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Abstract

Schur-like forms are developed for matrices that have a symmetry structure with respect
to an indefinite inner product induced by a Hermitian and unitary Gram matrix. It is charac-
terized under which conditions these forms can be computed by structure-preserving unitary
transformations. The main results combines and generalizes the two well-known results from
the literature that on the one hand any normal matrix can be unitarily diagonalized and on
the other hand a Hamiltonian matrix can be transformed to Hamiltonian Schur form via a
unitary similarity transformation if and only if its purely imaginary eigenvalues satisfy certain
conditions that involve the sign characteristic of the matrix under consideration.

1 Introduction

It is well known that Hermitian matrices, skew-Hermitian matrices, and unitary matrices are uni-
tarily diagonalizable. More generally, this is true for normal matrices, i.e., for matrices A ∈ Cn,n
satisfying AAH = AHA - a class of matrices that generalizes the classes of Hermitian, skew-
Hermitian, and unitary matrices. The fact that unitary matrices can be used as transforma-
tion matrices for diagonalizing normal matrices is important because of two fundamental proper-
ties: firstly, similarity transformations with unitary matrices preserve the given Hermitian, skew-
Hermitian, unitary, or normal structure of the matrix - a fact that it crucial for the development
of structure-preserving algorithms for the solution of the given eigenvalue problem - and secondly,
unitary matrices are optimally conditioned. Therefore, the normal eigenvalue problem can be
considered to be a well-behaved problem in the sense that a diagonalization can be performed by
backward stable and structure-preserving algorithms.

The picture changes drastically, if one considers matrices that carry a symmetry structure with
respect to an indefinite inner product, i.e., with respect to a nondegenerate Hermitian form that
is not necessarily positive definite or with respect to a nondegenerate skew-Hermitian form. An
important example are Hamiltonian matrices, i.e., matrices A ∈ R2n,2n satisfying A>J + JA = 0,
where J denotes the skew-symmetric matrix

J =

[
0 In
−In 0

]
. (1)

The identity A>J = −JA can be interpreted as skew-symmetry of the matrix A with respect
to the skew-symmetric inner product induced by J . The corresponding Hamiltonian eigenvalue
problem arises in many application, e.g., in system theory and the theory of Algebraic Riccati
equations, see [1, 5, 13] and the references therein. For practical reasons, one often switches to the
complex version of the problem which leads to the consideration of matrices A ∈ C2n,2n satisfying
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AHJ + JA = 0. Typically, these matrices are also called Hamiltonian in the Numerical Linear
Algebra community and we will follow this convention in this paper. It should be noted though
that other communities prefer the terminology J-unitary for such matrices (e.g., see [2]) in order
to avoid confusion with complex matrices A ∈ C2n,2n satisfying A>J + JA = 0 which are called
Hamiltonian as well.

For the solution of the Hamiltonian eigenvalue problem, the so-called Hamiltonian Schur form
was suggested in [15] as a target form. This is a Hamiltonian matrix of the block form[

R B
0 −RH

]
, (2)

where R ∈ Cn,n is upper triangular. It is straightforward to see that this is just a permutation of
the classical upper triangular Schur form of a complex matrix and as a consequence the eigenvalues
can be read off from the diagonal. It was shown in [15] that this form can always be achieved under
a unitary symplectic similarity transformation provided that the given Hamiltonian matrices does
not have eigenvalues on the imaginary axis. Recall that a matrix S ∈ C2n,2n is called symplectic
(following the convention in the Numerical Linear Algebra community) if SHJS = J . It is
easily checked that similarity transformations with symplectic matrices preserve the Hamiltonian
structure and are therefore the base of structure-preserving algorithms for the solution of the
Hamiltonian eigenvalue problem. However, since the condition number of symplectic matrices
may be arbitrarily large, it is favorable to further restrict oneself to the class of unitary symplectic
similarity transformations in order to guarantee numerical stability.

Surprisingly, there are Hamiltonian matrices that cannot be transformed to Hamiltonian Schur
form via a unitary symplectic similarity transformation. As an obvious example, consider the
matrix J which is both Hamiltonian and symplectic (and even unitary). Clearly, if U ∈ C2n,2n is
unitary and symplectic then U−1JU = UHJU = J , so J is invariant under any unitary symplectic
similarity transformations and hence cannot be transformed to Hamiltonian Schur form. It is clear
from the form in (2) that a necessary condition for the existence of a Hamiltonian Schur form is
that the purely imaginary eigenvalues of the given matrix have even multiplicity. Indeed, if λ is an
eigenvalue of R then −λ is an eigenvalue of −RH , so any purely imaginary eigenvalue of R will also
be one of −RH . The example of J however shows that this condition is not sufficient. The long
open problem of characterizing all Hamiltonian matrices that can be transformed to Hamiltonian
Schur form was finally solved in [6] with the help of a newly developed structured canonical form
for Hamiltonian matrices.

At first sight, one may come to the conclusion that the nonexistence of the Hamiltonian Schur
form is related to the fact that in contrast to the Euclidean inner product the two fundamen-
tal properties of structure-preservation and numerical stability are now partitioned among two
sets of transformation matrices instead of only one. Thus, to enable both features, one has to
restrict oneself to the set of unitary symplectic matrices which is a much “smaller” subset (in
terms of dimension as a manifold) than the sets of symplectic matrices or unitary matrices. This
conclusion, however, turns out to be wrong as it is well-known that the Hamiltonian Schur form
exists under unitary symplectic similarity transformations if and only if it exists under similar-
ity transformations that are symplectic only. This equivalence can easily be shown by applying
a structure-preserving QR decomposition to the transformation matrix, see, e.g., [6] for details.
Thus, both in the case of normal matrices with respect to the Euclidean inner product and in the
case of Hamiltonian matrices, the actual problem is the computation of a Schur-like form by sim-
ilarity transformations from the group of matrices that are unitary with respect to the considered
inner product and therefore preserve the given symmetry structure of the matrix they are acting
on.

