements dj(λ), j = 1, . . . , r in the Smith form of P (λ) are called the
invariant factors or invariant polynomials of P (λ).

Observe that the uniqueness of the Smith form over a field F implies that the Smith form
is insensitive to field extensions. In particular, the Smith form of P over F is the same as
that over F, the algebraic closure of F. It will sometimes be more convenient to work over
F, where each invariant polynomial can be completely decomposed into a product of linear
factors.

Definition 4.2 (Partial multiplicity sequences).
Let P (λ) be an m×n matrix polynomial over a field F, with rank(P ) = r and grade(P ) = k.
For any λ0 ∈ F, the invariant polynomials di(λ) of P for 1 ≤ i ≤ r can each be uniquely
factored as

di(λ) = (λ− λ0)αi pi(λ) with αi ∈ N , pi(λ0) 6= 0 .

The sequence of exponents (α1, α2, . . . , αr), which satisfies the condition 0 ≤ α1 ≤ α2 ≤ · · · ≤
αr by the divisibility chain property of the Smith form, is called the partial multiplicity se-
quence of P at λ0, denoted J (P , λ0). For λ0 =∞, the partial multiplicity sequence J (P ,∞)
is defined to be identical with J (revkP , 0) = J

(
MR(P ), 0

)
, where R is as in Example 3.7.
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Note that since rank(revkP ) = rank(P ) = r by Proposition 3.29, we see that the sequence
J (P ,∞) is also of length r.

Remark 4.3. Note that the sequence J (P , λ0) may consist of all zeroes; indeed, this occurs
for all but a finite subset of values λ0 ∈ F∞. An eigenvalue of P is an element λ0 ∈ F∞
such that J (P , λ0) does not consist of all zeroes. The spectrum of P , denoted by σ(P ), is
the collection of all the eigenvalues of P . If an eigenvalue λ0 has J (P , λ0) = (α1, α2, . . . , αr),
then the algebraic multiplicity of λ0 is just the sum α1 + α2 + · · · + αr, while the geometric
multiplicity of λ0 is the number of positive terms αj in J (P , λ0). The elementary divisors
associated with a finite λ0 are the collection of all powers

{
(λ − λ0)αj : αj > 0

}
, including

repetitions, while the elementary divisors associated with the eigenvalue∞ are the elementary
divisors of revkP associated with the eigenvalue 0, where the reversal is taken with respect
to the grade k of P .

It is worth stressing the importance of viewing the partial multiplicities of a fixed λ0
as a sequence. In a number of situations, especially for matrix polynomials with structure
[46, 47, 48], it is essential to consider certain subsequences of partial multiplicities, which
can be subtly constrained by the matrix polynomial structure. Indeed, even the zeroes in the
partial multiplicity sequences of structured matrix polynomials can sometimes have nontrivial
significance [46, 47, 48].

In the next definition we gather together all of the partial multiplicity sequences of P
(one for each element of F∞) into a single object called the Jordan characteristic of P .

Definition 4.4 (Jordan characteristic of a matrix polynomial).
Suppose P (λ) is an m×n matrix polynomial over a field F with rank(P ) = r. Let N r

≤ denote
the space of all ordered sequences of natural numbers of length r, i.e.,

N r
≤ :=

{
(α1, α2, . . . , αr) : αj ∈ N and 0 ≤ α1 ≤ α2 ≤ · · · ≤ αr

}
.

Then the Jordan characteristic of P over the field F is the mapping J (P , F) defined by

J (P , F) : F∞ −→ N r
≤

λ0 7−→ J (P , λ0)
(4.2)

If the field F is not algebraically closed, then we denote by J (P , F ) the Jordan characteristic
of P over the algebraic closure F . When the field F is clear from context, then for simplicity
we use the more concise notation J (P ).

There are a number of useful properties of Jordan characteristic that follow almost im-
mediately from properties of the Smith form. We collect some of these properties in the next
result, together with some brief remarks on their straightforward proofs.

Lemma 4.5 (Basic properties of Jordan characteristic).
Suppose P (λ) and Q(λ) are m× n matrix polynomials over an arbitrary field F. Then

(a) J (βP , F) = J (P , F) for any nonzero β ∈ F,

(b) J (P T , F) = J (P , F),

(c) if F = C, then J (P ∗ , λ0) = J (P , λ0) = J (P , λ0) for any λ0 ∈ C∞ ,

(d) if P and Q are strictly equivalent, then J (P , F) = J (Q, F),

(e) if P and Q are unimodularly equivalent, then J (P , λ0) = J (Q, λ0) for all λ0 ∈ F (but
not necessarily for λ0 =∞).
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Further suppose that P (λ) has grade k, and P̃ (λ) is identical to P (λ) except that P̃ (λ) has
grade k + ` for some ` ≥ 1. Then

(f) J (P̃ , λ0) = J (P , λ0) for all λ0 ∈ F, and J (P̃ ,∞) = J (P ,∞) + (`, `, . . . , `) .

Proof. Unimodularly equivalent polynomials certainly have the same Smith forms, so (e)
follows; the fact that elementary divisors of unimodularly equivalent polynomials may differ
at ∞ is discussed in [41]. Strictly equivalent polynomials are unimodularly equivalent, and
so are their reversals, so (d) follows from (e). Part (a) is a special case of (d). For parts (b)
and (c), note that if D(λ) is the Smith form of P (λ), then DT (λ) is the Smith form of P T (λ),
D(λ) is the Smith form of P (λ), and similarly for the reversals, so (b) and (c) follow.

All that remains is to understand the effect of the choice of grade on the Jordan charac-
teristic, as described in part (f). The first part of (f) is clear, since P̃ has the same Smith
form as P . To see the effect of grade on the elementary divisors at ∞, note that for P̃ we
must consider revk+` P̃ , while for P the relevant reversal is revkP . But it is easy to see that
revk+` P̃ (λ) = revk+`P (λ) = λ`revkP (λ). Thus the Smith forms of the reversals also differ by
the factor λ`, and the second part of (f) now follows.

Remark 4.6. Clearly the Smith form of P determines the finite part of the Jordan charac-
teristic, i.e., the part of the mapping J (P ) restricted to F ⊂ F∞. When F is algebraically
closed it is easy to see that the converse is also true; the Smith form of P can be uniquely
reconstructed from the finite part of the Jordan characteristic. For fields F that are not alge-
braically closed, though, the Jordan characteristic J (P , F) over F will not always suffice to
uniquely determine the Smith form of P over F. Indeed, J (P , λ0) can be the zero sequence
for all λ0 ∈ F when F is not algebraically closed, as the simple example of the real 1 × 1
polynomial P (λ) = λ2 + 1 shows; thus the Jordan characteristic J (P , F) may not contain
any information at all about the Smith form. However, because the Smith form of P over F
is the same as the Smith form of P over the algebraic closure F , the Jordan characteristic
J (P , F ) will uniquely determine the Smith form over F, and not just over F .

There are many cases of interest where two matrix polynomials, e.g., a polynomial and
any of its linearizations, have the same elementary divisors but different ranks, thus prevent-
ing the equality of their Jordan characteristics. In order to address this issue, it is convenient
to introduce a truncated version of the Jordan characteristic in which all zeroes are dis-
carded. For example, suppose P is a matrix polynomial whose Jordan characteristic at λ0
is J (P , λ0) = (0, 0, 0, 0, 1, 3, 4). Then the truncated Jordan characteristic of P at λ0 will be
just (1, 3, 4). We define this formally as follows.

Definition 4.7 (Truncated Jordan characteristic).
Suppose P is a matrix polynomial over the field F, and J (P , λ0) is the Jordan characteristic
of P at λ0 ∈ F∞. Then the truncated Jordan characteristic at λ0, denoted Ĵ (P , λ0), is the
nonzero subsequence of J (P , λ0), i.e., the subsequence of J (P , λ0) consisting of all of its
nonzero entries. If J (P , λ0) has only zero entries, then Ĵ (P , λ0) is taken to be the empty
sequence.

Note that just as for the Jordan characteristic, it is natural to view the truncated Jordan
characteristic over the field F as a mapping Ĵ (P ) with domain F∞. Clearly the values of this
mapping are sequences whose lengths can vary from one element of F∞ to another, and can
be anything from zero up to r = rank(P ).

Remark 4.8. The key feature of Ĵ (P , λ0) is that it records only the information about
the elementary divisors of P at λ0, indeed, it is essentially the Segre characteristic of P
at λ0. Thus for any pair of matrix polynomials P and Q, regardless of their size, grade,
or rank, the statement that P and Q have the same elementary divisors at λ0 can now be
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precisely captured by the equation Ĵ (P , λ0) = Ĵ (Q, λ0). It also follows that the following
two statements are equivalent:

1) J (P , λ0) = J (Q, λ0)

2) Ĵ (P , λ0) = Ĵ (Q, λ0) and rank(P ) = rank(Q) .

4.2 Tools for Calculating Jordan Characteristics

It is well known that for any λ0 ∈ F, any scalar polynomial f(λ) over F can be uniquely
expressed as f(λ) = (λ − λ0)αg(λ), where α ∈ N and g(λ0) 6= 0. (Note that α = 0 ∈ N
is certainly allowed here.) An analogous factorization for matrix polynomials is described
in the following definition, which is well known for F = C, but also applicable for matrix
polynomials over arbitrary fields.

Definition 4.9 (Local Smith representation).
Let P (λ) be an m× n matrix polynomial over a field F, and λ0 ∈ F. Then a factorization

P (λ) =
[
Eλ0(λ)

]
m×m ·

[
Dλ0(λ)

]
m×n ·

[
Fλ0(λ)

]
n×n (4.3)

is called a local Smith representation of P at λ0 ∈ F if Eλ0(λ), Fλ0(λ) are matrix polynomials
over F that are both invertible at λ = λ0, and Dλ0(λ) is a diagonal m× n matrix polynomial
of the form

Dλ0(λ) =

r n− r

r

m− r


(λ− λ0)κ1

. . .

(λ− λ0)κr
0

 , (4.4)

where
(
κ1, κ2, . . . , κr

)
are integer exponents satisfying 0 ≤ κ1 ≤ κ2 ≤ · · · ≤ κr.

As the name might suggest, local Smith representations of P are closely connected to the
Smith form of P . Indeed, they can be viewed as weaker versions of the Smith form that
focus attention on the behavior of P (λ) near one constant λ0 at a time. We will use them to
develop tools for determining partial multiplicity sequences of P (λ).

Because the polynomials Eλ0(λ), Fλ0(λ) in a local Smith representation do not need to
be unimodular, only invertible at λ0, tools based on local Smith representations can be much
more flexible than the Smith form itself. The basic existence and uniqueness properties of local
Smith representations, as well as their precise connection to the Smith form, are established
in the following theorem.

Theorem 4.10 (Local Smith representations).
Let P (λ) be any m×n matrix polynomial, regular or singular, over an arbitrary field F. Then
for each λ0 ∈ F, there exists a local Smith representation (4.3) for P at λ0. Moreover, in any
two such representations (4.3) the diagonal factor Dλ0(λ) is the same, and so it is uniquely
determined by P and λ0. In particular, the number r of nonzero entries in Dλ0(λ) is always
equal to rankP (λ), and the sequence of exponents

(
κ1, κ2, . . . , κr

)
is identical to the partial

multiplicity sequence J (P , λ0) =
(
α1, α2, . . . , αr

)
determined by the Smith form of P (λ).

Proof. The existence of a local Smith representation for P (λ) at λ0 follows easily from the
Smith form itself, by doing a little extra factorization. Let P (λ) = E(λ)D(λ)F (λ), where
E(λ), F (λ) are unimodular and

D(λ) =


d1(λ)

. . .
dr(λ)

0


m×n
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is the Smith form of P (λ). Each di(λ) factors uniquely as di(λ) = (λ − λ0)αi d̃i(λ) where
αi ≥ 0 and d̃i(λ0) 6= 0, so D(λ) can be expressed as

D(λ) =


(λ− λ0)α1

. . .
(λ− λ0)αr

0


m×n

· D̃(λ) ,

where 0 ≤ α1 ≤ α2 ≤ · · · ≤ αr and D̃(λ) = diag
[
d̃1(λ), d̃2(λ), . . . , d̃r(λ), 1, . . . , 1

]
is an n× n

diagonal matrix polynomial such that D̃(λ0) is invertible. Thus

P (λ) = Eλ0(λ) ·


(λ− λ0)α1

. . .
(λ− λ0)αr

0


m×n

· Fλ0(λ) , (4.5)

with Eλ0(λ) := E(λ) and Fλ0(λ) := D̃(λ)F (λ) both invertible at λ0, displays a local Smith
representation for P (λ) at λ0.

Next we turn to the uniqueness part of the theorem. Suppose that we have two local Smith
representations for P (λ) at λ0, given by Eλ0(λ)Dλ0(λ)Fλ0(λ) and Ẽλ0(λ)D̃λ0(λ)F̃λ0(λ), i.e.,

Eλ0(λ)Dλ0(λ)Fλ0(λ) = P (λ) = Ẽλ0(λ)D̃λ0(λ)F̃λ0(λ) . (4.6)

Let
(
κ1, κ2, . . . , κr

)
and

(
κ̃1, κ̃2, . . . , κ̃r̃

)
be the exponent sequences of Dλ0(λ) and D̃λ0(λ),

respectively. We first show that the lengths r and r̃ of these two sequences are the same. By
hypothesis the constant matrices Eλ0(λ0), Fλ0(λ0), Ẽλ0(λ0), and F̃λ0(λ0) are all invertible.
Hence the corresponding square matrix polynomials Eλ0(λ), Fλ0(λ), Ẽλ0(λ), and F̃λ0(λ) each
have full rank when viewed as matrices over the field of rational functions F(λ). Thus (4.6)
implies that r = rankDλ0(λ) = rankP (λ) = rank D̃λ0(λ) = r̃.

To prove that the exponent sequences
(
κ1, κ2, . . . , κr

)
and

(
κ̃1, κ̃2, . . . , κ̃r

)
are identical,

and hence that Dλ0(λ) ≡ D̃λ0(λ), consider the partial sums sj := κ1 + κ2 + · · · + κj and
s̃j := κ̃1 + κ̃2 + · · · + κ̃j for j = 1, . . . , r. If we can show that sj = s̃j for every j = 1, . . . , r,
then the desired identity of the two exponent sequences would follow.

