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Abstract

Normal matrices with respect to indefinite inner products are studied using the
additive decomposition into selfadjoint and skewadjoint parts. In particular, sev-
eral structural properties of indecomposable normal matrices are obtained. These
properties are used to describe classes of matrices that are logarithms of selfadjoint
or normal matrices. In turn, we use logarithms of normal matrices to study polar
decompositions with respect to indefinite inner products. It is proved, in particu-
lar, that every normal matrix with respect to an indefinite inner product defined
by an invertible Hermitian matrix having at most two negative (or at most two
positive) eigenvalues, admits a polar decomposition. Previously known descriptions
of indecomposable normals in indefinite inner products with at most two negative
eigenvalues play a key role in the proof. Both real and complex cases are considered.
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1 Introduction

Let F be either the field C of complex numbers or the field R of real numbers. An indefinite
inner product in Fn is a symmetric bilinear (if F = R) or a conjugate symmetric sesquilinear
(if F = C) form [x, y], x, y ∈ Fn, which is assumed to be regular: [x0, y] = 0 for all y ∈ Fn

happens only when x0 = 0. Every indefinite inner product is associated with a unique
nonsingular Hermitian (or symmetric if F = R) matrix H ∈ Fn×n such that

[x, y] = 〈Hx, y〉, x, y ∈ Fn, (1)

where 〈·, ·〉 is the standard Euclidean inner product in Fn, and conversely, every nonsingular
Hermitian matrix H ∈ Fn×n defines an indefinite inner product by means of (1). Various
classes of linear transformations associated with an indefinite inner product can be therefore
recast in terms of matrices (representing the linear transformations with respect to the
standard Euclidean orthonormal basis in Fn) associated with H. Thus, for a matrix X ∈
Fn×n, we denote by X [∗]H or, if there is no risk of confusion, by X [∗], the adjoint of X
with respect to H, or, in short, H-adjoint; that is X [∗] = H−1X∗H. Here and throughout
the paper, X∗ stands for the conjugate transpose of the matrix X. A matrix X ∈ Fn×n

is called H-selfadjoint if X = X [∗], H-skewadjoint if X = −X [∗], and H-unitary if X is
nonsingular and X [∗] = X−1. The classes of H-selfadjoint, H-skewadjoint, and H-unitary
matrices are contained in a more general class of H-normal matrices X which are defined
by the property that X commutes with X [∗].

In recent years, normal matrices with respect to an indefinite inner product have been
intensively studied, from various points of view: classification [8], [9], [10], [12], [13], [14],
[19], numerical ranges [17], [18], polar decompositions [1]. The general problem of classifi-
cation of H-normal matrices has been posed in [7], and several open problems concerning
H-normal matrices have been stated in a recent paper [20]. Indecomposability (see [8],
[13], [14]) is a key concept in studies of H-normal matrices. A matrix A is called indecom-
posable, or more precisely H-indecomposable, if there is no non-trivial subspace V ∈ Fn

such that V is H-nondegenerate and is invariant for both A and A[∗]. Clearly, every matrix
can be decomposed as a direct sum of indecomposable matrices. Moreover, A is H-normal
if and only if each its indecomposable constituent is normal with respect to the indefinite
inner product induced by H on the corresponding A- and A[∗]-invariant subspace. Indeed,
with respect to a suitable basis, both A and the indefinite inner product can be represented
by block diagonal matrices so that the diagonal blocks of the matrix representing A are
exactly the indecomposable constituents of A.

In this paper we continue the study of H-normal matrices, with emphasis on polar
decompositions (to be defined later on). We use the following approach for the discussion
of H-normal matrices. For the case H = I it is well-known that a matrix X ∈ Fn×n is
normal if and only if the Hermitian part 1

2
(X + X∗) of X and the skew-Hermitian part

1
2
(X − X∗) of X commute. This fact can be generalized to the case of indefinite inner

products, as follows:
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Let AF(H) and SF(H) denote the sets of H-selfadjoint and H-skewadjoint n × n ma-
trices, respectively, with entries in F. Then Fn×n = AF(H)+̇SF(H) (direct sum) via

X =
1

2
(X +X [∗]) +

1

2
(X −X [∗]).