We will show in this paper that the diagonal Schur form of normal matrices and the Hamiltonian
Schur form of Hamiltonian matrices are two extreme cases of a much more general Schur-like form
for matrices carrying a symmetry structure with respect to an indefinite inner product. To treat
the problem in full generality, we will consider a generalization of normality of matrices in an
indefinite inner product space, the so-called polynomial H-normality which will be introduced in
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Section 2 where we will also review the basic theory of indefinite inner products. In Section 3
we will formulate the main result of this paper and develop a Schur-like form for polynomially
H-normal matrices for the case of a Hermitian and unitary Gram matrix H. Then we will discuss
how the Schur form of normal matrices and the Hamiltonian Schur form can be deduced as special
cases of this result. The proof of the main result will then be given in Section 4 followed by a
short summary in Section 5.

Notation: By Jn(λ) we denote the n× n upper triangular Jordan block associated with the
eigenvalue λ. The reverse identity of size n is denote by Rn, i.e.,

Rn =

 0 1

. .
.

1 0

 .
If H ∈ Cn,n is a Hermitian matrix, then its inertia index is denoted by (π, ν, ζ), where π, ν,
and ζ are the numbers of positive, negative and zero eigenvalues, respectively, each counted with
algebraic multiplicities.

2 Indefinite inner products and polynomially H-normal ma-
trices

Let H ∈ Cn,n be Hermitian and invertible. Then H defines an indefinite inner product on Cn via

[x, y] := xHHy, x, y ∈ Cn.

As in the case of positive definite inner product, we will call H the Gram matrix of the indefinite
inner product. If A ∈ Cn,n then the matrix A[∗] := H−1AHH is alled the H-adjoint of A, because
it is the unique matrix satisfying the identity [Ax, y] = [x,A[∗]y] for all x, y ∈ Cn. The matrix A
is called

� H-selfadjoint, if A[∗] = A, or, equivalently, AHH = HA,

� H-skew-adjoint, if A[∗] = −A, or, equivalently, AHH +HA = 0,

� and H-unitary, if A[∗] = A−1, or, equivalently, AHHA = H.

In the following, we will restrict ourselves to Hermitian inner products, because any skew-Hermitian
inner product can easily be transformed to a Hermitian inner product by multiplying the corre-
sponding Gram matrix with the imaginary unit i. In particular, a matrix A ∈ C2n,2n is Hamil-
tonian if and only if A is (iJ)-skew-adjoint, where J is the matrix as in (1).

Canonical forms for H-selfadjoint, H-skew-adjoint, and H-unitary matrices are well known,
see, e.g., [2, 8]. More generally, one can define the set of H-normal matrices as the set of all
matrices A ∈ Cn,n satisfying A[∗]A = AA[∗]. Unfortunately, this set turns out to be “too big”,
because it was shown in [3] that the problem of classifying H-normal matrices is a wild problem and
hence canonical forms cannot be obtained. Therefore, it was suggested in [11] to consider the set
of polynomially H-normal matrices instead. A matrix A ∈ Cn,n is called polynomially H-normal if
there exists a polynomial p in one variable such that A[∗] = p(A). The polynomial p is then called
the H-normality polynomial of A. It is easily checked that any polynomially H-normal matrix is
H-normal, but the converse is not true, see [11]. Still, the set of polynomially H-normal matrices
is large enough to contain the sets of H-selfadjoint, H-skew-adjoint, and H-unitary matrices.
Indeed, if the matrix A is H-selfadjoint or H-skew-adjoint, then it is polynomially H-normal with
H-normality polynomial p(t) = t or p(t) = −t, respectively, and since A[∗] = A−1 and the inverse
of a matrix is always a polynomial in that matrix, it follows that also any H-unitary matrix is
polynomially H-normal.

The major advantage of polynomially H-normal matrices over H-normal matrices is the fact
that a complete classification is available under the following equivalence relation.
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Remark 1 Let H ∈ Cn,n be Hermitian and invertible and let A ∈ Cn,n be polynomially H-
normal with H-normality polynomial p. If T ∈ Cn,n is invertible, then T−1AT is polynomially
THHT -normal with H-normality polynomial p. In particular, the relation

(A1, H1) ∼ (A2, H2) :⇔ ∃T ∈ GLn(C) : A2 = T−1A1T ∧H2 = THH1T (3)

is an equivalence relation on the set of pairs (A,H), where H is Hermitian and invertible and A
is polynomially H-normal with H-normality polynomial p.

The following canonical form for polynomially H-normal matrices was developed in [8, The-
orem 6.1]. Here, T (α1, . . . , αn) denotes an upper triangular n × n Toeplitz matrix that has[
α1 . . . αn

]
as its first row.