Start by multiplying (4.6) on the left and right by the classical adjoint matrix polynomials

E#
λ0

(λ) and F#
λ0

(λ), respectively, to obtain[
detEλ0(λ) detFλ0(λ)

]
·Dλ0(λ) = Êλ0(λ)D̃λ0(λ)F̂λ0(λ) , (4.7)

where Êλ0(λ) = E#
λ0

(λ)Ẽλ0(λ) and F̂λ0(λ) = F̃λ0(λ)F#
λ0

(λ) are square matrix polynomials.
For any fixed 1 ≤ j ≤ r, taking the jth compound of both sides of (4.7) now yields[

detEλ0(λ) detFλ0(λ)
]j · Cj(Dλ0(λ)

)
= Cj

(
Êλ0(λ)

)
Cj
(
D̃λ0(λ)

)
Cj
(
F̂λ0(λ)

)
, (4.8)

using the basic properties of compound matrices as described in Theorem 2.2. The jth
compound of a diagonal matrix is also diagonal, and in particular

Cj
(
Dλ0(λ)

)
=

 (λ− λ0)sj
. . .

 and Cj
(
D̃λ0(λ)

)
=

 (λ− λ0)s̃j
. . .

 .
Note that every nonzero diagonal entry of Cj

(
D̃λ0(λ)

)
is of the form (λ − λ0)` with ` ≥ s̃j ,

so Cj
(
D̃λ0(λ)

)
, and hence also the right-hand side of (4.8), may be factored as

(λ− λ0)s̃jQ(λ),
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where Q(λ) is a matrix polynomial. Hence, every entry of the left-hand side of (4.8) must

be divisible by (λ − λ0)s̃j , in particular the (1, 1)-entry
[

detEλ0(λ) detFλ0(λ)
]j

(λ − λ0)sj .
But the invertibility of Eλ0(λ) and Fλ0(λ) at λ0 means that neither detEλ0(λ) nor detFλ0(λ)
are divisible by (λ − λ0). Thus (λ − λ0)s̃j divides (λ − λ0)sj , and hence s̃j ≤ sj for each
j = 1, . . . , r. Interchanging the roles of the left and right sides of (4.6), we see by the same
argument, mutatis mutandis, that sj ≤ s̃j for j = 1, . . . , r. Thus sj = s̃j for each j = 1, . . . , r,
and therefore the exponent sequences

(
κ1, κ2, . . . , κr

)
and

(
κ̃1, κ̃2, . . . , κ̃r

)
are identical.

Finally, the existence of the particular local Smith representation (4.5) generated from the
Smith form shows that the exponent sequence

(
κ1, κ2, . . . , κr

)
from every local Smith represen-

tation is always the same as the partial multiplicity sequence J (P , λ0) =
(
α1, α2, . . . , αr

)
.

Definition 4.11 (Local Smith form).
The uniquely determined diagonal factor Dλ0(λ) in (4.3) will be referred to as the local Smith
form of P (λ) at λ0.

Remark 4.12. The proof of Theorem 4.10 presented here has been designed to be valid for
general matrix polynomials over arbitrary fields, and also to take advantage of the properties
of compound matrices. With some modifications, an earlier proof [30, Theorem S1.10] for
regular matrix polynomials over C can be made valid for general matrix polynomials over
arbitrary fields. Further extensions of the concept of local Smith form (at least for F = C)
can also be found in the literature. For example, the conditions in Definition 4.9 can be
relaxed as in [40] to allow Eλ0(λ) and Fλ0(λ) to be any matrix functions that are invertible
at λ0 and analytic in a neighborhood of λ0 (e.g., rational matrices whose determinants have
no zeroes or poles at λ0). This extension was used in [3] to study linearizations.

As a consequence of the uniqueness of the local Smith form and Theorem 4.10, we obtain
the following useful tool for determining partial multiplicity sequences.

Lemma 4.13. Suppose P (λ) and Q(λ) are m× n matrix polynomials, and let λ0 ∈ F. If

Gλ0(λ)P (λ)Hλ0(λ) = Kλ0(λ)Q(λ)Mλ0(λ) ,

where Gλ0(λ), Hλ0(λ),Kλ0(λ),Mλ0(λ) are matrix polynomials invertible at λ0, then the partial
multiplicity sequences J (P , λ0) and J (Q, λ0) are identical.

Proof. Define R(λ) := Gλ0(λ)P (λ)Hλ0(λ), and let P (λ) := Eλ0(λ)Dλ0(λ)Fλ0(λ) be a local
Smith representation for P (λ) as in Theorem 4.10. Then

R(λ) = Gλ0(λ)P (λ)Hλ0(λ) =
[
Gλ0(λ)Eλ0(λ)

]
Dλ0(λ)

[
Fλ0(λ)Hλ0(λ)

]
displays a local Smith representation for R(λ) at λ0. Since the local Smith form at λ0 is
unique, we see that J (P , λ0) must be identical to J (R, λ0). The same argument applies to
J (Q, λ0) and J (R, λ0), which implies the desired result.

Remark 4.14. An extension of Lemma 4.13 in which the matrix polynomials Gλ0(λ), Hλ0(λ),
Kλ0(λ), Mλ0(λ) are replaced by rational matrices invertible at λ0 follows easily as a corollary
of Lemma 4.13. Although this extension does not in fact provide any greater generality than
Lemma 4.13, it may certainly at times be more convenient to use.

4.3 Jordan Characteristic and Smith Form of revkP

As a first illustration of the use of Lemma 4.13, we show how the Jordan characteristic of
a matrix polynomial P (λ) is related to that of its reversal polynomial revkP . Recall from
Proposition 3.29 that rank(revkP ) = rankP = r, so all partial multiplicity sequences of both
P and revkP have length r, and hence can be compared to each other.
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Theorem 4.15 (Partial multiplicity sequences of revkP ).
Suppose P (λ) is an m× n matrix polynomial with grade(P ) = k and rank(P ) = r. Then

J (revkP , λ0) ≡ J (P , 1/λ0) for all λ0 ∈ F∞ .

(Here 0 and∞ are also included as a reciprocal pair.) Equivalently, we have that the following
diagram commutes, where mR is the reciprocal map λ0 7→ 1/λ0 on F∞.

F∞ Nr≤

F∞

J (revkP )

mR J (P )

Proof. First observe that J (P ,∞) is by definition the same as J (revkP , 0). Similarly we
see that J (revkP ,∞) = J

(
revk (revkP ), 0

)
= J (P , 0), so to complete the proof we from

now on restrict attention to nonzero finite λ0 ∈ F. Set µ0 = 1
λ0

, and let

P (λ) = Eµ0(λ)Dµ0
(λ)Fµ0(λ) (4.9)

be a local Smith representation of P (λ) at µ0, where

Dµ0
(λ) = diag

[
(λ− µ0)α1 , (λ− µ0)α2 , . . . , (λ− µ0)αr , 0 , . . . , 0

]
,

as in (4.4). Now define ` := deg
(
Eµ0(λ)

)
+ deg

(
Dµ0

(λ)
)

+ deg
(
Fµ0(λ)

)
, let s := max {k, `},

and take the s-reversal of both sides of (4.9) to obtain

λs−k revkP (λ) = λs−` revEµ0(λ) revDµ0
(λ) revFµ0(λ) ,

where each reversal on the right-hand side is taken with respect to degree. Since λs−k, λs−`,
revEµ0(λ) and revFµ0(λ) are all matrix polynomials that are invertible at λ0 = 1

µ0
6= 0, by

Lemma 4.13 we see that J (revkP , λ0) and J (revDµ0
, λ0) are identical. But

revDµ0
(λ) = λαrDµ0

(1/λ)

= λαr


( −µ0

λ

)α1

. . .( −µ0
λ

)αr

Im−r


m×m


(
λ− λ0

)α1

. . .(
λ− λ0

)αr

0


m×n

displays a local Smith representation for revDµ0
at λ0, showing that J (revDµ0

, λ0) =
(α1, α2, . . . , αr) is exactly the same as J (P , µ0) = J (P , 1/λ0), thus completing the proof.

Remark 4.16. Theorem 4.15 is well-known for special fields and was stated (without proof)
for polynomials over C in [19].

For polynomials over non-algebraically closed fields F, the result of Theorem 4.15 does
not completely capture the effect of reversal on the Smith form. We characterize the general
relationship between the Smith forms of P and revP in Theorem 4.17 below, so the reader
may see the full picture for the reversal operation together in the same place. However, no
proof will be given here, since this result is just a special case of Theorem 5.7. Note that
nothing in Section 5 needs Theorem 4.17 as a prerequisite, so there is no logical circularity.
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Theorem 4.17 (Smith forms of P and revkP ).
Suppose P (λ) is an m×n matrix polynomial over a field F with grade(P ) = k and rank(P ) =
r. Let

D(λ) =


λα1p1(λ)

. . .

λαrpr(λ)

0


m×n

with pj(0) 6= 0 for 1 ≤ j ≤ r

be the Smith form of P (λ), and suppose J (P ,∞) =
(
β1, β2, . . . , βr

)
. Then the Smith form

of revkP is

D̃(λ) =


γ1λ

β1revp1(λ)
. . .

γrλ
βrrevpr(λ)

0


m×n

,

where the constants γj for 1 ≤ j ≤ r are chosen so that each γj revpj(λ) is monic. (Note that

each reversal revpj(λ) in D̃(λ) is taken with respect to deg pj.)

5 Möbius and Jordan and Smith

We now consider the elementary divisors of a general matrix polynomial P , and their relation-
ship to the elementary divisors of any of the Möbius transforms of P . This relationship can
be conveniently and concisely expressed by comparing the Jordan characteristics and Smith
forms of P and MA(P ); these comparisons constitute the two main results of this section,
Theorems 5.3 and 5.7.

Alternative approaches to this elementary divisor question are taken in [5], [6], and [66],
with results analogous to those in this section. In [66], matrix polynomials and their Smith
forms are treated in homogeneous form, but the only choice for grade considered is gradeP =
degP . The analysis is extended in [5] and [6] to include not just matrices with entries in a
ring of polynomials, but to rational matrices, and even matrices with entries from an arbitrary
local ring. See also Remark 5.5 for an extension to more general rational transforms.

5.1 Möbius and Jordan Characteristic

Before proceeding to the main result of this section, we present two preliminary lemmas
containing some observations about Möbius functions that will be needed later.

Lemma 5.1. Let A =
[
a b
c d

]
∈ GL(2,F) with corresponding Möbius function mA(λ) = aλ+b

cλ+d
,

and R =
[
0 1
1 0

]
as in Lemma 3.3.

(a) If mA(∞) =∞ , then mRAR(0) = 0, in particular mRAR(0) is finite.

(b) If mA(∞) = λ0 is finite and nonzero, then mRAR(0) = 1
λ0

is finite.

(c) If mA(∞) = 0 , then mA can be factored as the composition of two Möbius functions
mA2

mA1
= mA2A1

= mA such that mA1
(∞) = 1 and mA2

(1) = 0.

Proof. Parts (a) and (b) are special cases of Lemma 3.3. Since

mRAR(0) = mRAR

(
1

∞

)
=

1

mA(∞)
,
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for part (a) we have mRAR(0) = 1
∞ = 0 , and for part (b) we have mRAR(0) = 1

λ0
.

For part (c), it suffices to find an appropriate factorization A2A1 for A. First observe that
mA(∞) = 0 implies that A

[
1
0

]
=
[
0
c

]
for some nonzero c; hence A =

[
0 b
c d

]
with b 6= 0 and

c 6= 0, since A is nonsingular. Then

A2A1 =

[
−b b
c− d d

] [
1 0
1 1

]
=

[
0 b
c d

]
= A

is one such factorization, since A1

[
1
0

]
=
[
1
1

]
implies that mA1

(∞) = 1, and A2

[
1
1

]
=
[
0
c

]
with c 6= 0 implies that mA2

(1) = 0.

Lemma 5.2. Suppose A =
[
a b
c d

]
∈ GL(2,F), with corresponding Möbius function mA(λ) =

aλ+b
cλ+d

. If µ0 and mA(µ0) are both finite elements of F∞, then we have the following identity

in the field of rational functions F(µ):

(cµ+ d)
[
mA(µ)−mA(µ0)

]
=

detA

(cµ0 + d)
(µ− µ0) .

Proof. Since mA(µ0) is finite, the quantity cµ0+d is nonzero. Thus from the simple calculation

(cµ0 + d)(cµ+ d)
[
mA(µ)−mA(µ0)

]
=

[
(aµ+ b)(cµ0 + d)− (aµ0 + b)(cµ+ d)

]
=

[
(ad− bc)µ− (ad− bc)µ0

]
= (detA) (µ− µ0) ,

the result follows immediately.

Theorem 5.3 (Partial multiplicity sequences of Möbius transforms).
Let P (λ) be an m×n matrix polynomial over a field F with grade(P ) = k and rank(P ) = r,
and let A ∈ GL(2,F) with associated Möbius transformation MA and Möbius function mA.
Then for any µ0 ∈ F∞,

J
(
MA(P ), µ0

)
≡ J

(
P ,mA(µ0)

)
. (5.1)

Equivalently, we may instead write

J
(
MA(P ),mA−1(µ0)

)
≡ J

(
P , µ0

)
, (5.2)

or assert that the following diagram commutes.

F∞ Nr≤

F∞

J
(
MA(P )

)

mA J (P )mA−1

Proof. The proof proceeds in five cases, depending on various combinations of the numbers µ0
and λ0 := mA(µ0) being finite, infinite, or nonzero. Throughout the proof we have A =

[
a b
c d

]
.

Case 1 [µ0 and λ0 = mA(µ0) are both finite ]: First observe that mA(µ0) being finite means
that cµ0 + d 6= 0, a fact that will be used implicitly throughout the argument. Now let

P (λ) = Eλ0(λ)Dλ0(λ)Fλ0(λ) (5.3)

be a local Smith representation for P (λ) at λ0, where Dλ0(λ) is as in (4.4); hence by The-
orem 4.10 we have (κ1, κ2, . . . , κr) = J (P, λ0) = (α1, α2, . . . , αr) is the partial multiplicity
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sequence of P at λ0, and degDλ0(λ) = αr. Now define ` := deg
(
Eλ0(λ)

)
+ deg

(
Dλ0(λ)

)
+

deg
(
Fλ0(λ)

)
, and let s := max {k, `}. Then by substituting λ = mA(µ) in (5.3) and pre-

multiplying by (cµ+ d)s we obtain

(cµ+ d)sP
(
mA(µ)

)
= (cµ+ d)sEλ0

(
mA(µ)

)
Dλ0

(
mA(µ)

)
Fλ0
(
mA(µ)

)
,

or equivalently

(cµ+ d)s−k
[
MA(P )(µ)

]
=
[
(cµ+ d)s−` MA

(
Eλ0

)
(µ)
]
·
[
(cµ+ d)αrDλ0

(
mA(µ)

)]
·
[
MA

(
Fλ0
)
(µ)
]
,

where the Möbius transforms MA

(
Eλ0

)
and MA

(
Fλ0
)

are taken with respect to degree in
each case. Since (cµ + d)s−k, (cµ + d)s−`, MA

(
Eλ0

)
(µ), and MA

(
Fλ0
)
(µ) are all matrix

polynomials that are invertible at µ = µ0, we see by Lemma 4.13 that

J
(
MA(P ), µ0

)
≡ J

(
(cµ+ d)αrDλ0

(
mA(µ)

)
, µ0

)
.