Lemma 1 Let X ∈ Fn×n and X = A+ S, where A ∈ AF(H) and S ∈ SF(H). Then

X is H-normal ⇐⇒ AS = SA.

Proof. This follows directly from

X [∗]X = H−1(A∗ + S∗)H(A+ S) = A2 − SA+ AS − S2;

XX [∗] = (A+ S)H−1(A∗ + S∗)H = A2 + SA− AS − S2.

The approach of investigating the selfadjoint and skewadjoint parts of H-normal matri-
ces has the advantage that one can use well-known results from Lie-theory in the context
of polar decompositions.

Given a fixed nonsingular Hermitian matrix H ∈ Fn×n, an H-polar decomposition of
X ∈ Fn×n is, by definition, a representation in the form X = UA, where U ∈ Fn×n is H-
unitary and A ∈ Fn×n isH-selfadjoint. Thus, we use a definition of the polar decomposition
that is more general than the standard definition, since we allow A to be H-selfadjoint,
not only H-nonnegative (as the standard definition requires). Polar decompositions with
respect to an indefinite inner products have been studied in detail in [1], [2], [3], [4]; for
historic perspective and algebraic treatment of polar decompositions see [15].

It is well known that in case of the standard positive definite inner product H = I,
a matrix X is H-normal if and only if the factors U and A in its H-polar decomposition
commute (see Section IX.12 in [6], or [11]); it is assumed here that A is positive semidefinite.
Therefore, we are particularly interested in H-polar decompositions of H-normal matrices
such that the factors commute. Polar decompositions of this type, as well as several
problems concerning existence of polar decompositions for H-normal matrices, are studied
in Section 5. In Section 6 we prove the result that every H-normal matrix admits an
H-polar decomposition provided H has at most two negative (or at most two positive)
eigenvalues, counted with multiplicities.

The remaining part of the paper is organized as follows. In Section 2 we recall canonical
forms of H-selfadjoint and H-skew-adjoint matrices. These forms are used in Section 3
to obtain some information on indecomposable H-normal matrices. In Section 4 we study
exponentials and H-selfadjoint (resp., H-normal) logarithms of H-selfadjoint (resp., H-
normal) matrices.

The following notation will be fixed throughout the paper. We letH denote a Hermitian
n×n nonsingular complex matrix, or an nonsingular real symmetric matrix (when F = R),
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unless stipulated otherwise. Standard matrices: Jp(λ) is the p×p upper triangular Jordan
block with eigenvalue λ; Zp = [δi+j,p+1]

p
i,j=1 is the p× p matrix with ones on the southwest-

northeast diagonal and zeros elsewhere; Ip is the p×p identity matrix. By σ(A), we denote
the spectrum of the matrix A. For z ∈ C, Re z = 1

2
(z + z) and Im z = 1

2i
(z − z) are the

real and imaginary parts, respectively. Finally, N = {1, 2, · · ·}.

2 Preliminaries

As we pointed out in the introduction, the selfadjoint and skewadjoint parts of H-normal
matrices will play an important role in our discussion. Therefore, we review some well-
known results on canonical forms for complex or real H-selfadjoint and H-skewadjoint
matrices in this section.

Theorem 2 Let A ∈ Cn×n be H-selfadjoint. Then there exists a nonsingular matrix
P ∈ Cn×n, such that

P−1AP = A1 ⊕ . . .⊕ Ak and P ∗HP = H1 ⊕ . . .⊕Hk, (2)

where Aj, Hj are of the same size and each pair (Aj, Hj) has one and only one of the
following forms:

1. Blocks associated with real eigenvalues:

Aj = Jp(λ0) and Hj = εZp, (3)

where λ0 ∈ R, p ∈ N, and ε ∈ {1,−1}.