Theorem 1 (Canonical form for polynomially H-normal matrices) Let the matrix A ∈
Cn,n be polynomially H-normal with H-normality polynomial p. Then there exists a nonsingular
matrix T such that

T−1AT = A1 ⊕ · · · ⊕Aq, T ∗HT = H1 ⊕ · · · ⊕Hq, (4)

where Aj is Hj-indecomposable and where Aj and Hj have one of the following forms:

i) blocks associated with eigenvalues λj ∈ C satisfying p(λj) = λj:

Aj = λjInj + eiθjT (0, 1, irj,2, . . . , irj,nj−1), Hj = σjRnj
, (5)

where nj ∈ N, σj ∈ {1,−1}, θj ∈ [0, π), and rj,2, . . . , rj,nj−1 ∈ R;

ii) blocks associated with a pair (λj , µj) of eigenvalues with µj = p(λj) 6= λj, p(µj) = λj, and
Re(λj) > Re(µj) or Im(λj) > Im(µj) if Re(λj) = Re(µj):

Aj =

[ Jmj (λj) 0

0 p
(
Jmj

(λj)
)H ]

, Hj =

[
0 Imj

Imj
0

]
, (6)

where mj ∈ N.

Moreover, the form (4) is unique up to the permutation of blocks, and the parameters θj, and
rj,2, . . . , rj,nj−1 in (5) are uniquely determined by λj and the coefficients of p, and they can be
computed from the identity

λjInj + e−iθjT (0, 1,−irj,2, . . . ,−irj,nj−1)

= p
(
λjInj

+ eiθj T (0, 1, irj,2, . . . , irj,nj−1)
)
.

(We highlight that the eigenvalues λj in i) are not necessarily pairwise distinct, i.e., the same
eigenvalue may occur in different blocks. The same is true for the eigenvalues λj , µj in ii).)

Besides the eigenvalues and their partial multiplicities, the signs σj = ±1 attached to each
Jordan block corresponding to an eigenvalue λj satisfying λj = p(λj) are additional invariants
under the equivalence relation (3). The list of all signs associated with a fixed eigenvalue λj is
referred to as the sign characteristic of the eigenvalue λj extending the terminology in [2] used for
H-selfadjoint and H-unitary matrices.

The following values related to the sign characteristic of a fixed eigenvalue will play a crucial
role in the characterization when a structured Schur-like form will exist.

Definition 1 Let H ∈ Cn,n be Hermitian and invertible, let A ∈ Cn,n be polynomially H-normal,
and let λ ∈ C be an eigenvalue of A that satisfies λ = p(λ). Then the sum of all signs σj from the
sign characteristic of λj attached to blocks of odd size is called the sign sum of λj and is denoted
by signsum(λj).
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To illustrate Definition 1 consider the matrices

A = J5(0)⊕ J4(0)⊕ J3(0)⊕ J3(0)⊕ J3(0)⊕ J2(0)⊕ J1(0),

H = σ1R5 ⊕ σ2R4 ⊕ σ3R3 ⊕ σ4R3 ⊕ σ5R3 ⊕ σ6R2 ⊕ σ7R1

with σi ∈ {1,−1} for i = 1, . . . , 7. Then A is polynomially H-normal with H-normality polynomial
p(t) = t (in fact, A is H-selfadjoint), and 0 = p(0). The sign sum of the eigenvalue λ = 0 is then
given by

signsum(0) = σ1 + σ3 + σ4 + σ5 + σ7.

Note that in accordance with Definition 1 the values σ2 and σ6 do not contribute to the sign sum
as they are attached to blocks of the even sizes 4 and 2, respectively.

The signsum has an important impact on the inertia index of the given Hermitian matrix
defining the indefinite inner product as we will show in the following lemma.

Lemma 1 Let H ∈ Cn,n be Hermitian with inertia index (π, ν, 0) and let A ∈ Cn,n be polynomially
H normal. If λ1, . . . , λr ∈ C are the pairwise distinct eigenvalues of A satisfying λj = p(λj), then

π − ν =

r∑
j=1

signsum(λj).

Proof. The proof immediately follows by inspection from the canonical form given in Theorem 1.
Indeed, one easily checks that the matrices Hj from blocks of type ii) and blocks of type i)
corresponding to an even size nj contribute equally to the positive and negative eigenvalues of H.
On the other hand, the matrix Hj = σjRnj

of a block as in type i) that corresponds to an odd
size nj = 2k + 1 has inertia index (k + 1, k, 0) if σj = 1, and inertia index (k, k + 1, 0) if σj = −1.

Finally, we recall the concept of neutral subspaces in indefinite inner product spaces. If H ∈
Cn,n is Hermitian and invertible, then a subspace V ⊆ Cn is called H-neutral if [v, w] = 0 (or,
equivalently, vHHw = 0) for all v, w ∈ V. It is well-known that if (π, ν, 0) is the inertia index of

H, then the maximal possible dimension of an H-neutral subspace is equal to k = min n−|π−ν|
2 =

min{π, ν}. An H-neutral subspace of this maximal dimension k is called a maximal H-neutral
subspace.

3 Schur-like forms and invariant maximal H-neutral sub-
spaces

In this section, we will develop the main result of this paper: the introduction of a structured Schur-
like form for polynomially H-normal matrices combined with a characterization of its existence. As
pointed out in the introduction, it was shown in [6] that a Hamiltonian matrix can be transformed
to Hamiltonian Schur form via a unitary symplectic similarity transformation if and only if the
same can be done via a similarity transformation that is only symplectic. An analysis of the
corresponding proof in [6] reveals that the property of the matrix J in (1) to be unitary is a crucial
fact in this equivalence. Therefore, we will assume throughout this section that the Gram matrix
of the given indefinite inner product is not only Hermitian, but also unitary. Many important
examples of Gram matrices such as

Rn,

[
0 In
In 0

]
,

[
Ip 0
0 −Iq

]
satisfy this extra condition. (We mention in passing that properties of inner products that are
either Hermitian or unitary are discussed in [7].)
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Theorem 2 Let H ∈ Cn,n be unitary and Hermitian with inertia index (π, ν, 0) and let A ∈ Cn,n
be polynomially H-normal with H-normality polynomial p. Furthermore, let m := |π − ν|. Then
n−m is even and the following statements are equivalent, where k := n−m

2 .