We can now simplify (cµ+ d)αrDλ0

(
mA(µ)

)
even further using Lemma 5.2 and obtain

(cµ+ d)αrDλ0

(
mA(µ)

)
= (cµ+ d)αr


(
mA(µ)− λ0

)α1

. . .(
mA(µ)− λ0

)αr

0


m×n

= (cµ+ d)αr


(
mA(µ)−mA(µ0)

)α1

. . .(
mA(µ)−mA(µ0)

)αr

0


m×n

= G(µ)


(
µ− µ0

)α1

. . .(
µ− µ0

)αr

0


m×n

, (5.4)

where G(µ) is the diagonal matrix polynomial

G(µ) =



βα1(cµ+ d)αr−α1

βα2(cµ+ d)αr−α2

. . .

βαr(cµ+ d)αr−αr

Im−r


m×m

with β =
detA

(cµ0 + d)
.

Since G(µ) is invertible at µ = µ0, we can now read off from the local Smith representation
(5.4) that

J
(
(cµ+ d)αrDλ0

(
mA(µ)

)
, µ0
)

= (α1, α2, . . . , αr)

= J (P , λ0) = J (P ,mA(µ0)) ,

and the proof for Case 1 is complete.
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Case 2 [µ0 and λ0 = mA(µ0) are both ∞ ]:
Using the fact that R as in Example 3.7, Definition 4.2, and Lemma 5.1(a) satisfies R2 = I,

we have

J
(
MA(P ),∞

)
= J

(
MR

(
MA(P )

)
, 0
)

= J
(
MAR(P ), 0

)
= J

(
MRAR

(
MR(P )

)
, 0
)

= J
(
MR(P ),mRAR(0)

)
= J

(
MR(P ), 0

)
= J

(
P ,∞

)
= J (P ,mA(µ0)) .

The first equality is by Definition 4.2, the second and third by Theorem 3.18(b) together with
R2 = I, the fourth and fifth by Case 1 together with Lemma 5.1(a), and the last equality by
Definition 4.2.

Case 3 [µ0 =∞, but λ0 = mA(µ0) is finite and nonzero ]:

J
(
MA(P ),∞

)
= J

(
MRAR

(
MR(P )

)
, 0
)

= J
(
MR(P ),mRAR(0)

)
= J

(
MR(P ), 1/λ0

)
= J (P , λ0) = J

(
P ,mA(µ0)

)
.

The first equality condenses the first three equalities of Case 2, the second and third are by
Lemma 5.1(b) together with Case 1, the fourth equality is by Theorem 4.15, and the last
equality just uses the definition of λ0 for this case.

Case 4 [µ0 = ∞ and λ0 = mA(µ0) = 0 ]: This case uses Lemma 5.1(c), which guarantees
that any mA with the property that mA(∞) = 0 can always be factored as a composition
of Möbius functions mA2

mA1
= mA such that mA1

(∞) = 1 and mA2
(1) = 0. Using such a

factorization we can now prove Case 4 as a consequence of Case 3 and Case 1.

J
(
MA(P ), µ0

)
= J

(
MA2A1

(P ),∞
)

= J
(
MA1

(
MA2

(P )
)
,∞
)

= J
(
MA2(P ),mA1

(∞)
)

= J
(
MA2(P ), 1

)
= J

(
P ,mA2

(1)
)

= J (P , 0) = J
(
P ,mA(µ0)

)
.

The first equality invokes the factorization, the second is by Theorem 3.18(b), the third
equality is by Case 3, the fifth equality is by Case 1, and the last equality uses the definition
of λ0 for this case.

Case 5 [µ0 is finite, and λ0 = mA(µ0) = ∞ ]: For this final case we first need to observe
that mA(µ0) =∞ implies that mA−1(∞) = µ0.

J
(
MA(P ), µ0

)
= J

(
MA(P ),mA−1(∞)

)
= J

(
MA−1

(
MA(P )

)
,∞
)

= J
(
P ,∞

)
= J

(
P ,mA(µ0)

)
.

The first equality invokes the observation, the second uses Case 3 and 4, the third follows
from Theorem 3.18(c), and the last equality uses the definition of λ0 for this case.

Theorem 5.3 provides a beautiful and substantial generalization of Theorem 4.15, since the
reversal operator revkP is just the particular Möbius transformation induced by the matrix
R, as described in Example 3.7.
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Remark 5.4. It should be noted that the relationship proved in Theorem 5.3 also holds for
truncated Jordan characteristic, i.e.,

Ĵ
(
MA(P ), λ0

)
= Ĵ

(
P ,mA(λ0)

)
for every λ0 ∈ F∞ ,

for any matrix polynomial P and any Möbius transformation MA. This follows immediately
by applying Remark 4.8 to the corresponding result in Theorem 5.3 for the “ordinary” Jordan
characteristic.

Remark 5.5. In view of the results in this section, we suggested that the Jordan characteristic
may behave in a manner analogous to (5.1) under more general rational transforms of matrix
polynomials. This topic has been considered in work by V. Noferini [53].

5.2 Möbius and the Smith Form

The results of Section 5.1 now enable us to find explicit formulas for the Smith form of any
Möbius transform of a matrix polynomial P in terms of the Smith form of P itself. To derive
these we will make use of the following lemma.

Lemma 5.6 (Möbius transforms of scalar polynomials).
Suppose A =

[
a b
c d

]
∈ GL(2,F), with corresponding Möbius function mA(λ) = aλ+b

cλ+d
. Con-

sider any scalar polynomial of the form p(λ) = (λ−λ1)α1(λ−λ2)α2 · · · (λ−λk)αk where λj ∈ F
are distinct finite numbers. Let r = α1 +α2 + · · ·+αk , and define µj to be the unique distinct
elements of F∞ so that λj = mA(µj) for j = 1, . . . , k.

(a) If λj 6= mA(∞) for j = 1, . . . , k, then[
MA(p)

]
(µ) = γ(µ− µ1)α1(µ− µ2)α2 · · · (µ− µk)αk ,

where MA is taken with respect to degree, and

γ =
(detA)r

(cµ1 + d)α1(cµ2 + d)α2 · · · (cµk + d)αk
,

is a finite nonzero constant. (Note that all terms in the denominator of γ are nonzero
since each mA(µj) = λj is finite.)

(b) If λ1 = mA(∞), and so λj 6= mA(∞) for all j = 2, . . . , k, then[
MA(p)

]
(µ) = γ̃ (µ− µ2)α2 · · · (µ− µk)αk ,

where MA is taken with respect to degree, and

γ̃ =
(detA)r

(−c)α1(cµ2 + d)α2 · · · (cµk + d)αk
,

is a nonzero constant. (Note that all terms in the denominator of γ are nonzero since
each mA(µj) = λj is finite. Also mA(∞) = λ1 being finite implies that c 6= 0.)

Observe that in this case deg MA(p) is strictly less than deg p, since the term (λ−λ1)α1

is effectively swallowed up by the Möbius transform MA .

Proof. (a) First consider the case where p(λ) consists of a single linear factor (λ− λj). Then
by the definition of MA and Lemma 5.2 we have

MA(λ− λj) = (cµ+ d)
[
mA(µ)− λj

]
= (cµ+ d)

[
mA(µ)−mA(µj)

]
=

detA

(cµj + d)
(µ− µj).
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The result of part (a) now follows by applying the multiplicative property of Möbius trans-
formations as described in Corollary 3.24(a).

(b) First observe that λ1 being finite with λ1 = mA(∞) means that λ1 = a/c with c 6= 0.
Then we have

MA(λ− λ1) = (cµ+ d)
[ aµ+ b

cµ+ d
− a

c

]
= (aµ+ b)− a

c
(cµ+ d) = b− ad

c
=

detA

−c
.

The strategy of part (a) can now be used, mutatis mutandis, to yield the desired result.

Theorem 5.7 (Smith form of Möbius transform).
Let P (λ) be an m× n matrix polynomial over a field F with k = grade(P ) and r = rank(P ).
Suppose

D(λ) =


λα1p1(λ)

. . .

λαrpr(λ)

0


m×n

with pj(0) 6= 0 for 1 ≤ j ≤ r

is the Smith form of P (λ), and J (P ,∞) = (β1, β2, . . . , βr). Then for A =
[
a b
c d

]
∈ GL(2,F)

with associated Möbius function mA(µ) = aµ+b
cµ+d

and Möbius transformation MA , the Smith

form of the m× n matrix polynomial MA(P )(µ) is

D̃A(µ) =


γ1(aµ+ b)α1(cµ+ d)β1MA(p1)(µ)

. . .

γr(aµ+ b)αr(cµ+ d)βrMA(pr)(µ)

0


m×n

, (5.5)

where the constants γj are chosen so that each invariant polynomial d̃i(µ) in D̃A(µ) is monic.
Here each scalar Möbius transform MA(pj) is taken with respect to deg(pj).

Proof. First we show that D̃A(µ) in (5.5) is a Smith form over the field F for some matrix

polynomial. Since the diagonal entries d̃j(µ) of D̃A(µ) are monic polynomials in F[µ] by

definition, we only need to establish the divisibility chain property d̃j(µ)| d̃j+1(µ) for j =
1, . . . , r−1. Clearly we have α1 ≤ α2 ≤ · · · ≤ αr and β1 ≤ β2 ≤ · · · ≤ βr, since (α1, α2, . . . , αr)
and (β1, β2, . . . , βr) are both partial multiplicity sequences for P . Also MA(pj) |MA(pj+1)

follows from pj |pj+1 by Corollary 3.24. Thus d̃j | d̃j+1, and hence D̃A is a Smith form.

It remains to show that D̃A(µ) is the Smith form of the particular matrix polynomial
MA(P ). Recall from Remark 4.6 that a Smith form of a polynomial over a field F is completely
determined by the finite part of its Jordan characteristic over the algebraic closure F. Thus
the proof will be complete once we show that D̃A and MA(P ) have the same finite Jordan
characteristic, i.e.,

J
(
D̃A , µ0

)
= J

(
MA(P ), µ0

)
(5.6)

for all finite µ0 ∈ F.
Since the partial multiplicity sequences of any matrix polynomial are trivial for all but

finitely many µ0, (5.6) will automatically be satisfied for almost all µ0 ∈ F. Our strategy,
therefore, is to focus on the sets

S
D̃

:=
{
µ0 ∈ F : J

(
D̃A , µ0

)
is nontrivial

}
and SM :=

{
µ0 ∈ F : J

(
MA(P ), µ0

)
is nontrivial

}
,
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and show that (5.6) holds whenever µ0 ∈ SD̃ ∪ SM. Consequently, S
D̃

= SM and (5.6) holds

for all µ0 ∈ F.

We begin with µ0 ∈ SD̃. In order to calculate partial multiplicity sequences of D̃A, first

observe that in each diagonal entry d̃j(µ) of (5.5), the terms (aµ+b)αj , (cµ+d)βj , and MA(pj)
are pairwise relatively prime, and hence share no common roots. Consequently, contributions
to any particular nontrivial partial multiplicity sequence for D̃A can come either

• from just the (aµ+ b)αj -terms,

• from just the (cµ+ d)βj -terms,

• or from just the MA(pj)-terms.

That (aµ + b) is relatively prime to (cµ + d) follows from the nonsingularity of A. If either
(aµ+ b) or (cµ+ d) were a factor of MA(pj), then by Lemma 5.6, pj(λ) would have to have
either mA(−ba ) or mA(−dc ) as a root; however, neither of these is possible, since mA(−ba ) = 0

and mA(−dc ) =∞.

Now consider the possible values of µ0 ∈ SD̃ . Clearly µ0 = −b
a is one such possibility, but

only if a 6= 0 and if (α1, α2, . . . , αr) is nontrivial; otherwise all the terms (aµ+b)αj are nonzero
constants, and are effectively absorbed by the normalizing constants γj . So if µ0 = −b

a ∈ SD̃,
then we have

J
(
D̃A ,

−b
a

)
= (α1, . . . , αr) = J

(
D, 0

)
= J

(
P , 0

)
= J

(
MA(P ),m−1A (0)

)
= J

(
MA(P ), −ba

)
,

and (5.6) holds for µ0 = −b
a . Note that the fourth equality is an instance of Theorem 5.3,

which we will continue to use freely throughout the remainder of this argument. Another
possible µ0-value in S

D̃
is µ0 = −d

c , but again only if c 6= 0 and if (β1, β2, . . . , βr) is nontrivial;
otherwise all (cµ + d)βj -terms are nonzero constants that get absorbed by the constants γj .
If µ0 = −d

c ∈ SD̃, then we have

J
(
D̃A ,

−d
c

)
= (β1, . . . , βr) = J

(
P ,∞

)
= J

(
MA(P ),m−1A (∞)

)
= J

(
MA(P ), −dc

)
,

and (5.6) holds for µ0 = −d
c . The only other µ0-values in S

D̃
are the roots of the polynomial

MA(pr), so suppose µ0 is one of those roots. Then by Lemma 5.6 we have J
(
D̃A , µ0

)
=

J
(
D,mA(µ0)

)
with a finite mA(µ0), and thus

J
(
D̃A , µ0

)
= J

(
D,mA(µ0)

)
= J

(
P ,mA(µ0)

)
= J

(
MA(P ), µ0

)
,

completing the proof that (5.6) holds for all µ0 ∈ SD̃.
Finally we turn to the µ0-values in SM. By Theorem 5.3 we certainly have

J
(
MA(P ), µ0

)
= J

(
P ,mA(µ0)

)
for any µ0 ∈ SM. The remainder of the argument depends on whether mA(µ0) is finite or
infinite.

(1) If mA(µ0) is finite, then J
(
MA(P ), µ0

)
= J

(
P ,mA(µ0)

)
= J

(
D,mA(µ0)

)
, since D is

the Smith form of P . This partial multiplicity sequence is nontrivial since µ0 ∈ SM, so
either mA(µ0) = 0, or λ0 = mA(µ0) 6= 0 is a root of pr(λ). If mA(µ0) = 0, then since
µ0 is finite we must have a 6= 0 and µ0 = −b

a , and hence J
(
D,mA(µ0)

)
= J

(
D, 0

)
=

(α1, α2, . . . , αr) = J
(
D̃A ,

−b
a

)
= J

(
D̃A , µ0

)
, so (5.6) holds. If on the other hand

λ0 = mA(µ0) 6= 0, then since λ0 = mA(µ0) is a root of pr(λ), we have by Lemma 5.6

that J
(
D,mA(µ0)

)
= J

(
D̃A , µ0

)
, and so once again (5.6) holds.
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(2) If mA(µ0) =∞, then because µ0 is finite we must have c 6= 0 and µ0 = −d
c . In this case

J
(
MA(P ), µ0

)
= J

(
P ,∞

)
= (β1, β2, . . . , βr) by our choice of notation; this sequence

is nontrivial since µ0 ∈ SM. But (β1, β2, . . . , βr) is equal to J
(
D̃A ,

−d
c

)
when c 6= 0, by

our definition of D̃A, and so (5.6) holds for this final case.