2. Blocks associated with a pair of nonreal conjugate eigenvalues:

Aj =

[

Jp(λ0) 0
0 Jp(λ∗0)

]

and Hj =

[

0 Zp

Zp 0

]

, (4)

where λ0 ∈ C\R and p ∈ N.

Moreover, the form (P−1AP, P ∗HP ) of (A,H) is uniquely determined up to the permuta-
tion of blocks and called the canonical form of (A,H).

Proof. See [7], for example.

We sometimes use a slightly different form for the blocks of type (4). Multiplying the

matrices from both sides by

[

Ip 0
0 Zp

]

, one finds that (4) takes the form

Aj =

[

Jp(λ0) 0
0 Jp(λ0)∗

]

and Hj =

[

0 Ip
Ip 0

]

. (5)
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There exists an analogue of the form (2) in the real case, see [7]. Before stating this
result, we recall the Kronecker product of matrices. This will enable us to introduce a
brief and useful notation for real Jordan blocks that are associated with a pair of complex
conjugate eigenvalues.

Definition 3 Let A = [aij]i,j ∈ Fn×m and B ∈ Fk×l. Then we define

A⊗B = [aijB]i,j ∈ F(nk)×(ml).

It is well-known that in the real Jordan canonical form of a matrix, a Jordan block
associated with a pair of conjugate nonreal eigenvalues α± iβ, α, β ∈ R has the form

Ip ⊗
[

α β

−β α

]

+ Jp(0)⊗ I2 =























α β 1 0 0
−β α 0 1

α β
. . .

−β α 1 0
. . . 0 1

α β

0 −β α























. (6)

The eigenvalues of (6) are those of the two-by-two blocks on the diagonal. Note that the set
of all two-by-two matrices of this form is a field that is isomorphic to the field of complex
numbers.

Remark 4 Define the set

MC =

{[

α β

−β α

]

: α, β ∈ R
}

.

Then the map

φ : C →MC, (α + iβ) 7→
[

α β

−β α

]

is a field isomorphism. This isomorphism can easily be extended to an algebra isomorphism,
also denoted by φ, between the algebra Cn×n and the matrix algebra Mn×n

C with entries
in MC. Namely,

φ
(

[zj,k]
n

j,k=1

)

=

[

Re zj,k Im zj,k
−Im zj,k Re zj,k

]n

j,k=1

, zj,k ∈ C.

Note that φ(Jp(α+iβ)) is the real Jordan block (6) associated with the eigenvalues α±iβ.
Furthermore, the following conditions are satisfied for γ, δ ∈ R.

1. If A ∈ Cn×n has the eigenvalue γ + iδ then φ(A) has the eigenvalues γ ± iδ.
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2. If M ∈ Mn×n
C has the eigenvalues γ ± iδ then the spectrum of φ−1(M) is contained

in {γ ± iδ}.

This follows easily from bringing A and φ−1(M) to Jordan canonical form and real Jordan
canonical form, respectively, and from noting that both blocks

[

γ δ

−δ γ

]

and

[

γ −δ
δ γ

]

have the eigenvalues γ ± iδ.

Theorem 5 Let H be real and A ∈ Rn×n be H-selfadjoint. Then there exists a nonsingular
matrix P ∈ Rn×n, such that

P−1AP = A1 ⊕ . . .⊕ Ak and P ∗HP = H1 ⊕ . . .⊕Hk, (7)

where Aj, Hj are of the same size and each pair (Aj, Hj) has one and only one of the
following forms:

1. Blocks associated with real eigenvalues:

Aj = Jp(λ0) and Hj = εZp, (8)

where λ0 ∈ R, p ∈ N and ε ∈ {1,−1}.

2. Blocks associated with a conjugate pair α± iβ of nonreal eigenvalues:

Aj = Ip ⊗
[

α β

−β α

]

+ Jp(0)⊗ I2 and Hj = Z2p, (9)

where α, β ∈ R, β > 0, and p ∈ N.