1) There exists an H-neutral subspace of dimension k that is A-invariant.

2) There exists a unitary matrix U ∈ Cn,n such that

U−1AU =

 B11 B12 B13

0 p(B11)H 0
0 B32 B33

 and UHHU =

 0 Ik 0
Ik 0 0
0 0 sIm

 , (7)

where s = π−ν
|π−ν| (if m 6= 0 and thus π−ν 6= 0, else let s := 1), B11 ∈ Ck,k is upper triangular

and B33 ∈ Cm,m is diagonal.

3) There exists an invertible matrix S ∈ Cn,n such that

S−1AS =

 B11 B12 B13

0 p(B11)H 0
0 B32 B33

 and SHHS =

 0 Ik 0
Ik 0 0
0 0 sIm

 , (8)

where s = π−ν
|π−ν| (if m 6= 0 and thus π−ν 6= 0, else let s := 1), B11 ∈ Ck,k is upper triangular

and B33 ∈ Cm,m is diagonal.

4) Let λ1, . . . , λr ∈ C be the eigenvalues of A satisfying the equation λ = p(λ). Then s ·
signsum(λi) ≥ 0 for i = 1, . . . , r and

r∑
i=1

signsum(λi) = sm.

Proof. The proof of Theorem 2 is rather long and will therefore be presented in a separate section.

As mentioned in the introduction, Theorem 2 combines and generalizes two important results
from the literature that we will restate below as corollaries. The first results recovers the well-
known result on unitary diagonalizability of (In-)normal matrices.

Corollary 1 (Schur-form of normal matrices) Let A ∈ Cn,n be a normal matrix, i.e., AHA =
AAH . Then A is unitarily diagonalizable.

Proof. By [4] normality with respect to the Euclidean inner product is equivalent to polynomially
In-normality and hence Theorem 2 can be applied with H = In. Since In has the inertia index
(n, 0, 0), we find that k = 0. Thus, condition 2) of Theorem 2 states the existence of a unitary
matrix U ∈ Cn,n such that U−1AU = B33 is diagonal.

Corollary 2 (Hamiltonian Schur-form of Hamiltonian matrices) Let A ∈ C2n,2n be a
Hamiltonian matrix, i.e., AHJ + JA = 0. Then the following statements are equivalent:

1) There exists an n-dimensional subspace of C2n that is J-neutral and A-invariant.

2) There exists a unitary symplectic matrix Q ∈ C2n,2n such that Q−1AQ is in Hamiltonian
Schur form, i.e.,

Q−1AQ =

[
B C
0 −BH

]
,

where B ∈ Cn,n is upper triangular.
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3) There exists a symplectic matrix S ∈ C2n,2n such that S−1AS is in Hamiltonian Schur form,
i.e.,

S−1AS =

[
B C
0 −BH

]
,

where B ∈ Cn,n is upper triangular.

4) For any purely imaginary eigenvalue λ of A, the number of odd partial multiplicities corre-
sponding to λ with sign +1 is equal to the number of of partial multiplicities corresponding
to λ with sign −1.

Proof. First, we recall that A is Hamiltonian if and only if A is H-skew-adjoint with H = iJ .
In particular, A is polynomially H-normal with H-normality polynomial p(t) = −t. We will
frequently make use of this fact in the following.

“1) ⇒ 2)”: It is trivial that the J-neutral subspace in 1) is also iJ-neutral. Moreover, the
inertia index of iJ is (n, n, 0) and thus, Theorem 2 implies the existence of a unitary matrix
U ∈ C2n,2n such that

U−1AU =

[
B C
0 −BH

]
and UH(iJ)U =

[
0 In
In 0

]
.

Setting Q := U · diag(In, iIn), we obtain that

Q−1AQ =

[
B iC
0 −BH

]
and QHJQ =

[
0 In
−In 0

]
= J,

i.e., Q is unitary and symplectic. This implies 2).
“2) ⇒ 3)” is trivial and “3) ⇒ 4)” and “4) ⇒ 1)” follow immediately from Theorem 2 taking

into account that the eigenvalues satisfying λ = p(λ) = −λ are exactly the purely imaginary
eigenvalues of A, and that signsum(λ) = 0 is equivalent to the statement that the number of
odd partial multiplicities corresponding to λ with sign +1 is equal to the number of of partial
multiplicities corresponding to λ with sign −1.

The equivalence of 2), 3) and 4) was proved in [6] while the equivalence of 1) and 4) was proved
in [16]. Clearly, the equivalence of 1) and 2) - or 1) and 3) - immediately follows from those two
results in the literature and since then this has been implicitly known by many researchers dealing
with Hamiltonian matrices. Nevertheless, it seems that a theorem combining all four equivalent
conditions into a single result was explicitly formulated only as late as in [10].

Remark 2 The two results in Corollaries 1 and 2 represent the two extreme cases k = 0 and
m = 0 in Theorem 2. Whenever k,m 6= 0 as it would be the case for Gram matrices of the form
diag(Ip,−Iq) with p 6= q, then the corresponding Schur-like form will have triangular and diagonal
parts on the block diagonal as indicated in (7).