Thus (5.6) holds for all µ0 ∈ SM, and the proof is complete.

Using the fact that the reversal operator can be viewed as a Möbius transformation, an im-
mediate corollary of Theorem 5.7 is the complete characterization of the relationship between
the Smith forms of P and revkP , as described earlier (without proof) in Theorem 4.17.

6 Möbius and Invariant Pairs

It is common knowledge, see e.g., [13, 50] for the case of Hamiltonian and symplectic matrices
and pencils, that invariant subspaces of matrices and deflating subspaces of matrix pencils
remain invariant under Cayley transformations. In this section, we investigate the analogous
question for regular matrix polynomials under general Möbius transformations, using the
concept of invariant pair. Introduced in [10] and further developed in [9], this notion extends
the well-known concepts of standard pair [30] and null pair [8]. Just as invariant subspaces
for matrices or deflating subspaces for pencils can be seen as a generalization of eigenvectors,
we can think of invariant pairs of matrix polynomials as a generalization of eigenpairs (x, λ0),
consisting of an eigenvector x together with its associated eigenvalue λ0. The concept of
invariant pair can be a more flexible and useful tool for computation in the context of matrix
polynomials than either eigenpair, null pair, or standard pair [9].

Definition 6.1 (Invariant pair).
Let P (λ) =

∑k
j=0 λ

jBj be a regular n×n matrix polynomial of grade k over a field F, and let

(X,S) ∈ Fn×m× Fm×m. Then (X,S) is said to be an invariant pair for P (λ) if the following
two conditions hold:

(a) P (X,S) :=
∑k

j=0BjXS
j = 0 , and

(b) Vk(X,S) :=


X
XS
...

XSk−1

 has full column rank.

Example 6.2. The following provides a variety of examples of invariant pairs:

(a) The simplest example of an invariant pair is an eigenpair: with m = 1, a vector-scalar
pair (x, λ0) with nonzero x ∈ Fn and λ0 ∈ F is an invariant pair for P if and only if
(x, λ0) is an eigenpair for P .

(b) Standard pairs in the sense of [30] are the same as invariant pairs of monic matrix
polynomials over F = C with k = degP and m = nk.

(c) If F = C and S is a single Jordan block associated with the eigenvalue λ0, then the
columns of the matrix X in any invariant pair (X,S) form a Jordan chain for P (λ)
associated with the eigenvalue λ0 . It is worth noting that Jordan chains constitute
an alternative to the Smith form as a means of defining the Jordan characteristic of a
matrix polynomial at an eigenvalue λ0 ∈ F. See [30] for more on Jordan chains.
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(d) If F = C, then a right null pair for P (in the sense of [8]) associated with λ0 ∈ C is the
same as an invariant pair (X,S), where the spectrum of S is just {λ0} and the size m
coincides with the algebraic multiplicity of λ0 as an eigenvalue of P .

(e) For regular pencils, invariant pairs are closely related to the notion of deflating subspace.

Recall that for an n×n pencil L(λ) = λA+B, an m-dimensional subspace X ⊆ Fn is a
deflating subspace for L(λ), see e.g., [11, 39, 60], if there exists another m-dimensional
subspace Y ∈ Fn such that AX ⊆ Y and BX ⊆ Y. Letting the columns of X,Y ∈ Fn×m
form bases for X and Y, respectively, it follows that these containment relations can be
equivalently expressed as AX = YWA and BX = YWB, for some matrices WA,WB ∈
Fm×m.

Now if AX = Y, i.e., if X ∩kerA = {0}, then WA is invertible, so that Y = AXW−1A and
BX = AXW−1A WB. Letting S := −W−1A WB, we see that L(X,S) = AXS + BX = 0,
and hence (X,S) is an invariant pair for L(λ). Similarly if X ∩ kerB = {0}, then
WB is invertible, and (X, S̃) with S̃ := −W−1B WA is an invariant pair for the pencil

revL(λ) = λB + A. Later (in Definition 6.7) we will refer to such a pair (X, S̃) as a
reverse invariant pair for L(λ).

Conversely, if (X,S) is an invariant pair for L(λ), then X , the subspace spanned by the
columns of X, will be a deflating subspace for L(λ). To see why this is so, first observe
that L(X,S) = AXS +BX = 0 implies that BX ⊆ AX . Thus if dimX = m, then any
m-dimensional subspace Y ∈ Fn such that AX ⊆ Y will witness that X is a deflating
subspace for L.

Remark 6.3. Definition 6.1 follows the terminology in [10], where both conditions (a) and
(b) are required for a pair (X,S) to be an invariant pair for P . A weaker notion is introduced
in [9], where condition (a) alone suffices for (X,S) to be called an invariant pair; if conditions
(a) and (b) are both met, then (X,S) is called a minimal invariant pair. This weaker notion
of invariant pair has several drawbacks that significantly detract from its usefulness. First,
weak invariant pairs may contain redundant information, and even be arbitrarily large; for
example, if (x, λ0) is any eigenpair for P , then X = [x x . . . x ]n×m with S = λ0Im gives
weak invariant pairs for P of unbounded size. The full column rank condition (b), though,
forces m ≤ kn since Vk(X,S) has only kn rows. A more significant drawback of weak
invariant pairs (X,S) concerns the spectrum σ(S) and its relationship to σ(P ). The intended
purpose of S is to capture some portion of the eigenvalues of P (λ), i.e., σ(S) ⊆ σ(P ), while
eigenvector information corresponding to this subset σ(S) is captured in X. We will see in
Proposition 6.6 that any invariant pair in the sense of Definition 6.1 does indeed have the
desired containment property σ(S) ⊆ σ(P ). However, a weak invariant pair may include
many spurious eigenvalues, that is, eigenvalues of S that are not in σ(P ). In particular,
a weak invariant pair (X,S) with nonzero X and m × m matrix S may have up to m − 1
spurious eigenvalues; in general S and P (λ) can only be guaranteed to have one eigenvalue
in common. For these reasons we have reserved the more concise term invariant pair for the
more important notion, as specified in Definition 6.1.

For polynomials of the special form P (λ) = λIn − B0, the condition in Definition 6.1(a)
reduces to P (X,S) = XS − B0X = 0, equivalently to B0X = XS, which is satisfied if
and only if the columns of X span an invariant subspace X of the matrix B0. In this case,
condition (b) just means that the columns of X are linearly independent, and thus form a
basis for X . The eigenvalues of S are then the eigenvalues of B0 associated with the subspace
X . Certainly an invariant subspace is independent of the choice of basis, and so can also be
represented by the columns of any matrix XT , where T is an invertible m×m transformation
matrix. This observation motivates the following definition.
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Definition 6.4 (Similarity of pairs).
Two pairs (X,S), (X̃, S̃) ∈ Fn×m×Fm×m, where F is an arbitrary field, are said to be similar
if there exists a nonsingular matrix T ∈ Fm×m such that X̃ = XT and S̃ = T−1ST .

The following basic property of similar pairs is straightforward to prove from the definitions.

Lemma 6.5. If the pairs (X,S) and (X̃, S̃) are similar, then one is an invariant pair for a
regular matrix polynomial P (λ) if and only if the other one is, too.

This simple observation has an important consequence: if (X,S) is an invariant pair for
P (λ), then every eigenvalue of the matrix S is also an eigenvalue of the matrix polynomial
P (λ), i.e., S has no spurious eigenvalues as discussed in Remark 6.3. More generally, any
invariant subspace for S induces an invariant pair for P (λ) that is in a certain sense “con-
tained” in (X,S); this is made precise in the following proposition. Here for a matrix Y , we
use Col(Y ) to denote the space spanned by the columns of Y .

Proposition 6.6. Let (X,S) ∈ Fn×m × Fm×m be an invariant pair for the regular matrix
polynomial P (λ) =

∑k
j=0 λ

jBj.

(a) Suppose that U ⊆ Fm is an `-dimensional invariant subspace for the matrix S, and
T =

[
T1 T2

]
∈ Fm×m is any nonsingular matrix such that the columns of T1 form a

basis for U , so that

S̃ := T−1ST =

[
S11 S12
0 S22

]
, where S11 ∈ F`×`.

Then (XT1, S11) is an invariant pair for P (λ) that is “contained” in (X,S) in the sense
that

Col(XT1) ⊆ Col(X) and σ(S11) ⊆ σ(S) .

(b) σ(S) ⊆ σ(P ).

Proof. (a) First observe that (XT, S̃) is an invariant pair for P (λ), since it is similar to the

invariant pair (X,S). But S̃j =

[
Sj11 ∗
0 ∗

]
for all j ≥ 0, so we have

XTS̃j = X
[
T1 T2

] [ Sj11 ∗
0 ∗

]
=
[
XT1S

j
11 ∗

]
(6.1)

for all j ≥ 0. Hence

0 = P (XT, S̃) =

k∑
j=0

BjXTS̃
j =

k∑
j=0

[
Bj(XT1)S

j
11 ∗

]
=
[
P (XT1, S11) ∗

]
,

and so P (XT1, S11) = 0, i.e., the pair (XT1, S11) satisfies condition (a) of Definition 6.1.
The containments Col(XT1) ⊆ Col(X) and σ(S11) ⊆ σ(S) are immediate; all that remains
is to see why the full column rank condition holds for (XT1, S11). From (6.1) we see that
Vk(XT, S̃) =

[
Vk(XT1, S11) ∗

]
, so the full column rank of Vk(XT1, S11) follows from the

full column rank of Vk(XT, S̃).

(b) Suppose that λ0 ∈ σ(S), with corresponding eigenvector y ∈ Fm. Then by part (a) with
` = 1 we know that (Xy, λ0) is an invariant pair for P . Thus (Xy, λ0) is an eigenpair for P
by Example 6.2, and so λ0 ∈ σ(P ).
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This proposition shows that invariant pairs enable us to focus on any specific part of
the finite spectrum of P (λ). Unfortunately, though, invariant pairs can never contain any
information about eigenvalues at ∞. To address this deficiency, we introduce the following
concept, which builds on the correspondence between the eigenvalue ∞ for P (λ) and the
eigenvalue zero for revP (λ).

Definition 6.7 (Reverse invariant pairs).
Let P (λ) =

∑k
j=0 λ

jBj be a regular n × n matrix polynomial with grade k over a field F.

Then a pair (X,S) ∈ Fn×m × Fm×m is called a reverse invariant pair for P (λ) if (X,S) is
an invariant pair for revkP (λ), i.e., if

revkP (X,S) :=

k∑
j=0

Bk−jXS
j = 0 ,

and Vk(X,S) as in Definition 6.1(b) has full column rank.

The next example and proposition provide two simple sources of reverse invariant pairs.

Example 6.8. A nonzero vector x ∈ Fn is an eigenvector associated with the eigenvalue ∞
of P (λ) if and only if (x, 0) is a reverse invariant pair for P (λ).

Recall from Theorem 4.15 that reversal has a simple effect on nonzero eigenvalues and their
Jordan characteristics, i.e., J (P , λ0) ≡ J (revkP , 1/λ0) for any nonzero λ0. This suggests
the following connection between invariant pairs and reverse invariant pairs for P .

Proposition 6.9. Suppose P (λ) =
∑k

j=0 λ
jBj is a regular n × n matrix polynomial with

grade k over a field F, and let (X,S) ∈ Fn×m × Fm×m be a matrix pair with nonsingular S.
Then (X,S) is an invariant pair for P if and only if (X,S−1) is a reverse invariant pair for
P .

Proof. First observe that

P (X,S) · S−k =

k∑
j=0

BjXS
j−k =

k∑
j=0

Bk−jXS
−j = revkP (X,S−1)

and

Vk(X,S) · S−(k−1) = (Rk ⊗ In) · Vk(X,S−1) , where Rk :=

[
1

. .
.

1

]
k×k

is the k × k reverse identity. From these relations it is clear that P (X,S) = 0 if and only if
revkP (X,S−1) = 0, and that Vk(X,S) has full column rank if and only if Vk(X,S−1) does,
too. The desired conclusion now follows.

We are now in a position to address the main issue of this section — how Möbius trans-
formations interact with invariant pairs. In particular, given an invariant pair (X,S) for P ,
is there a naturally corresponding invariant pair for the Möbius transform MA(P )? From
Theorem 5.3 we know that an eigenvalue µ0 of P corresponds to an eigenvalue mA−1(µ0)
of MA(P ). But Proposition 6.6 shows that σ(S) ⊆ σ(P ) for any invariant pair (X,S),
and hence mA−1

(
σ(S)

)
⊆ σ

(
MA(P )

)
. Now as long as the matrix mA−1(S) is defined, then

σ
(
mA−1(S)

)
= mA−1

(
σ(S)

)
, and hence σ

(
mA−1(S)

)
⊆ σ

(
MA(P )

)
. Thus it is reasonable to

conjecture that an invariant pair (X,S) for P will induce an invariant pair (X,mA−1(S)) for
the Möbius transform MA(P ), whenever the matrix mA−1(S) is defined. This conjecture,
along with several related variations, is proved in Theorem 6.11. We begin with the following
lemma, whose straightforward proof is only sketched.
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Lemma 6.10. Suppose φj(λ) ∈ F[λ] for j = 0, . . . , k are arbitrary scalar polynomials over

F, and P (λ) =
∑k

j=0 φj(λ)Bj is any n× n matrix polynomial expressed in terms of the φj’s.

If (X,S) ∈ Fn×m × Fm×m is any matrix pair, then P (X,S) =
∑k

j=0BjXφj(S).

Proof. First show that the additive property (P+Q)(X,S) = P (X,S)+Q(X,S) holds for any
polynomials P and Q of the same size, by expressing P and Q in the standard basis and then
using the defining formula given in Definition 6.1(a). Then show that P (X,S) = BXφ(S)
for any polynomial of the special form P (λ) = φ(λ)B. Combining the additive property with
the special case gives the desired result.

Theorem 6.11 (Invariant pairs of Möbius transforms).
Let P (λ) =

∑k
j=0 λ

jBj be an n × n matrix polynomial over a field F and let (X,S) be a

matrix pair in Fn×m × Fm×m. Furthermore, let

A =

[
a b
c d

]
∈ GL(2,F) , mA(λ) =

aλ+ b

cλ+ d
, and R =

[
0 1
1 0

]
.

(a) Suppose that either c = 0, or c 6= 0 and a
c 6∈ σ(S). Then

(X,S) is an invariant pair for P ⇐⇒ (X,mA−1(S)) is an invariant pair for MA(P ).

(b) Suppose that either d = 0, or d 6= 0 and b
d 6∈ σ(S). Then

(X,S) is an invariant pair for P ⇐⇒ (X,m(AR)−1(S)) is a reverse invariant pair for

MA(P ).