Moreover, the form (P−1AP, P ∗HP ) of (A,H) is uniquely determined up to the permuta-
tion of blocks and called the real canonical form of (A,H).

Proof. See [7].

Since the real block (Aj, Hj) in the form (9) has, according to Theorem 2, the complex
canonical form

([

Jp(α + iβ) 0
0 Jp(α− iβ)

]

,

[

0 Zp

Zp 0

])

,

we find in particular that every complex pair (A,H) has a real canonical form.

Corollary 6 Let A ∈ Cn×n be H-selfadjoint. Then there exists a nonsingular matrix
P ∈ Cn×n such that (P−1AP, P ∗HP ) is in real canonical form (7).
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Next, we are interested in the canonical form forH-skewadjoint matrices. First, we note
that in the complex case the canonical form for H-skewadjoint matrices is already given in
Theorem 2. This follows from the obvious fact that a matrix S ∈ Cn×n is H-skewadjoint
if and only if the matrix iS is H-selfadjoint.

For the canonical form of real H-skewadjoint matrices, let us first recall the following
notation from [16]:

Fj =









0 1
−1

...

(−1)j−1 0









and G2j =









0 F
j−1
2

−F j−1
2

...

(−1)j−1F j−1
2 0









Note that Fj ∈ Rj×j is symmetric if j is odd and skew-symmetric if j is even, whereas
G2j ∈ R2j×2j is symmetric for all j. The following well-known result can be found, for
example, in [16].

Theorem 7 Let H be real and S ∈ Rn×n be H-skewadjoint. Then there exists a nonsin-
gular matrix P ∈ Rn×n, such that

P−1SP = S1 ⊕ . . .⊕ Sk and P ∗HP = H1 ⊕ . . .⊕Hk, (10)

where Sj, Hj are of the same size and each pair (Sj, Hj) has one and only one of the
following forms.

1. Odd sized blocks associated with the eigenvalue zero:

Sj = J2p+1(0) and Hj = εF2p+1, (11)

where p ∈ N and ε ∈ {1,−1}.

2. Paired even sized blocks associated with the eigenvalue zero:

Sj =

[

J2p(0) 0
0 −J2p(0)T

]

and Hj =

[

0 I2p
I2p 0

]

, (12)

where p ∈ N.

3. Blocks associated with a pair of nonzero purely imaginary eigenvalues:

Sj = Ip ⊗
[

0 β

−β 0

]

+ Jp(0)⊗ I2 and Hj = εG2p, (13)

where β > 0, p ∈ N, and ε ∈ {1,−1}.
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4. Blocks associated with a pair of nonzero real eigenvalues:

Sj =

[

Jp(α) 0
0 −Jp(α)T

]

and Hj =

[

0 Ip
Ip 0

]

, (14)

where α > 0 and p ∈ N.

5. Blocks associated with a quadruple of nonreal, non purely imaginary eigenvalues:

Sj =

[

Ip 0
0 −Ip

]

⊗
[

α β

−β α

]

+

[

Jp(0) 0
0 −Jp(0)T

]

⊗ I2

Hj =

[

0 I2p
I2p 0

]

, (15)

where α, β > 0, and p ∈ N.

Moreover, the form (P−1SP, P ∗HP ) of (S,H) is uniquely determined up to the permutation
of blocks and called the real canonical form of (S,H).

3 On decomposability of H-normal matrices

In this section we will present a canonical form for complex or real pairs (X,H), where
X is H-normal. This form is related to the known results given in [8] for the complex
case and in [14] for the real case. In [8], it was shown that in the complex case every
matrix X can be decomposed (in a suitably chosen basis) into an H-orthogonal direct sum
of matrices Xj, where Xj has either only one eigenvalue or two distinct eigenvalues. We
will give an alternative result of this nature, emphasizing knowledge of the H-selfadjoint
and H-skewadjoint parts of X. Therefore, we will need the following auxiliary results
concerning commuting matrices.