We highlight that the transformation in Theorem 2 is a transformation that changes the inner
product, but keeps the symmetry structure of the matrix U−1AU linked to the transformed Gram
matrix UHHU in the sense of Remark 1. For the practical use of Theorem 2, we advise to first
transform the pair (A,H) to a form (A′, H ′), where H ′ already has the form

H ′ =

 0 Ik 0
Ik 0 0
0 0 sIm


with s ∈ {±1}. When Theorem 2 is then applied to the pair (A′, H ′) it yields the existence of a
unitary matrix U such that U−1A′U is in the Schur-like form as in (7) while UHH ′U = H ′. The
latter conditions just means that the matrix U is not only unitary, but also H ′-unitary.
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4 Proof of the main result

Before we prove Theorem 2, we start with a technical lemma that will be used frequently in the
following.

Lemma 2 Let A1, H1 ∈ Cn1,n1 and A2, H2 ∈ Cn2,n2 , where H1 and H2 are Hermitian and
invertible, and let

A =

[
A1 0
0 A2

]
, H =

[
H1 0
0 H2

]
.

If A1 has an invariant H1-neutral subspace of dimension k1 and A2 has an invariant H2-neutral
subspace of dimension k2, then A has an invariant H-neutral subspace of dimension k1 + k2.

Proof. Let the vectors v1, . . . , vk1 ∈ Cn1 and w1, . . . , wk2 ∈ Cn2 form bases of the Ai-invariant
Hi-neutral subspaces for i = 1, 2, respectively. Then it is straightforward to verify that the vectors[

v1
0

]
, . . . ,

[
vk1
0

]
,

[
0
w1

]
, . . . ,

[
0
wk2

]
∈ Cn1+n2

form a basis of an A-invariant H-neutral subspace which obviously has dimension k1 + k2.

Proof of Theorem 2. “1)⇒ 2)”: By switching to an orthonormal basis whose first k columns
span the A-invariant H-neutral subspace, we can assume that A and H have the forms

A =

[
A11 A12

0 A22

]
and H =

[
0 H12

HH
12 H22

]
,

where A22, H22 ∈ Cn−k,n−k. Since H is unitary, the rows of H12 ∈ Ck,n−k are orthonormal and
consequently its singular value decomposition takes the form

H12 = U2

[
Ik 0

]
V2,

where U2 ∈ Ck,k and V2 ∈ Cn−k,n−k are unitary. Setting Q := diag(U2, V2) we obtain

Q−1AQ =

 B11 B12 B13

0 B22 B23

0 B32 B33

 and QHHQ =

 0 Ik 0
Ik 0 0
0 0 H33

 ,
where B11, B22 are k × k. The zeros in the block positions (2, 2), (2, 3), and (3, 2) are due to
the fact that QHHQ is still unitary and consequently has orthonormal columns. On the other
hand, QHHQ is also Hermitian and keeping in mind that its inertia index is (π, ν, 0) and we have
k = min{π, ν}, the block structure implies that H33 is positive or negative definite, depending
on π − ν being positive or negative, respectively. (If π = ν, then n = 2k and the (3, 3)-blocks in
Q−1AQ and QHHQ are void.) Since H33 is also unitary, it follows that H33 = Im or H33 = −Im.
Applying a unitary transformation of the form diag(U1, U1, U3) with U1 ∈ Ck,k, U3 ∈ Cm,m if
necessary, we can assume without loss of generality that B11 and B33 are upper triangular. (Note
that this transformation will not change QHHQ. Finally, we exploit the fact that A is polynomially
H-normal with H-normality-polynomial p. This implies BH22 BH12 BH32

0 BH11 0
BH23 BH13 BH33

 = QHH−1AHHQ = p(Q−1AQ) =

 p(B11) ∗

0 p

([
B22 B23

B32 B33

]) 
and hence B22 = p(B11)H and B23 = 0. But then, we find that BH33 = p(B33) which implies that
B33 is normal (i.e. with respect to the Euclidean inner product) and hence diagonal as upper
triangular normal matrices are diagonal.

“2)⇒ 3)”: This is trivial.
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“3)⇒ 4)”: The proof proceeds by induction on the number r of eigenvalues satisfying λ = p(λ).
If r = 0, then the block B33 in (8) is void, because it is diagonal and satisfies BH33 = p(B33), so all
its eigenvalues satisfy λ = p(λ). Thus, we have m = 0 and 4) is satisfied by the definition of the
empty sum.

Now assume that r > 0. Let λ := λ1, i.e., we have λ = p(λ). Starting from 3) we can assume
without loss of generality that A and H are in the form (8), where the eigenvalues on the diagonal
of B11 and B33 are ordered in such a way that all occurrences of λ come first, i.e., A has the form

A =



k1 k2 k1 k2 m1 m2

k1 A11 A12 A13 A14 A15 A16

k2 0 A22 A23 A24 A25 A26

k1 0 0 p(A11)H 0 0 0
k2 0 0 A43 p(A22)H 0 0
m1 0 0 A53 A54 A55 0
m2 0 0 A63 A64 0 A66

,

where k1,m1 ≥ 0 and σ(A11), σ
(
p(A11)H

)
, σ(A55) ⊆ {λ} and λ is not contained in σ(A22),

σ
(
p(A22)H

)
, or σ(A66). If k1 > 0, then letting X ∈ Ck1,k2 be the unique solution of the

Sylvester equation XA22 − A11X = A12 (which exists, because the spectra of A11 and A22

are disjoint) and defining Ŝ as the matrix that differs from the block-partitioned identity I :=
Ik1⊕Ik2⊕Ik1⊕Ik2⊕Im1⊕Im2 by adding X in the (1, 2)-block position, we obtain that a similarity

transformation on A with Ŝ annihilates the block entry A12 of A. The corresponding congruence
transformation creates the entry X in the (3, 2)-position and the entry XH in the (2, 3)-block-
position of H. We can restore H with the congruence transformation with the matrix T which
differs from the block-partitioned identity I by putting −XH in the (4, 3)-block-position. The

corresponding similarity applied to Ŝ−1AŜ will change the block-entries A13, A23, A43, A53, A63,
but not the yet established zero in the (1, 2)-block position. For the ease of notation let us rename