(c) Suppose that either a = 0, or a 6= 0 and c
a 6∈ σ(S). Then

(X,S) is a reverse invariant pair for P ⇐⇒ (X,m(RA)−1(S)) is an invariant pair for

MA(P ).

(d) Suppose that either b = 0, or b 6= 0 and d
b 6∈ σ(S). Then

(X,S) is a reverse invariant pair for P ⇐⇒ (X,m(RAR)−1(S)) is a reverse invariant

pair for MA(P ).

Proof. (a) The given hypothesis on A and S (i.e., either that c = 0 (and hence a, d 6= 0), or
that c 6= 0 with a

c not an eigenvalue of S) is exactly the condition needed to guarantee that

the matrix (−cS + aI) is nonsingular, and thus that S̃ := mA−1(S) = (dS − bI)(−cS + aI)−1

introduced in (3.8) is well defined. Now mA( −dc ) =∞, so the invertibility of Möbius functions

implies that mA−1(∞) = −d
c . But ∞ is not an eigenvalue of the matrix S, so −d

c is not

an eigenvalue of mA−1(S) = S̃; thus under these conditions the matrix (cS̃ + dI) is also

nonsingular, no matter whether c is zero or nonzero. Consequently, mA(S̃) = (aS̃ + bI)(cS̃ +
dI)−1 is well defined and equal to S.

To show the equivalence of (X,S) and (X, S̃) being invariant pairs, we consider the two
defining conditions in turn. A direct calculation using Lemma 6.10 first establishes a general
relationship between MA(P )(X, S̃) and P (X,S):

MA(P )(X, S̃) =

k∑
j=0

BjX(aS̃ + bI)j(cS̃ + dI)k−j

=

 k∑
j=0

BjX
(
(aS̃ + bI)(cS̃ + dI)−1

)j · (cS̃ + dI)k

= P
(
X,mA(S̃)

)
· (cS̃ + dI)k

= P (X,S) · (cS̃ + dI)k .
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Then the nonsingularity of (cS̃+dI) implies that MA(P )(X, S̃) = 0 if and only if P (X,S) = 0,
so Definition 6.1(a) is satisfied either for both pairs or for neither of them.

For condition (b) in Definition 6.1, we first see how Vk(X,S) and Vk(X, S̃) are related.
Since S = mA(S̃), we have

Vk(X,S) · (cS̃ + dI)k−1 =


X

XmA(S̃)
...

XmA(S̃)k−1

 (cS̃ + dI)k−1 =


Xq1(S̃)

Xq2(S̃)
...

Xqk(S̃)

 , (6.2)

where each qi is a scalar polynomial of degree at most k − 1. Assembling all the coefficients
of the qi polynomials (row-wise) into a k × k matrix Q̃, we see that the last matrix in (6.2)
can be expressed as (Q̃ ⊗ In)Vk(X, S̃), and so

(Q̃ ⊗ In) · Vk(X, S̃) = Vk(X,S) · (cS̃ + dI)k−1 (6.3)

gives a general relationship between Vk(X, S̃) and Vk(X,S). The nonsingularity of (cS̃ + dI)
now implies that

rankVk(X, S̃) ≥ rankVk(X,S) .

Interchanging the roles of S and S̃, and using that S̃ = mA−1(S), a similar argument shows
that

(Q⊗ In) · Vk(X,S) = Vk(X, S̃) · (−cS + aI)k−1

for some k × k matrix of coefficients Q. Then the nonsingularity of (−cS + aI) implies that

rankVk(X, S̃) ≤ rankVk(X,S) ,

and thus rankVk(X, S̃) = rankVk(X,S). Consequently Definition 6.1(b) is satisfied either
for both or for neither of the two pairs. This completes the proof of part (a).

(b) Consider the Möbius transformation induced by the matrix B = AR =
[
b a
d c

]
. Then the

given hypothesis on d and b allows us to use part (a) to conclude that

(X,S) is an invariant pair for P ⇐⇒ (X,mB−1(S)) is an invariant pair for MB(P ).

But an invariant pair for MB(P ) = MAR(P ) = MR

(
MA(P )

)
= revkMA(P ) is a reverse

invariant pair for MA(P ), so the result is proved.

(c) By definition, (X,S) is a reverse invariant pair for P if and only if (X,S) is an invariant
pair for revkP . Applying (a) to the polynomial revkP , with Möbius transformation induced
by the matrix RA =

[
c d
a b

]
, we obtain that (X,S) is an invariant pair for revkP if and only

if (X,m(RA)−1(S)) is an invariant pair for MRA(revkP ) = MA

(
MR(revkP )

)
= MA(P ), and

the result is proved.

(d) The argument is analogous to that for (c). Apply (a) to the polynomial revkP , using
the Möbius transformation induced by the matrix RAR =

[
d c
b a

]
. Then we obtain that

(X,S) is an invariant pair for revkP if and only if (X,m(RAR)−1(S)) is an invariant pair for

MRAR(revkP ) = MR

(
MA

(
MR(revkP )

))
= revkMA(P ).

Remark 6.12. From Theorem 6.11, it is straightforward to show that if (x, λ0) is any
eigenpair of the regular matrix polynomial P , including any eigenpair with λ0 = ∞, then
(x,mA−1(λ0)) will always be an eigenpair of MA(P ). Thus we see that eigenvectors of matrix
polynomials are preserved by any Möbius transformation. Are Jordan chains also preserved
by Möbius transformations? Approaching this question via the usual definition of Jordan
chains [30] leads to technical difficulties; the invariant pair point of view, though, provides a
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clearer view of the situation. Recall from Example 6.2(c) that if (X,S) is an invariant pair
for P (λ) and S = Jm(λ0) is the m×m Jordan block associated with the eigenvalue λ0, then
the columns of X form a Jordan chain for P (λ) associated with the eigenvalue λ0. Now by
Theorem 6.11 we know that (X,mA−1(S)) is the corresponding invariant pair for MA(P ), as
long as mA−1(S) is defined. But the matrix mA−1(S) will in general not be in Jordan form,
although it will always be upper triangular and Toeplitz, with mA−1(λ0) on the diagonal.
Consequently the columns of X will usually not form a Jordan chain for MA(P ) associated
with the eigenvalue mA−1(λ0). One notable exception is when m = 2; in this case the 2 × 2
matrix mA−1(S) is always close enough to Jordan form that a simple scaling suffices to recover
a Jordan chain of length two for MA(P ) from the two columns of X. In summary, then, we
see that Jordan chains are not in general preserved under Möbius transformations. Thus it is
reasonable to expect that invariant pairs will usually be a more natural and convenient tool
than Jordan chains in situations where Möbius transformations are involved.

An intrinsic limitation of any invariant pair of a matrix polynomial P is that it can only
contain information about the finite spectrum of P , since that spectral information is recorded
in a matrix S. A reverse invariant pair for P overcomes this limitation, but at the cost of
not being able to contain information about the eigenvalue 0. These limitations make it
clear, for example, why the notion of a deflating subspace of a regular pencil, as described in
Example 6.2(e), is (for pencils) more general than either invariant pair or reverse invariant
pair; deflating subspaces have no trouble in simultaneously accommodating both zero and
infinite eigenvalues.

The “forbidden eigenvalue” phenomenon of Theorem 6.11 is another setting in which these
intrinsic limitations of (reverse) invariant pairs manifest themselves. For example, suppose we
have an invariant pair (X,S) for a matrix polynomial P , and we wish to find an invariant pair
with the same first component X for a Möbius transform MA(P ). Since such an invariant
pair for MA(P ) would have to include all of mA−1

(
σ(S)

)
among its associated eigenvalues,

we must make sure that mA−1

(
σ(S)

)
does not contain ∞, equivalently that mA(∞) 6∈ σ(S).

This mA(∞) is the “forbidden eigenvalue” a
c of Theorem 6.11(a). Analogous considerations

account for the “forbidden eigenvalues” in each of the other parts of Theorem 6.11.
Suppose now that we have an invariant pair (X,S) for P , where S contains both of the

forbidden eigenvalues in parts (a) and (b) of Theorem 6.11. Then it seems that nothing can
be said about the effect of the Möbius transformation MA on the invariant pair; Theorem 6.11
cannot be used to find either an invariant or a reverse invariant pair for MA(P ) with first
component X. However, if we can “separate” the two forbidden eigenvalues from each other,
then it is possible to say something useful about the effect of MA on the invariant pair
(X,S). This procedure is illustrated in the following remark. An analogous procedure can be
formulated if we start instead with a reverse invariant pair for P .

Remark 6.13. Let P (λ) =
∑k

j=0 λ
jBj be a regular n× n matrix polynomial over a field F,

and let

A =

[
a b
c d

]
∈ GL(2,F) and mA(λ) =

aλ+ b

cλ+ d
, with a, c, d 6= 0 .

Suppose (X,S) ∈ Fn×m×Fm×m is an invariant pair for P with a
c ,

b
d ∈ σ(S), so that the spec-

trum of S contains the two “forbidden” eigenvalues from Theorem 6.11(a) and (b). Observe
that a

c = mA(∞) and b
d = mA(0) must be distinct elements of F, since mA is a bijection on

F∞. Now there exists a nonsingular matrix T ∈ Fm×m such that

X̃ := XT =
[
X1 X2

]
and S̃ := T−1ST =

[
S1 0
0 S2

]
,

where X1 ∈ Fn×`, X2 ∈ Fn×(m−`), S1 ∈ F`×`, S2 ∈ F(m−`)×(m−`) for some 1 ≤ ` < m,
and where a

c 6∈ σ(S1) and 0, bd 6∈ σ(S2). Thus the eigenvalues b
d and a

c are separated into
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distinct blocks S1 and S2, respectively, where S2 can even be chosen to be invertible. (One
possible way to do this separation is to bring S into rational canonical form [37, Sect. 3.4]
over the field F, with one Frobenius companion block for each F-elementary divisor of S; then
gather all companion blocks associated with eigenvalues 0 and b

d in S1, all companion blocks
associated with a

c in S2, and distribute all other companion blocks arbitrarily among S1 and

S2.) Then (X̃, S̃) is an invariant pair for P by Lemma 6.5, and (X1, S1) and (X2, S2) are
invariant pairs for P by Proposition 6.6. Furthermore, Theorem 6.11 can now be applied to
(X1, S1) and (X2, S2) individually to conclude that (X1,mA−1(S1)) is an invariant pair for
MA(P ) and (X2,m(AR)−1(S2)) is a reverse invariant pair for MA(P ).

An alternative approach to this situation is to organize the data X1, X2, S1, S2 from the
previous paragraph in a slightly different way. We still view (X1, S1) as an invariant pair
for P , but now note that (X2, S

−1
2 ) is a reverse invariant pair for P , by the discussion in

Example 6.8(b). Then consider the pair (X̂, Ŝ), where

X̂ := X̃ =
[
X1 X2

]
and Ŝ :=

[
S1 0

0 S−12

]
;

clearly (X̂, Ŝ) will in general be neither an invariant pair nor a reverse invariant pair for P .
However, the matrix

Wk

(
(X1, S1), (X2, S

−1
2 )
)

:=


X1 X2

(
S−12

)k−1
X1S1 X2

(
S−12

)k−2
...

...

X1S
k−1
1 X2

 = Vk(X̃, S̃) ·

[
I` 0

0
(
S−12

)k−1
]

(6.4)
has full column rank, since (X̃, S̃) being an invariant pair implies that Vk(X̃, S̃) has full
column rank. Thus the pair (X̂, Ŝ) can be viewed as a natural generalization of the notion
of a decomposable pair for P , as introduced in [30]. Such a “generalized decomposable pair”
consists of an invariant pair together with a reverse invariant pair, satisfying a full rank
condition for a matrix Wk as in (6.4).

Now since a
c 6∈ σ(S1) and d

b 6∈ σ(S−12 ), we can apply Theorem 6.11 to the individual pairs
(X1, S1) and (X2, S

−1
2 ) to conclude that (X1,mA−1(S1)) is an invariant pair for MA(P ) and

(X2,m(RAR)−1(S−12 )) is a reverse invariant pair for MA(P ). Then with

M̂ :=

[
mA−1(S1) 0

0 m(RAR)−1(S−12 )

]
,

we claim that (X̂, M̂) is a “generalized decomposable pair” for MA(P ) in the same sense
as (X̂, Ŝ) is a generalized decomposable pair for P . Letting S̆1 := mA−1(S1) and S̆2 :=

m(RAR)−1(S−12 ), all that remains is to see why the matrix

Wk

(
(X1, S̆1), (X2, S̆2)

)
=


X1 X2m(RAR)−1(S−12 )k−1

X1mA−1(S1) X2m(RAR)−1(S−12 )k−2

...
...

X1mA−1(S1)
k−1 X2

 (6.5)

has full column rank. To do this we employ a strategy analogous to the one used in the proof
of Theorem 6.11.

First observe that mA( −dc ) =∞, and hence mA−1(∞) = −d
c . But ∞ is not an eigenvalue

of the matrix S1, so −d
c is not an eigenvalue of mA−1(S1) = S̆1, and therefore the matrix
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(cS̆1 + dI) is nonsingular. Thus mA(S̆1) = (aS̆1 + bI)(cS̆1 + dI)−1 is well defined and equal to

S1. A similar argument shows that the matrix (bS̆2 + aI) is also nonsingular, and hence that
mRAR(S̆2) = (dS̆2 + cI)(bS̆2 + aI)−1 = S−12 . Now we use these facts to develop a relationship

between the matrices Wk

(
(X1, S1), (X2, S

−1
2 )
)

and Wk

(
(X1, S̆1), (X2, S̆2)

)
.

Wk

(
(X1, S1), (X2, S

−1
2 )
)
·
[

(cS̆1 + dI)k−1 0

0 (bS̆2 + aI)k−1

]

= Wk

(
(X1,mA(S̆1)), (X2,mRAR(S̆2))

)
·
[

(cS̆1 + dI)k−1 0

0 (bS̆2 + aI)k−1

]

=


X1 (cS̆1 + dI)k−1 X2 (dS̆2 + cI)k−1

X1 (cS̆1 + dI)k−2(aS̆1 + bI) X2 (dS̆2 + cI)k−2(bS̆2 + aI)

X1 (cS̆1 + dI)k−3(aS̆1 + bI)2 X2 (dS̆2 + cI)k−3(bS̆2 + aI)2
...

...

X1 (aS̆1 + bI)k−1 X2 (bS̆2 + aI)k−1



=


X1 q1(S̆1) X2 (revk−1 q1)(S̆2)

X1 q2(S̆1) X2 (revk−1 q2)(S̆2)
...

...

X1 qk(S̆1) X2 (revk−1 qk)(S̆2)

 ,
where each qi is a scalar polynomial of grade k − 1. Assembling the coefficients of all the qi
polynomials row-wise into a k × k matrix Q̆, then the last matrix can be expressed as

(Q̆ ⊗ In) ·


X1 X2 S̆

k−1
2

X1 S̆1 X2 S̆
k−2
2

...
...