Proposition 8 Let A, S ∈ Fn×n such that AS = SA and

A =

[

A11 0
0 A22

]

and S =

[

S11 S12
S21 S22

]

,

where S is partitioned conformable to A. If A11 and A22 have no common eigenvalues,
then S12 = S21 = 0.

Proof. Since A and S commute we obtain from
[

A11S11 A11S12
A22S21 A22S22

]

= AS = SA =

[

S11A11 S12A22

S21A11 S22A22

]

two Sylvester equations A11S12 = S12A22 and A22S21 = S21A11 which have only the trivial
solutions, since the spectra of A11 and A22 are disjoint.
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Proposition 9 Let A, S ∈ Fn×n be such that AS = SA, the matrix A has the distinct
eigenvalues λ1, . . . , λm, and S has only one eigenvalue µ ∈ F. Then the spectrum of A+S

is {λ1 + µ, . . . , λm + µ}.

The result of Proposition 9 follows at once from the well-known fact that two commut-
ing matrices can be simultaneously triangularized by similarity (over the field of complex
numbers).

We are now able to prove the following result concerning a canonical form of H-normal
matrices X. This form will not only give information on X, but also on the selfadjoint and
skewadjoint parts of X.

Theorem 10 Let X ∈ Cn×n be H-normal, and let X = A + S, where A ∈ AC(H) and
S ∈ SC(H). Then there exists a nonsingular matrix P ∈ Cn×n such that

P−1XP = X1 ⊕ . . .⊕Xk, P−1AP = A1 ⊕ . . .⊕ Ak,

P ∗HP = H1 ⊕ . . .⊕Hk, P−1SP = S1 ⊕ . . .⊕ Sk,
(16)

where, for each j, the matrices Xj, Aj, Sj and Hj have the same size. Furthermore, each
Xj is indecomposable with respect to Hj and the corresponding blocks Sj and Aj have at
most two distinct eigenvalues each. Moreover, the following conditions are satisfied.

1. If σ(Aj) = {λ0} and σ(Sj) = {µ0}, then λ0 is real, µ0 is purely imaginary and
σ(Xj) = {λ0 + µ0},

2. If Aj or Sj has two distinct eigenvalues, then

Aj =

[

Aj1 0
0 A∗

j1

]

, Sj =

[

Sj1 0
0 −S∗

j1

]

, and Hj =

[

0 I

I 0

]

.

Furthermore, we have σ(Aj1) = {λj} and σ(Sj1) = {µj} for some λj, µj ∈ C and
σ(Xj) = {λj + µj, λ

∗
j − µ∗

j}, where λj + µj 6= λ∗j − µ∗
j .

Proof. From Theorem 2 we find that there exists a nonsingular matrix Q ∈ Cn×n, such
that

Q−1AQ =

[

A11 0
0 A22

]

and Q∗HQ =

[

H11 0
0 H22

]

,

where σ(A11) ∩ σ(A22) = ∅ and where A11 has either only one eigenvalue that is real or
else only a pair (λ, λ∗) of nonreal eigenvalues. Then it follows from Proposition 8 that

Q−1SQ =

[

S11 0
0 S22

]

,
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where Q−1SQ is partitioned conformable to Q−1AQ. Thus, we may assume that A has
either only one eigenvalue that is real or only a pair (λ, λ∗) of eigenvalues, where λ ∈
C\R. Analogously, applying Theorem 2 to iS, we may assume that also S has either only
one eigenvalue that is purely imaginary or zero, or only a pair of eigenvalues (µ,−µ∗),
where µ ∈ C\(iR). Furthermore, we may decompose the corresponding X into an H-
orthogonal direct sum of indecomposable matrices. Hence, it is sufficient to consider an
indecomposable matrix X and the following two cases for the corresponding matrices A
and S.

Case 1): Each A and S have only one eigenvalue.

Let λ denote the eigenvalue of A and µ the eigenvalue of S. From the discussion above
it follows that λ ∈ R and µ ∈ iR. Hence, the result follows from Proposition 9.