T−1Ŝ−1AŜT by A and TH ŜHHŜT by H. (Similar renaming steps will occur after each of the
following steps without further notice.) We illustrate the A12-elimination-step in the following di-
agram, where non-zero block-entries, that were effected by the current transformation are marked
as bullets. In each substep, the pair (i, j) denotes the block-entry of the transformation matrix
that differs from the one in the identity matrix. Observe that the similarity transformation with
such a matrix adds the i-th block column to the j-th block column, but the j-th block row to the
i-th block row while in the corresponding congruence transformation the i-th block column and
i-th block row are added to the j-th block column or j-th block row, respectively:

A :


∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ 0 0 0
0 0 ∗ ∗ 0 0
0 0 ∗ ∗ ∗ 0
0 0 ∗ ∗ 0 ∗


(1,2)
 


∗ 0 • • • •
0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ 0 0 0
0 0 ∗ ∗ 0 0
0 0 ∗ ∗ ∗ 0
0 0 ∗ ∗ 0 ∗


(4,3)
 


∗ 0 • ∗ ∗ ∗
0 ∗ • ∗ ∗ ∗
0 0 ∗ 0 0 0
0 0 • ∗ 0 0
0 0 • ∗ ∗ 0
0 0 • ∗ 0 ∗



H :


0 0 ∗ 0 0 0
0 0 0 ∗ 0 0
∗ 0 0 0 0 0
0 ∗ 0 0 0 0
0 0 0 0 ∗ 0
0 0 0 0 0 ∗


(1,2)
 


0 0 ∗ 0 0 0
0 0 • ∗ 0 0
∗ • 0 0 0 0
0 ∗ 0 0 0 0
0 0 0 0 ∗ 0
0 0 0 0 0 ∗


(4,3)
 


0 0 ∗ 0 0 0
0 0 0 ∗ 0 0
∗ 0 0 0 0 0
0 ∗ 0 0 0 0
0 0 0 0 ∗ 0
0 0 0 0 0 ∗


In the next step, we elminate A16 by applying a similarity transformation on A that is obtained

from I by changing the (1, 6)-block to the solutionX of the Sylvester equationXA66−A11X = A16.
The corresponding congruence transformation on H introduces the matrix X in the (3, 6)-block-
position and XH in the (6, 3)-block-position. We can restore H as follows: first, we apply a
congruence with a matrix that differs from I by −sXH in the (6, 3)-block-position. This will
annihilate the (3, 6)- and (6, 3)-block entries, but introduce the block −sXXH in the (3, 3)-block
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entry. The corresponding similarity transformation on A only effects the block-entries A23 and
A26. Then, we eliminate the (3, 3)-block entry of H by a congruence transformation with the
matrix that coincides with I except for having − 1

2X
HX as its (1, 3)-block. The corresponding

similarity transformation on A only changes the block A13. As before, we illustrate this elimination
step with the help of a diagram:

A :


∗ 0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ 0 0 0
0 0 ∗ ∗ 0 0
0 0 ∗ ∗ ∗ 0
0 0 ∗ ∗ 0 ∗


(1,6)
 


∗ 0 • • ∗ 0
0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ 0 0 0
0 0 ∗ ∗ 0 0
0 0 ∗ ∗ ∗ 0
0 0 ∗ ∗ 0 ∗


(6,3)
 


∗ 0 ∗ ∗ ∗ 0
0 ∗ • ∗ ∗ ∗
0 0 ∗ 0 0 0
0 0 ∗ ∗ 0 0
0 0 ∗ ∗ ∗ 0
0 0 • ∗ 0 ∗


(1,3)
 


∗ 0 • ∗ ∗ 0
0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ 0 0 0
0 0 ∗ ∗ 0 0
0 0 ∗ ∗ ∗ 0
0 0 ∗ ∗ 0 ∗



H :


0 0 ∗ 0 0 0
0 0 0 ∗ 0 0
∗ 0 0 0 0 0
0 ∗ 0 0 0 0
0 0 0 0 ∗ 0
0 0 0 0 0 ∗


(1,6)
 


0 0 ∗ 0 0 0
0 0 0 ∗ 0 0
∗ 0 0 0 0 •
0 ∗ 0 0 0 0
0 0 0 0 ∗ 0
0 0 • 0 0 ∗


(6,3)
 


0 0 ∗ 0 0 0
0 0 0 ∗ 0 0
∗ 0 • 0 0 0
0 ∗ 0 0 0 0
0 0 0 0 ∗ 0
0 0 0 0 0 ∗


(1,3)
 


0 0 ∗ 0 0 0
0 0 0 ∗ 0 0
∗ 0 0 0 0 0
0 ∗ 0 0 0 0
0 0 0 0 ∗ 0
0 0 0 0 0 ∗


We continue by eliminating A54 with a similarity transformation that differs from I by the

solution of the Sylvester equation Xp(A22)H − A55X = A54 in the (5, 4)-block-position followed
by transformations that restore H. Since the step is analogous to the A12-elimination step, we
restrict ourselves to the illustration via a diagram:

A :