X1 S̆
k−1
1 X2

 = (Q̆ ⊗ In) · Wk

(
(X1, S̆1), (X2, S̆2)

)
.

Letting B be the invertible block-diagonal matrix B = diag
(
(cS̆1 + dI)k−1, (bS̆2 + aI)k−1

)
,

we have thus shown that

(Q̆ ⊗ In) · Wk

(
(X1, S̆1), (X2, S̆2)

)
= Wk

(
(X1, S1), (X2, S

−1
2 )
)
·B . (6.6)

Observe that the relationship in (6.6) is the analog of that developed in (6.3) for the proof of
Theorem 6.11. From (6.6) it is now immediate that

rankWk

(
(X1, S̆1), (X2, S̆2)

)
≥ rankWk

(
(X1, S1), (X2, S

−1
2 )
)
,

and hence that Wk

(
(X1, S̆1), (X2, S̆2)

)
has full column rank, as desired. Finally, although we

did not need this fact here, it is worth noting that the ranks can be shown to always be equal,
by an argument analogous to the one used in the proof of Theorem 6.11.

7 Möbius and Minimal Indices

An important aspect of the structure of a singular matrix polynomial is captured by its
minimal indices and bases. This section investigates the relationship between these quantities
for a singular polynomial P and any of its Möbius transforms MA(P ). For the convenience
of the reader, we begin by recalling the definition and basic properties of minimal indices and
bases, and then proceed in Section 7.2 to establish the main results.
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7.1 Minimal Indices and Bases – Definition and Basic Properties

Let F(λ) denote the field of rational functions over F, and F(λ)n the vector space of all n-
vectors with entries in F(λ). In this section, elements of F(λ)n will be denoted by notation
like ~x(λ), in order to maintain a clear visual distinction between vectors in F(λ)n and scalars
in F(λ).

An m × n singular matrix polynomial P (λ) has nontrivial right and/or left null vectors,
that is, vectors ~x(λ) ∈ F(λ)n and ~y(λ) ∈ F(λ)m such that P (λ)~x(λ) ≡ 0 and ~y(λ)TP (λ) ≡ 0,
where ~y(λ)T denotes the transpose of ~y(λ). This leads to the following definition.

Definition 7.1. The right and left nullspaces of the m×n matrix polynomial P (λ), denoted
respectively by Nr(P ) and N`(P ), are the subspaces

Nr(P ) :=
{
~x(λ) ∈ F(λ)n : P (λ)~x(λ) ≡ ~0

}
,

N`(P ) :=
{
~y(λ) ∈ F(λ)m : ~y(λ)TP (λ) ≡ ~0T

}
,

respectively.

A vector polynomial is a vector all of whose entries are polynomials in the variable λ.
For any subspace of F(λ)n, it is always possible to find a basis consisting entirely of vector
polynomials; simply take an arbitrary basis and multiply each vector by the denominators of
its entries. The degree of a vector polynomial is the largest degree of its components, and the
order of a polynomial basis is defined as the sum of the degrees of its vectors [25, p. 494].
Then we have the following definition of a minimal basis for a rational subspace.

Definition 7.2. Let S be a subspace of F(λ)n. The order of S, denoted ord(S), is the
least order among all vector polynomial bases of S, and a minimal basis of S is any vector
polynomial basis of S that attains this least order.

In [25] it is shown that for any given subspace S of F(λ)n, the ordered list of degrees of the
vector polynomials in any minimal basis of S is always the same; these degrees are the minimal
indices of S. Specializing S to be the left and right nullspaces of a singular matrix polynomial
gives Definition 7.3; here the degree of a vector polynomial ~p(λ) is denoted deg ~p(λ).

Definition 7.3 (Minimal indices and bases of a singular matrix polynomial).
For a singular matrix polynomial P (λ), let the sets

{
~y1(λ), . . . , ~yq(λ)

}
and

{
~x1(λ), . . . , ~xp(λ)

}
be minimal bases, respectively, of the left and right nullspaces of P (λ), ordered such that
deg(~y1) ≤ deg(~y2) ≤ · · · ≤ deg(~yq) and deg(~x1) ≤ · · · ≤ deg(~xp). Let ηi = deg(~yi) for
i = 1, . . . , q and εj = deg(~xj) for j = 1, . . . , p. Then η1 ≤ η2 ≤ · · · ≤ ηq and ε1 ≤ ε2 ≤ · · · ≤ εp
are, respectively, the left and right minimal indices of P (λ). For the sake of brevity, we call
minimal bases of the left and right nullspaces of P (λ) simply left and right minimal bases of
P (λ).

It is not hard to see that the minimal indices of a singular polynomial P (λ) are invari-
ant under strict equivalence, i.e., under pre- and post-multiplication of P (λ) by nonsingular
constant matrices. However, unimodular equivalence can change any (even all) of the min-
imal indices, as illustrated in [14, 20, 21]. Note that in the case of matrix pencils, the left
(right) minimal indices can be read off from the sizes of the left (right) singular blocks of the
Kronecker canonical form of the pencil [27, Chap. XII].

We refer the reader to [20, Section 2] for a more complete discussion, and to [43] for an
alternative formulation that gives additional insight into the notions of minimal indices and
bases.
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7.2 Effect of Möbius on Minimal Indices and Bases

In this section the simple relationship between the minimal indices and bases of a matrix
polynomial P (λ) and those of any of its Möbius transforms MA(P ) is established. For con-
venience we discuss only right minimal indices and bases; the story for left minimal indices
and bases is essentially the same.

We begin by observing that minimal indices and bases of a Möbius transform MA(P ) are
independent of the choice of grade for P (λ). Computing formally in F(λ)n, we have

MA(P ) ~y(λ) = 0 ⇔ (cλ+ d)kP
(
mA(λ)

)
~y(λ) = 0 ⇔ P

(
mA(λ)

)
~y(λ) = 0 . (7.1)

Thus the right nullspace of the matrix polynomial MA(P ) is identical to the right nullspace of
the rational matrix P

(
mA(λ)

)
, and so it is independent of the grade k chosen for P (λ). Since

minimal indices and bases are properties of rational subspaces themselves, we also see from
(7.1) that to find these quantities for MA(P ) it suffices to work directly with the rational
matrix P

(
mA(λ)

)
. The equivalence

P (λ) ~x(λ) = 0 ⇔ P
(
mA(λ)

)
~x
(
mA(λ)

)
= 0 (7.2)

further suggests that the following “rational substitution” map RA will be useful in analyzing
how the minimal indices of P and MA(P ) are related. Letting V := F(λ)n throughout this
section, we define the map

RA : V −→ V
~v(λ) 7−→ ~v

(
mA(λ)

)
.

(7.3)

If the map RA was F(λ)-linear, then many of the properties listed in the next theorem would
follow immediately. However, RA is not F(λ)-linear, so we present the proof.

Theorem 7.4 (Basic properties of RA).
Let A ∈ GL(2,F). Then the map RA defined on the F(λ)-vector space V := F(λ)n as in (7.3)
enjoys the following properties:

(a) RA is additive, i.e., RA(~v+ ~w) = RA(~v)+RA(~w) for all ~v, ~w ∈ V, but is not compatible
with multiplication by scalars from F(λ).

(b) RA is a bijection on V that maps subspaces to subspaces. In other words, for any
F(λ)-subspace S ⊆ V, the image RA(S) is also an F(λ)-subspace of V.

(c) RA preserves linear independence; i.e., if
{
~v1(λ), . . . , ~v`(λ)

}
are linearly independent

in V, then so are
{
RA(~v1), . . . ,RA(~v`)

}
.

(d) RA preserves dimension; if S ⊆ V is any subspace, then dim
F(λ)

RA(S) = dim
F(λ)

S .

Furthermore,
{
~v1(λ), . . . , ~vk(λ)

}
is a basis for S if and only if

{
RA(~v1), . . . ,RA(~vk)

}
is a basis for RA(S).

(e) Suppose
{
~v1(λ), . . . , ~vk(λ)

}
is any vector polynomial basis for a rational subspace S ⊆ V.

Then
{

MA(~v1), . . . , MA(~vk)
}

, where each MA(~vj) is taken with respect to the degree of
~vj, is a vector polynomial basis for RA(S), with deg MA(~vj) ≤ deg~vj for j = 1, . . . , k.

(f) RA preserves the order and the minimal indices of rational subspaces; if S ⊆ V is any
subspace, then ord

(
RA(S)

)
= ord(S), and the minimal indices of the subspaces RA(S)

and S are identical. Indeed, if
{
~v1(λ), . . . , ~vk(λ)

}
is a minimal basis for the subspace

S, then
{
MA(~v1), . . . , MA(~vk)

}
is a minimal basis for the subspace RA(S); here as in

part (e) each Möbius transform MA(~vj) is taken with respect to the degree of ~vj.
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Proof. (a) The additive property of RA is immediate from the definition. For scalar multi-
plication, clearly RA

(
α(λ)~v(λ)

)
= RA

(
α(λ)

)
RA

(
~v(λ)

)
always holds, but this will be equal

to α(λ)RA

(
~v(λ)

)
only if RA

(
α(λ)

)
= α

(
mA(λ)

)
and α(λ) are equal as elements of F(λ),

which will not be true in general. Thus, in general, RA is incompatible with F(λ)-scalar
multiplication.
(b) That RA is a bijection follows from the existence of an inverse map, which is easily seen
to be just RA−1 . To see that RA(S) is a subspace whenever S ⊆ V is, we directly verify
the two closure conditions. First suppose that ~v, ~w ∈ RA(S), so that ~v(λ) = RA

(
~x(λ)

)
and

~w(λ) = RA

(
~y(λ)

)
for some ~x, ~y ∈ S. Then ~v + ~w = RA(~x+ ~y) by the additivity of RA from

part (a), and so the additive closure of RA(S) follows from the additive closure of S.
To verify that RA(S) is closed under multiplication by scalars from the field F(λ), consider

an arbitrary scalar α(λ) ∈ F(λ) and vector ~v(λ) ∈ RA(S). Let ~x ∈ S be such that ~v = RA(~x),
and let β(λ) := α

(
mA−1(λ)

)
∈ F(λ). Then β(λ)~x(λ) ∈ S since S is an F(λ)-subspace, and

it is easily seen that α(λ)~v(λ) = α(λ)RA

(
~x(λ)

)
= RA

(
β(λ)~x(λ)

)
∈ RA(S). Thus RA(S) is

closed under scalar multiplication, and hence is an F(λ)-subspace.
(c) Suppose

∑`
j=1 αj(λ)RA(~vj) = 0. Then by part (a) we have

RA−1

(∑̀
j=1

αj(λ)RA(~vj)

)
=
∑̀
j=1

RA−1

(
αj(λ)

)
· ~vj = 0 ,

and so RA−1

(
αj(λ)

)
= 0 for each j = 1, . . . , `, since

{
~v1(λ), . . . , ~v`(λ)

}
are linearly indepen-

dent. But by part (b) for the case n = 1, RA−1 is a bijection, so αj(λ) = 0 for j = 1, . . . , `.
Thus

{
RA(~v1), . . . ,RA(~v`)

}
are also linearly independent.

(d) If
{
~v1(λ), . . . , ~vk(λ)

}
is a basis for S, then

{
RA(~v1), . . . ,RA(~vk)

}
is linearly independent

in RA(S) by part (c), so
dimRA(S) ≥ k = dimS .

Exchanging the roles of S and RA(S), and replacing RA by RA−1 , the same argument shows
that dimS ≥ dimRA(S) . Hence dimRA(S) = dimS, and

{
~v1(λ), . . . , ~vk(λ)

}
is a basis for

S if and only if
{
RA(~v1), . . . ,RA(~vk)

}
is a basis for RA(S).

(e) If
{
~v1(λ), . . . , ~vk(λ)

}
is a vector polynomial basis for S, then certainly each MA(~vi) is

a vector polynomial by definition of MA. Choosing the grade of each ~vi to be equal to
deg~vi, we then also have deg MA(~vi) ≤ grade MA(~vi) = deg~vi. By part (d) we know that{
RA(~v1), . . . ,RA(~vk)

}
is a rational basis for RA(S). But each MA(~vi) is just a nonzero F(λ)-

scalar multiple of RA(~vi), so
{

MA(~v1), . . . , MA(~vk)
}

must also be a basis for RA(S).
(f) Suppose

{
~v1(λ), . . . , ~vk(λ)

}
is a minimal basis for S. Then using part (e) we can see that

ord
(
RA(S)

)
≤ ord(S), since

ord
(
RA(S)

)
≤

k∑
j=1

deg MA(~vj) ≤
k∑
j=1

deg~vj(λ) = ord(S) . (7.4)

Applying this result to RA(S) in place of S, and to the rational substitution map RA−1 ,
shows that

ord(S) = ord
(
RA−1

(
RA(S)

))
≤ ord

(
RA(S)

)
,

and so we have ord
(
RA(S)

)
= ord(S), as desired. Furthermore we must have equalities

everywhere in (7.4). Since deg MA(vj) ≤ deg(vj) for each j = 1, . . . , k by part (e), we can
only have equality in (7.4) if deg MA(vj) = deg(vj) for every j = 1, . . . , k. Therefore the
minimal indices of RA(S) must be identical to those of S, and

{
MA(~v1), . . . , MA(~vk)

}
must

be a minimal basis for RA(S).

From Theorem 7.4 we can now easily obtain the main result of this section, which in brief
says that any Möbius transformation preserves the singular structure of a singular polynomial.
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Theorem 7.5 (Möbius transformations preserve minimal indices).
If P is a singular matrix polynomial over F and A ∈ GL(2,F), then the minimal indices of
P and MA(P ) are identical. Furthermore, if

{
~x1(λ), . . . , ~xp(λ)

}
and

{
~y1(λ), . . . , ~yq(λ)

}
are

right and left minimal bases for P , then
{

MA(~x1), . . . , MA(~xp)
}

and
{

MA(~y1), . . . , MA(~yq)
}

are right and left minimal bases, respectively, for MA(P ), where each Möbius transform
MA(~v) of a vector polynomial ~v is taken with respect to the degree of ~v.

Proof. We consider only the right minimal indices and bases; the argument for the left minimal
indices and bases is entirely analogous. The key step is to show that the right nullspace of
MA(P ) can be characterized as

Nr
(
MA(P )

)
= RA

(
Nr(P )

)
. (7.5)

Then applying Theorem 7.4(f) to the subspace S = Nr(P ) will imply the desired results.
First observe that we have already proved a substantial part of (7.5). From (7.1) we

can immediately conclude that Nr
(
MA(P )

)
= Nr

(
RA(P )

)
, and (7.2) is equivalent to the

containment RA

(
Nr(P )

)
⊆ Nr

(
RA(P )

)
. All that remains to complete the proof of (7.5), and

hence of the theorem, is to establish the reverse containment Nr
(
RA(P )

)
⊆ RA

(
Nr(P )

)
.