∗ 0 ∗ ∗ ∗ 0
0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ 0 0 0
0 0 ∗ ∗ 0 0
0 0 ∗ ∗ ∗ 0
0 0 ∗ ∗ 0 ∗


(5,4)
 


∗ 0 ∗ • ∗ 0
0 ∗ ∗ • ∗ ∗
0 0 ∗ 0 0 0
0 0 ∗ ∗ 0 0
0 0 • 0 ∗ 0
0 0 ∗ ∗ 0 ∗


(2,5)
 


∗ 0 ∗ ∗ ∗ 0
0 ∗ • ∗ • ∗
0 0 ∗ 0 0 0
0 0 ∗ ∗ 0 0
0 0 ∗ 0 ∗ 0
0 0 ∗ ∗ 0 ∗



H :


0 0 ∗ 0 0 0
0 0 0 ∗ 0 0
∗ 0 0 0 0 0
0 ∗ 0 0 0 0
0 0 0 0 ∗ 0
0 0 0 0 0 ∗


(5,4)
 


0 0 ∗ 0 0 0
0 0 0 ∗ 0 0
∗ 0 0 0 0 0
0 ∗ 0 0 • 0
0 0 0 • ∗ 0
0 0 0 0 0 ∗


(2,5)
 


0 0 ∗ 0 0 0
0 0 0 ∗ 0 0
∗ 0 0 0 0 0
0 ∗ 0 0 0 0
0 0 0 0 ∗ 0
0 0 0 0 0 ∗


Finally, we eliminate A14 with a similarity transformation whose relevant entry, the solution

of the Sylvester equation Xp(A22)H − A11X = A14 is in the (1, 4)-block position. Restoring H
imposes another similarity transformation on A with the relevant entry in the (2, 3)-block position
which effects the entry A23 only. This step is depicted as follows:

A :


∗ 0 ∗ ∗ ∗ 0
0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ 0 0 0
0 0 ∗ ∗ 0 0
0 0 ∗ 0 ∗ 0
0 0 ∗ ∗ 0 ∗


(1,4)
 


∗ 0 • 0 ∗ 0
0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ 0 0 0
0 0 ∗ ∗ 0 0
0 0 ∗ 0 ∗ 0
0 0 ∗ ∗ 0 ∗


(2,3)
 


∗ 0 ∗ 0 ∗ 0
0 ∗ • ∗ ∗ ∗
0 0 ∗ 0 0 0
0 0 ∗ ∗ 0 0
0 0 ∗ 0 ∗ 0
0 0 ∗ ∗ 0 ∗



H :


0 0 ∗ 0 0 0
0 0 0 ∗ 0 0
∗ 0 0 0 0 0
0 ∗ 0 0 0 0
0 0 0 0 ∗ 0
0 0 0 0 0 ∗


(1,4)
 


0 0 ∗ 0 0 0
0 0 0 ∗ 0 0
∗ 0 0 • 0 0
0 ∗ • 0 0 0
0 0 0 0 ∗ 0
0 0 0 0 0 ∗


(2,3)
 


0 0 ∗ 0 0 0
0 0 0 ∗ 0 0
∗ 0 0 0 0 0
0 ∗ 0 0 0 0
0 0 0 0 ∗ 0
0 0 0 0 0 ∗
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The key observation is now that the block zero pattern obtained for A is invariant under
multiplication and thus, all powers of A as well as p(A) will have the same block zero pattern.
But then, the fact that A is polynomially H-normal with H-normality polynomial p implies

p(A11) AH43 AH13 AH23 AH53 AH63
0 p(A22) 0 AH24 0 AH64
0 0 AH11 0 0 0
0 0 0 AH22 0 0
0 0 AH15 AH25 AH55 0
0 0 0 AH26 0 AH66

 = H−1AHH = p(A) =


∗ 0 ∗ 0 ∗ 0
0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ 0 0 0
0 0 ∗ ∗ 0 0
0 0 ∗ 0 ∗ 0
0 0 ∗ ∗ 0 ∗

 ,

and we obtain that A23 = 0, A25 = 0, A43 = 0, and A63 = 0. But then, after applying a block
permutation, we may assume that A and H have the forms A = A1 ⊕A2 and H = H1 ⊕H2 with

A1 =

 A11 A13 A15

0 p(A11)H 0
0 A53 A55

 , H1 =

 0 Ik1 0
Ik1 0 0
0 0 sIm1


and

A2 =

 A22 A24 A26

0 p(A22)H 0
0 A64 A66

 , H2 =

 0 Ik2 0
Ik2 0 0
0 0 sIm2

 .
Note that A1 has only one eigenvalue which is λ1 = λ. It immediately follows from Lemma 1
that m1s = signsum(λ1) and s · signsumλ1 = m1 ≥ 0. On the other hand, the matrix A2 now
has precisely r − 1 eigenvalues λ2, . . . , λr satisfying λi = p(λi) and we can apply the induction
hypothesis to obtain that s · signsum(λi) ≥ 0 for i = 2, . . . , r and

sm = sm1 + sm2 = signsum(λ1) +

r∑
j=2

signsum(λj)

which proves 4).
“4) ⇒ 1)”: We may assume without loss of generality that A and H are in the forms of

Theorem 1. Thus, by Lemma 2, we may consider some of the corresponding diagonal blocks of
A and H separately in order to construct an A-invariant H-neutral subspace. We will do this by
individually investigating each block in the canonical form of Theorem 1 that is of type ii) or of
type i) having even dimension. Concerning the blocks of type i) having odd dimension, we will
have to consider all of them together to obtain the desired dimension of the A-invariant H-neutral
subspace. We proceed by first considering the following three special cases, before discussing the
general case.