So suppose that ~y ∈ Nr
(
RA(P )

)
, i.e., that P

(
mA(λ)

)
· ~y(λ) = 0. Substituting mA−1(λ)

for λ gives
0 = P

(
mA(mA−1(λ))

)
· ~y
(
mA−1(λ)

)
= P (λ) · ~x(λ) ,

where ~x(λ) := ~y
(
mA−1(λ)

)
. Clearly ~x(λ) ∈ Nr(P ) and ~y(λ) = RA

(
~x(λ)

)
, so ~y(λ) ∈

RA

(
Nr(P )

)
, and the containment Nr

(
RA(P )

)
⊆ RA

(
Nr(P )

)
is established, thus completing

the proof.

Remark 7.6. As a final observation, it is interesting to note that the results in this sec-
tion provide an alternative (and independent) proof of the rank preservation property of
Möbius transformations, proved earlier in Proposition 3.29. Since the dimensions of Nr(P )
and Nr

(
MA(P )

)
are equal by equation (7.5) and Theorem 7.4(d), or by Theorem 7.5 itself,

the ranks of P and MA(P ) must be the same by the rank-nullity theorem.

8 Möbius and Linearizations

In this section we investigate the effect of Möbius transformations on matrix polynomials and
their linearizations. In particular, our aim is to characterize those Möbius transformations
that preserve linearizations; that is, if a pencil L is a linearization for a matrix polynomial
P , then when is MA(L) a linearization for MA(P )? To aid in this investigation we begin by
recalling two recently introduced equivalence relations and their properties.

8.1 Spectral Equivalence of Matrix Polynomials

Recently the relations of extended unimodular equivalence and spectral equivalence have
been introduced [23] to facilitate the comparison of matrix polynomials of different sizes
and/or grades. The underlying goal in [23] is to investigate the extent to which it is possible
for matrix polynomials of different grades to have the same elementary divisors and the
same minimal indices. Motivating this investigation is the classical technique for solving the
eigenproblem for a polynomial P (λ) by the use of a linearization, i.e., a matrix pencil with
the same elementary divisors as P (λ). Taking the standard definitions of linearization and
strong linearization [29, 30, 41, 45] as prototypes leads to the following.
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Definition 8.1 (Extended unimodular equivalence and spectral equivalence).
Consider matrix polynomials P and Q, of any sizes and grades, over an arbitrary field F.

(a) P and Q are said to be extended unimodular equivalent, denoted P ` Q, if there
exist some r, s ∈ N such that diag[P, Ir ] ∼ diag[Q, Is ], i.e., such that diag[P, Ir ] and
diag[Q, Is ] are unimodularly equivalent over F.

(b) P and Q are said to be spectrally equivalent, denoted P � Q, if both P ` Q and
MR(P ) ` MR(Q).

(Recall that MR(P ) denotes reversal with respect to the grade of the polynomial P , as described
in Example 3.7.)

It is not hard to see that Definitions 8.1(a) and (b) do indeed define equivalence relations.
Also note two key features of these definitions: the flexibility in what sizes are allowed for
equivalent polynomials, as well as the almost complete absence of any mention of degree or
grade. Indeed, grade and degree play no role at all in the definition of extended unimodular
equivalence, and appear only implicitly in the use of reversals in the definition of spectral
equivalence.

Justification for the name “spectral equivalence” is provided by the following theorem,
which characterizes each of these equivalence relations in terms of spectral data.

Theorem 8.2 (Characterization of spectral equivalence [23]).

Let P and Q be any pair of matrix polynomials over a field F, and let F denote the algebraic
closure of F. Consider the following properties:

(a) Ĵ (P , λ0) = Ĵ (Q, λ0) for every λ0 ∈ F, i.e., P and Q have the same (finite) elementary
divisors over F,

(b) Ĵ (P ,∞) = Ĵ (Q,∞), i.e., P and Q have the same infinite elementary divisors,

(c) the dimensions of corresponding nullspaces are equal, that is,
dimN`(P ) = dimN`(Q) and dimNr(P ) = dimNr(Q).

Then P ` Q if and only if (a) and (c) hold, while P � Q if and only if (a), (b), and (c) hold.

Note that condition (c) of Theorem 8.2 is equivalent to saying that P and Q have the same
number of left minimal indices, and the same number of right minimal indices. Thus for two
matrix polynomials to have any chance of having the same elementary divisors and minimal
indices, Theorem 8.2 makes it clear that a necessary first step is that they be spectrally
equivalent.

8.2 Linearizations and Quadratifications

The classical notions of linearization and strong linearization were used as models for the
definitions of extended unimodular equivalence and spectral equivalence. We now come full
circle, using these equivalence relations to extend the classical notions of linearization to
concepts that are more flexible and easier to use.

Definition 8.3 (Linearizations and Quadratifications [23]).
Let P be a matrix polynomial of any size and grade, over an arbitrary field F.

(a) A linearization for P is a pencil L (i.e., a polynomial of grade one) such that L ` P ,
while a strong linearization is a pencil L such that L � P .

(b) A quadratification for P is a quadratic polynomial Q (i.e., a polynomial of grade two)
such that Q ` P , while a strong quadratification is a quadratic polynomial Q such that
Q � P .

40



Clearly any linearization or strong linearization in the classical sense is still one according to
this definition. By contrast, linearizations and quadratifications in the sense of Definition 8.3
(strong or not) are no longer restricted a priori to one fixed size, but are free to take on
any size that “works”, i.e., that makes L ` P , or L � P , or Q ` P , or Q � P . This is in
accord with the known situation for rectangular matrix polynomials, where there always exist
linearizations of many possible sizes [22], and with the recent development of the notion of
“trimmed” linearizations [14].

However, for regular polynomials P it turns out that only one size, the classical size, can
actually occur for strong linearizations in this new sense, even though Definition 8.3 allows
the a priori possibility of other sizes.

Theorem 8.4 (Size of strong linearizations for regular polynomials [23]).
Suppose P is a regular matrix polynomial of size n × n and grade k. Then any strong lin-
earization for P must have the classical size kn× kn.

Thus in the regular case the new definition is equivalent to the classical one, and so in
a certain sense can be viewed as a conservative extension of the classical definition. The
situation for singular polynomials is rather different, however; in this case there are always
many possible sizes for linearizations and strong linearizations in the sense of Definition 8.3
[23].

8.3 Möbius and Spectral Equivalence

We now present the main results of Section 8, showing that every Möbius transformation pre-
serves the relation of spectral equivalence, and consequently that every strong linearization is
preserved by Möbius transformations. Finally we consider the effect of Möbius transforma-
tions on linearizations that are not strong.

Theorem 8.5 (Möbius preserves spectral equivalence).
Let P and Q be any two matrix polynomials over an arbitrary field F, and A ∈ GL(2,F).
Then P � Q if and only if MA(P ) �MA(Q).

Proof. (⇒): Suppose that P � Q. Since MA preserves size of matrix polynomials by
definition, and rank by Proposition 3.29, we see that dimNr

(
MA(P )

)
= dimNr(P ) by the

rank-nullity theorem. Thus we have

dimNr
(
MA(P )

)
= dimNr(P ) = dimNr(Q) = dimNr

(
MA(Q)

)
,

where the middle equality is by condition (c) in Theorem 8.2. A similar argument shows that
dimN`

(
MA(P )

)
= dimN`

(
MA(Q)

)
.

On the other hand, conditions (a) and (b) in Theorem 8.2 imply that P and Q have the
same elementary divisors. But from Theorem 5.3 and Remark 5.4 we know that MA trans-
forms the elementary divisors of P and Q in the same way, so that MA(P ) and MA(Q)
must also have the same elementary divisors. Thus by Theorem 8.2 we conclude that
MA(P ) �MA(Q).

(⇐): Apply (⇒) to the relation MA(P ) �MA(Q) using the Möbius transformation MA−1 ,
to conclude that P � Q.

Corollary 8.6 (Möbius preserves strong linearizations and quadratifications).
Suppose P is any matrix polynomial (regular or singular), over an arbitrary field F, and
A ∈ GL(2,F). Then:

(a) L is a strong linearization for P if and only if MA(L) is a strong linearization for
MA(P ).
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(b) Q is a strong quadratification for P if and only if MA(Q) is a strong quadratification
for MA(P ).

Proof. Both (a) and (b) are just special cases of Theorem 8.5.

From Corollary 8.6 we now know that any strong linearization is preserved by every Möbius
transformation. But what about linearizations that are not strong, sometimes referred to as
“weak” linearizations [41]? When are they preserved by Möbius transformations? The fol-
lowing result completely answers this question, by characterizing the Möbius transformations
that preserve any given weak linearization.

Theorem 8.7 (Möbius and weak linearizations).
Let P be a matrix polynomial over an arbitrary field F, and A ∈ GL(2,F). Suppose L is a
linearization for P that is not strong, i.e., L ` P but L 6� P . Then MA(L) is a linearization
for MA(P ) if and only if A is upper triangular, that is, if and only if the associated Möbius
function mA(λ) can be expressed in the form mA(λ) = aλ+ b.

Proof. To see when MA(L) is a linearization for MA(P ), we determine when conditions (a)
and (c) of Theorem 8.2 are satisfied. From Theorem 7.5 we see that condition (c) for L and
P immediately implies that condition (c) also holds for MA(L) and MA(P ), for any Möbius
transformation MA. It only remains, then, to consider the elementary divisor conditions in
Theorem 8.2.

For L to be a linearization that is not strong means that condition (a) in Theorem 8.2
holds, but condition (b) does not, i.e., that Ĵ (L,∞) 6= Ĵ (P ,∞). This implies that the chain
of equalities

Ĵ
(
MA(L), λ

)
= Ĵ

(
L,mA(λ)

)
= Ĵ

(
P ,mA(λ)

)
= Ĵ

(
MA(P ), λ

)
will hold at all λ with a single exception, the unique λ0 ∈ F∞ such that mA(λ0) =∞. Thus
condition (a) will hold for MA(L) and MA(P ) if and only if λ0 =∞. But a Möbius function
mA has the property mA(∞) = ∞ if and only if A is upper triangular, so the theorem is
proved.

9 Möbius and Structure

The interaction of Möbius transformations with various aspects of matrix polynomial struc-
ture has been a central theme throughout this paper. We have seen that many structural
features and relationships are preserved by any Möbius transformation, e.g.:

• regularity, singularity, rank

• symmetry and skew-symmetry

• minimal indices

• the relations of strict equivalence ≈ , and spectral equivalence � , i.e.,

P ≈ Q ⇔ MA(P ) ≈MA(Q) , and P � Q ⇔ MA(P ) �MA(Q)

• the property of being a strong linearization or strong quadratification.
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A variety of other structural features are not preserved by Möbius transformations, but instead
change in a simple and predictable way. Examples of this include:

• determinants and compound matrices

• Jordan characteristic and Smith form

• invariant pairs

• minimal bases.

We now illustrate the usefulness of Möbius transformations with two examples that focus
on structured matrix polynomials. In Section 9.1 we consider the problem of realizing a
given list of elementary divisors by a regular matrix polynomial, in particular by a regular
polynomial that is upper triangular ; here the emphasis is on the preservation of yet another
kind of structure by Möbius transformations – sparsity patterns. Next, in Section 9.2 we
revisit the Cayley transformation, one of the primary examples originally motivating the work
in this paper. Using the basic properties of general Möbius transformations established in
Section 3, the connection between palindromic and alternating matrix polynomial structure,
first established in [44], will now be made transparent. Finally, the parallelism between the
Smith forms and elementary divisor structures of alternating and palindromic polynomials
[46, 47] will be seen as a special case of the results in Section 5.

9.1 Sparsity and a Realization Theorem

Recall the observation made in Section 3.3 (immediately after Example 3.14), that Möbius
transformations act entry-wise on matrix polynomials. An immediate consequence is that
Möbius transformations preserve sparsity patterns in the following sense.

Remark 9.1. Let P (λ) be a matrix polynomial of grade k, let i, j ∈ N be fixed, and let
A ∈ GL(2,F). If the (i, j)-entry of P (λ), viewed as a polynomial matrix, is zero, then the
(i, j)-entry of MA(P )(λ) is also zero. In particular:

• MA(P )(λ) is diagonal if and only if P (λ) is diagonal.

• MA(P )(λ) is upper triangular if and only if P (λ) is upper triangular.

This seemingly minor observation has an important impact on inverse polynomial eigen-
value problems. In [62], the authors ask whether any regular quadratic matrix polynomial can
be transformed to an upper triangular quadratic matrix polynomial having the same finite
and infinite elementary divisors. A partial answer to this problem was implicit in the proof
of [30, Theorem 1.7], providing the solution to an inverse problem for linearizations. The
argument used in [30] actually proves a stronger result that is valid over any algebraically
closed field. This stronger result appears explicitly in [61, Lemma 3.2]; we restate it here in
slightly modified form.

Lemma 9.2 (Realization lemma).
Let F be an algebraically closed field, and let D(λ) be a regular n × n matrix polynomial
over F that is in Smith form. Suppose deg

(
detD(λ)

)
= nk for some k ∈ N. Then there

exists an n×n upper triangular matrix polynomial P (λ) of degree k, with nonsingular leading
coefficient, such that P (λ) := E(λ)D(λ)F (λ) where E(λ) and F (λ) are unimodular n × n
matrix polynomials.
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For the sake of completeness and for the convenience of the reader, we establish a slightly
stronger result in Lemma 9.3. Setting m = 0 gives Lemma 9.2 as a special case.

Lemma 9.3. Let F be an algebraically closed field, and let D(λ) = diag(d1(λ), . . . , dn(λ)) be
a regular n × n matrix polynomial over F that is in Smith form. Suppose deg

(
detD(λ)

)
=

nk for some k ∈ N. Further, let B(λ) =
[
bij(λ)

]
be any n × m matrix polynomial with

deg bij(λ) ≤ min
(
k, deg di(λ)

)
for all j = 1, . . . ,m, i = 1, . . . , n. Then there exists an upper

triangular matrix polynomial P (λ) of degree k, with nonsingular leading coefficient, such that
P (λ) := E(λ)D(λ)F (λ), where E(λ) and F (λ) are unimodular n×n matrix polynomials such
that the degree of E(λ)B(λ) does not exceed k.

Proof. We proceed by induction on n, using the construction from [30, Theorem 1.7].

Assume that n > 1, as there is nothing to prove when n = 1. For convenience, let us
abbreviate deg di(λ) =: ki. Since D(λ) is in Smith form, we have 0 ≤ k1 ≤ · · · ≤ kn, and by
hypothesis

n∑
i=1

ki = deg
(

detD(λ)
)

= nk .