Special Case 1): A is a block of type ii). In this case, we have m = 0, k = n
2 and

A =

[ Jk(λ) 0

0 p
(
Jk(λ)

)H ]
, H =

[
0 Ik
Ik 0

]
,

where p(λ) 6= λ. Obviously, the first k standard basis vectors of Cn span a k-dimensional A-
invariant subspace that is H-neutral.

Special Case 2): A is a block of type i) of even dimension. In this case, we again have m = 0,
k = n

2 and

A = λIn + eiθT (0, 1, ir2, . . . , irn−1), H = σRn,

where p(λ) = λ, σ ∈ {1,−1}, and where θ, r2, . . . , rn−1 are as specified in Theorem 1. Again, it is
obvious that the first k standard basis vectors of Cn span a k-dimensional A-invariant subspace
that is H-neutral.

Special Case 3): A only consists of blocks of type i) with odd dimension. In this case, we have

A =
(
λIn1 + eiθ1T (0, 1, ir1,2, . . . , ir1,n1−1)

)
⊕ · · · ⊕

(
λIn` + eiθ`T (0, 1, ir`,2, . . . , ir`,n`−1)

)
11



and H = σ1Rn1 ⊕ · · · ⊕ σ`Rn`
,

where nj = 2kj + 1 for some nonnegative integers k1, . . . , k`. By 4), we have
∣∣ signsum(λ)

∣∣ = m.
Without loss of generality we may assume that s = 1 considering −H instead of H otherwise, i.e.,
we have that signsum(λ) = m. It follows that ` ≥ m. More precisely, there exists a nonnegative
integer α such that ` = m + 2α and such that m + α signs among σ1, . . . , σ` are positive and α
are negative. Without loss of generality, we may assume that among the diagonal blocks the first
2α blocks have alternating signs starting with σ1 = 1 and thus the last m blocks all have positive
sign. Let us first consider a group of two blocks with signs +1,−1, say

Aj =

[
T2j−1 0

0 T2j

]
, Hj =

[
Rn2j−1

0
0 −Rn2j

]
,

where j ∈ {1, . . . , α} and where Ti ∈ Cni,ni is an upper triangular matrix having λInj
as its

diagonal. Then it is easy to check that the vectors

e1, . . . ek2j−1
, en2j−1+1, . . . , en2j−1+k2j , ek2j−1+1 + en2j−1+k2j+1 (9)

form a basis of an Aj-invariant Hj-neutral subspace. Indeed, partitioning

T2j−1 =


k2j−1 1 k2j−1

k2j−1 T11 T12 T13
1 0 λ T23
k2j−1 0 0 T33

 and T2j =


k2j 1 k2j

k2j T̃11 T̃12 T̃13
1 0 λ T̃23
k2j 0 0 T̃33


a simultaneous block permutation on Aj and Hj results in

T11 0 T12 0 T13 0

0 T̃11 0 T̃12 0 T̃13
0 0 λ 0 T23 0

0 0 0 λ 0 T̃23
0 0 0 0 T33 0

0 0 0 0 0 T̃33

 and


0 0 0 0 Rk2j−1

0
0 0 0 0 0 −Rk2j−1

0 0 1 0 0 0
0 0 0 −1 0 0

Rk2j−1 0 0 0 0 0
0 −Rk2j−1

0 0 0 0

 .

Then transforming the middle 2× 2 blocks with the transformation given by the matrix[
1 1
1 −1

]
produces matrices of the form [

T̂1 T̂2
0 T̂3

]
and

[
0 Ĥ

ĤH 0

]
, (10)

where all blocks have size
n2j−1+n2j

2 . Observe that the first
n2j−1+n2j

2 columns of the transformation
matrix that transform (Aj , Hj) to the pair of the matrices in (10) coincide with the vectors in (9),
possibly up to scalar multiples.

Next, we consider a block for j ∈ {2α+ 1, . . . , `}, i.e.,

Aj = λInj + eiθjT (0, 1, irj,2, . . . , ir1,nj−1), Hj = Rnj .

Here, the first kj standard basis vectors span an Aj-invariant H-neutral subspace.
In view of Lemma 2, we obtain the existence of an A-invariant H-neutral subspace of dimension

α∑
j=1

(k2j−1 + k2j + 1) +
∑̀

j=2α+1

kj =

α∑
j=1

n2j−1 + n2j
2

+
∑̀

j=2α+1

nj − 1

2
=
n−m

2
,
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where we used that `− 2α = m.
The general case: Now let A be general having r eigenvalues λ1, . . . , λr ∈ C satisfying λi =

p(λi), i = 1, . . . , r. Putting together the special cases above in view of our observation, we obtain
that there exists an A-invariant H-neutral subspace of dimension

1

2

n− r∑
j=1

| signsum(λi)|

 ,

and by 4) this dimension is equal to n−m
2 = k as desired. This finishes the proof.

5 Conclusions

We have developed a Schur-like form for polynomially H-normal matrices, where H is Hermitian
and unitary and characterized under which conditions these forms can be obtained via structure
preserving (and unitary) similarity transformations. In particular, the result can be applied to all
matrices that are selfadjoint, skew-adjoint, or unitary with respect to an indefinite inner product
that has a unitary Hermitian Gram matrix. As two extreme special cases, the unitary diagonal-
izability of normal matrices and equivalent conditions for the existence of the Hamiltonian Schur
form of Hamiltonian matrices have been recovered. While structure-preserving and numerically
backward stable algorithms for the numerical computation of these forms are well known in the
mentioned two special cases, it remains to develop such algorithms for the general case.
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