If all ki are equal, then they are all equal to k and we are done. So suppose that not all ki
are equal. Then k1 < k and k < kn, and hence k1 < k1 + (kn − k) < kn. Therefore there
exists an index j ≥ 2 such that kj−1 ≤ k1 + (kn − k) < kj , or equivalently,

kj−1 − k1 ≤ kn − k < kj − k1 . (9.1)

Our first goal is to show that there exists a monic scalar polynomial p(λ) of degree kn−k such
that dj−1(λ) divides d1(λ)p(λ), and d1(λ)p(λ) divides dj(λ). Since D(λ) is in Smith form,
d1(λ) divides dj−1(λ) and dj−1(λ) divides dj(λ), i.e., there exist monic scalar polynomials
p1(λ) and p2(λ) such that

dj−1(λ) = d1(λ)p1(λ) and dj(λ) = d1(λ)p1(λ)p2(λ) .

Now observe that p1(λ) has degree kj−1 − k1 and p1(λ)p2(λ) has degree kj − k1; also observe
that p2(λ) decomposes into a product of linear factors, since F is algebraically closed. Thus
by (9.1) we can remove linear factors of p2(λ) in the product p1(λ)p2(λ), until the remaining
polynomial p(λ) has degree kn− k; this p(λ) has the desired properties. Now since d1(λ)p(λ)
also divides dn(λ), let q(λ) be a monic polynomial such that d1(λ)p(λ)q(λ) = −dn(λ). Then
d1(λ)q(λ) has degree k.

Next, perform the following elementary operations on the matrix polynomial
[
D(λ), B(λ)

]
:

(1) add the first column multiplied by p(λ) to the nth column;

(2) add the first row multiplied by q(λ) to the last row;

(3) interchange the first and nth columns;

(4) permute the rows such that row i+ 1 goes to i for i = 1, . . . , j − 2 and row one goes to
row j − 1;

(5) permute the columns such that column i + 1 goes to i for i = 1, . . . , j − 2 and column
one goes to column j − 1.
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Then the resulting matrix polynomial P̃ (λ) has the form

P̃ (λ) =

[
D̃(λ) D̂(λ) B1(λ)

0 d1(λ)q(λ) B2(λ)

]

:=



d2 b21 . . . b2m
. . .

...
. . .

...
dj−1 bj−1,1 . . . bj−1,m

d1p d1 b11 . . . b1m
dj bj1 . . . bjm

. . .
...

. . .
...

dn−1 bn−1,1 . . . bn−1,m
d1q bn1 + b11q . . . bnm + b1mq


,

where D̃(λ) is (n−1)×(n−1) and where for convenience we have suppressed the dependency on
λ in the entries. Observe that only elementary row operations have been performed on B(λ),
so the transformations performed on the polynomial

[
D(λ), B(λ)

]
result in the existence of

unimodular matrix polynomials Ê(λ) and F̂ (λ) such that

Ê(λ)D(λ)F̂ (λ) =

[
D̃(λ) D̂(λ)

0 d1(λ)q(λ)

]
and Ê(λ)B(λ) =

[
B1(λ)
B2(λ)

]
.

Since deg b1j(λ) ≤ deg d1(λ) for j = 1, . . . ,m, and since the degree of each entry of B(λ) does
not exceed k, it follows that the degree of B2(λ) does not exceed k either. By construction,
dj−1(λ) divides d1(λ)p(λ) which in turn divides dj(λ), so D̃(λ) is in Smith form. Moreover,

d1(λ)q(λ) has degree k which implies that deg
(

det D̃(λ)
)

= (n − 1)k. Observe that D̃(λ)

and the (n − 1) × (m + 1) matrix polynomial B̃(λ) =
[
D̂(λ), B1(λ)

]
satisfy the hypotheses

of the claim, so by the induction hypothesis there exist unimodular matrix polynomials Ẽ(λ)
and F̃ (λ) of size (n− 1)× (n− 1) such that Ẽ(λ)D̃(λ)F̃ (λ) is upper triangular with degree k
and nonsingular leading coefficient, and the degree of Ẽ(λ)B̃(λ) does not exceed k. Setting

E(λ) =

[
Ẽ(λ) 0

0 1

]
Ê(λ) and F (λ) = F̂ (λ)

[
F̃ (λ) 0

0 1

]
then completes the proof.

The sparsity preservation property of Möbius transformations described in Remark 9.1,
together with the controlled effect of Möbius transformations on Jordan characteristic given
by Theorem 5.3, makes it possible to extend the realization result of Lemma 9.2 to situations
where both finite and infinite elementary divisors may be present. To handle this in a simple
fashion, we assume we are given a list of elementary divisors rather than a matrix polynomial;
indeed, it is convenient to express this list in the form of a specified Jordan characteristic
that we wish to realize by some regular matrix polynomial. The following theorem then gives
necessary and sufficient conditions for a list of finite and infinite elementary divisors to be
realizable by a regular matrix polynomial.
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Theorem 9.4 (Regular realization theorem).
Let F be an algebraically closed field. Furthermore, let λ1, . . . , λm ∈ F ∪ {∞} be pairwise
distinct and let

(α1,i, α2,i, . . . , αn,i) ∈ Nn
≤

for i = 1, . . . ,m be given. Then the following statements are equivalent.

(a)
m∑
i=1

n∑
j=1

αj,i = kn.

(b) There exists a regular matrix polynomial P (λ) of size n× n and grade k such that

J (P, λi) = (α1,i, α2,i, . . . , αn,i) for i = 1, . . . ,m ,

and J (P, λ) is the zero sequence for all λ ∈ F∞ with λ 6= λi, i = 1, . . . ,m. Moreover,
the realizing polynomial P (λ) may always be taken to be upper triangular.

Proof. (a ⇒ b): Let A ∈ GL(2,F) be chosen such that the corresponding Möbius function
mA has mA(λi) 6=∞ for all i = 1, . . . ,m. (Note that if none of λ1, . . . , λm is ∞, then one can
simply choose A = I2.) Letting µi := mA(λi), set

dj(λ) :=

m∏
i=1

(λ− µi)αj,i , j = 1, . . . , n

and D(λ) := diag
(
d1(λ), . . . , dn(λ)

)
. Then D(λ) is in Smith form, and by (a) we have

deg
(
detD(λ)

)
= nk, so by Lemma 9.2 there exist unimodular matrix polynomials E(λ) and

F (λ) such that Q(λ) := E(λ)D(λ)F (λ) is upper triangular, regular, and has degree (and
grade) k, with nonsingular leading coefficient. Since D(λ) is the Smith form of Q(λ), we see
that

J
(
Q,mA(λi)

)
= (α1,i, α2,i, . . . , αn,i)

for i = 1, . . . ,m, and that J (Q,µ) is the zero sequence for all µ ∈ F∞ with µ 6= mA(λi),
i = 1, . . . ,m. Then the grade k matrix polynomial P (λ) := MA(Q)(λ) is upper triangular by
Remark 9.1, regular by Corollary 3.28, and has the desired Jordan characteristic

J (P, λi) = J
(
MA(Q), λi

)
= J

(
Q,mA(λi)

)
= (α1,i, α2,i, . . . , αn,i)

by Theorem 5.3, thus showing that (b) holds.

(b ⇒ a): That the sum of the (finite and infinite) partial multiplicities of any regular n× n
matrix polynomial is kn seems to be a well-known fact when grade is chosen to be equal
to degree. An elementary proof that this sum is kn, valid for any choice of grade k and for
regular n×n matrix polynomials over an arbitrary field, can be found in [23, Lemma 6.1].

The result of Theorem 9.4 is also presented in [38] and [61], and extended in each paper
to an even more general result. We have included the regular realization theorem and an al-
ternative proof in this paper primarily to highlight the importance of Möbius transformations
as a tool for the solution of polynomial inverse eigenproblems.

9.2 Linking Alternating and Palindromic Matrix Polynomials

In [46] and [47] the possible Smith forms of alternating and palindromic matrix polynomials
were investigated. Comparing the results of these two papers, an interesting parallelism can
be observed. On the one hand, if D(λ) = diag(d1(λ), . . . , dn(λ)) is the Smith form of some
T -alternating matrix polynomial, then every di(λ) is alternating and all elementary divisors
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corresponding to zero and infinity satisfy certain pairing conditions [46, Theorem 3.10 and
Theorem 3.11]. Similarly, if D(λ) is the Smith form of some T -palindromic matrix polynomial,
then every di(λ) is palindromic and all elementary divisors corresponding to +1 and −1 satisfy
certain pairing conditions [47, Theorem 7.6]. Although slightly different arguments were used
to prove these results, the parallelism in the results themselves is not really a surprise, given
the previously known fact [44] that T -alternating and T -palindromic matrix polynomials are
linked via the Cayley transformation, a special type of Möbius transformation. With the
theory developed in this paper, this parallelism is now easy to understand in detail; indeed
the main results of [46] can be deduced from the corresponding results in [47], and vice
versa, a fact whose simple verification is left to the reader. Instead, we examine the Cayley
transformation link between alternating and palindromic matrix polynomials observed in
[44], from a slightly different angle. We start by recalling the definitions given in [44] for the
convenience of the reader.

Definition 9.5 ([44]). An n× n matrix polynomial P (λ) of grade k is

(a) T -palindromic if P T (λ) = revkP (λ),

(b) T -anti-palindromic if P T (λ) = −revkP (λ),

(c) T -even if P T (λ) = P (−λ),

(d) T -odd if P T (λ) = −P (−λ),

(e) T -alternating if it is T -even or T -odd.

As seen in Section 3.1, revk is a special case of a Möbius transformation. The same is
true for the transformation that maps P (λ) to P (−λ). Indeed, let

R =

[
0 1
1 0

]
and S =

[
−1 0

0 1

]
.

Then MR(P )(λ) = revkP (λ) and MS(P )(λ) = P (−λ). Therefore the structures in Defini-
tion 9.5 can be alternatively expressed in the following manner.

Definition 9.6. An n× n matrix polynomial P (λ) of grade k is

(a) T -palindromic if and only if P T = MR(P ),

(b) T -anti-palindromic if and only if P T = −MR(P ),

(c) T -even if and only if P T = MS(P ),

(d) T -odd if and only if P T = −MS(P ).

Next we recall the theorem from [44] that links T -alternating and T -(anti-)palindromic
polynomials via the Cayley transformations C+1 and C−1, introduced in Example 3.10.

Theorem 9.7 ([44], Theorem 2.7). Let P (λ) be a matrix polynomial of grade k ≥ 1. Then
the correspondence between structure in P (λ) and in its Cayley transforms is as stated in
Table 9.1.

Keeping in mind that the Cayley transformations C+1 and C−1 correspond to the Möbius
transformations MA+1 and MA−1 , where A+1 and A−1 are as in (3.6), we claim that the
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Table 9.1: Cayley transformations of structured matrix polynomials

C−1(P )(µ) C+1(P )(µ)
P (λ)

k even k odd k even k odd

T -palindromic T -even T -odd T -even

T -anti-palindromic T -odd T -even T -odd

T -even T -palindromic T -palindromic T -anti-palindromic

T -odd T -anti-palindromic T -anti-palindromic T -palindromic

essential content of Table 9.1 reduces to the following multiplicative relationships between
the four 2× 2 matrices S, R, A+1, and A−1:

A+1 S = RA+1 , (9.2)

A+1R = −S A+1 , (9.3)

A−1 S = −RA−1 , (9.4)

A−1R = S A−1 . (9.5)

Observe that each of these four equations is just a variation on the statement “R is similar
to S” (or to −S). Note that the first two equations are related to the C+1 part of Table 9.1,
while the last two go with the C−1 part of Table 9.1.

Now let us see in detail how the matrix equation (9.2) “explains” why the Cayley trans-
formation C+1 turns T -palindromic into T -even polynomials. So suppose that P (λ) is a
T -palindromic polynomial, and

Q(λ) := C+1(P )(λ) = MA+1
(P )(λ) (9.6)

is the Cayley transform of P (λ). Then P (λ) being T -palindromic means that P T = MR(P ).
Inserting this into the transposed equation (9.6), we obtain

QT =
(
MA+1

(P )
)T

= MA+1

(
P T
)

= MA+1

(
MR(P )

)
= MRA+1

(P ) = MA+1S(P ) = MS

(
MA+1

(P )
)

= MS(Q) ,

where we used Proposition 3.16(a), Theorem 3.18(b), and (9.2). Thus we see that

P T = MR(P ) =⇒ QT = MS(Q) , i.e., QT (λ) = Q(−λ) ,

so Q(λ) is T -even, as claimed.
As another illustration, consider the last row of Table 9.1, again using the C+1 Cayley

transformation. This time let P (λ) be T -odd, i.e., P T = −MS(P ), and let

Q(λ) := C+1(P ) = MA+1
(P )

be its Cayley transform. Then using the properties of Möbius transformations from Proposi-
tions 3.16(a) and 3.5, Theorem 3.18(b) and (d), as well as equation (9.3), we obtain that

QT =
(
MA+1

(P )
)T

= MA+1

(
P T
)

= MA+1

(
−MS(P )

)
= −MA+1

(
MS(P )

)
= −MSA+1

(P ) = −M−A+1R(P ) = (−1)k+1MR

(
MA+1

(P )
)

= (−1)k+1MR(Q) .
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Thus we easily recover the T -anti-palindromicity ofQ when k is even, and the T -palindromicity
of Q when k is odd. Analogous calculations produce all the other entries in Table 9.1.

In summary, then, the perspective afforded by our results about general Möbius trans-
formations enables us to transparently see the Cayley connection between alternating and
palindromic structure as a straightforward consequence of simple relations between 2 × 2
matrices.

10 Conclusions

The wide range of properties established in this paper for Möbius transformations acting
on general matrix polynomials over an arbitrary field F make them a potent tool for both
discovering and proving nontrivial results.

Since a Möbius transformation can alter the degree of a polynomial, we have used poly-
nomials of fixed grade as the domain of discourse. We can then view Möbius transformations
as a group of F-linear operators on a finite-dimensional vector space, and consequently de-
velop a theory that is simpler and more unified than it would otherwise be. Many important
transformations are now seen to be special instances of Möbius transformations.

We have shown that a number of structural features of matrix polynomials are preserved
by Möbius transformations, for example, regularity, rank, minimal indices, the location of
zero entries, as well as symmetry and skew-symmetry. The relations of strict equivalence and
spectral equivalence and the property of being a strong linearization or strong quadratification
are also preserved. Other important features like the determinant, Jordan characteristic,
Smith form, invariant pairs and minimal bases have each been shown to change in a simple
and predictable way.

By linking palindromic and alternating matrix polynomials via Möbius transformations,
the parallelism between the pairing conditions on their elementary divisors can be understood
and even predicted. Möbius transformations are thus shown to be an efficient device for
transferring results between matrix polynomial structures.

Finally, their role in yielding necessary and sufficient conditions for a given list of finite
and infinite elementary divisors to be realizable by a regular matrix polynomial highlights the
potential of Möbius transformations as effective tools for solving inverse polynomial eigenvalue
problems.
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