Case 2): At least one of the matrices A or S has two distinct eigenvalues.

We may assume, without loss of generality, that A has two distinct eigenvalues. Oth-
erwise, we may consider iX = iS + iA and the H-selfadjoint part iS of iX. From the
discussion at the beginning of the proof, we see that A has a pair (λ, λ∗) of eigenvalues,
where λ ∈ C\R. Formula (5) implies that there exists a nonsingular matrix R, such that

R−1AR =

[

J 0
0 J ∗

]

and R∗HR =

[

0 I

I 0

]

,

where J is a matrix in Jordan canonical form, having the only eigenvalue λ ∈ C\R. Let
R−1SR be partitioned conformable to R−1AR. Then it follows from Proposition 8 that

R−1SR =

[

S11 0
0 S22

]

=

[

S11 0
0 −S∗

11

]

(since S is skew-adjoint),

since the spectra of J and J ∗ are disjoint. If S11 has two distinct eigenvalues, then we may
once again decompose A, S and H into smaller blocks by applying analogous arguments
and making use of Proposition 8. Thus, we may assume without loss of generality that
also S11 has only one eigenvalue, say µ. Now

R−1XR =

[

J + S11 0
0 J ∗ − S∗

11

]

.

By Proposition 9, we find that σ(X) = {λ + µ, λ∗ − µ∗}, and since λ 6= λ∗, we also have
λ+ µ 6= λ∗ − µ∗.

Unfortunately, we cannot give general statements on the Jordan structures of Xj in the
pairs (Xj, Hj) in Theorem 10. The following examples show that an indecomposable Xj

may have more than one Jordan block associated with the same eigenvalue.

Example 11 The case of one eigenvalue: Let

X =









0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0









and H = Z4.
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It was shown in [8] that X is indecomposable.

Example 12 The case of two distinct eigenvalues: Let

X =

[

X1 0
0 X2

]

= A+ S, H =

[

0 I

I 0

]

,

A =

[

A1 0
0 A∗

1

]

, and S =

[

S1 0
0 −S∗

1

]

,

where

A1 =









0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0









and S1 =









1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1









.

Note that AS = SA and, therefore, X is H-normal. It is easy to check that each A1 and
S1 consists of two 2×2 Jordan blocks whereas X1 (or X2, respectively) consist of one 1×1
and one 3×3 Jordan block associated with the eigenvalue 1 (or −1, respectively). Assume
that X is decomposable, i.e.,

X =

[

X̃1 0

0 X̃2

]

and H =

[

H̃1 0

0 H̃2

]

.

Then in particularX, A, and S are simultaneously decomposable into smaller blocks. Since
S has only non purely imaginary eigenvalues, Theorem 10 implies that both X̃1 and X̃2

must have two distinct eigenvalues and that the algebraic multiplicities of these eigenvalues
in the block X̃1 (and X̃2, respectively) are equal. It follows from the Jordan structure of
X that the only nontrivial decomposition of X would be into a block of size 6 and a block
of size 2. On the other hand, Theorem 2 implies that the canonical form of (S,H) consists
of two 4 × 4 blocks that are associated with the pair (1,−1) of non purely imaginary
eigenvalues. Thus, X and S are not simultaneously H-decomposable.

These examples show that an H-normal matrix X may be indecomposable although
both its selfadjoint and skewadjoint parts are decomposable. This illuminates the difficulty
in finding a complete classification of indecomposable H-normal matrices. For the case
that H has at most two negative eigenvalues, this problem was solved in [8] and [13]. In
connection with this problem we mention that, as shown in [8], the problem of classification
of arbitrary H-normal matrices is “wild”, and therefore one cannot reasonably expect a
complete solution.

Next, we will discuss the analogue of Theorem 10 in the real case. It is already known
that a real pair (X,H), where X is H-normal, can be decomposed into factors (Xj, Hj)
such that Xj has either one or two distinct real eigenvalues, one or two pairs of complex
conjugate eigenvalues, or one real eigenvalue and one pair of complex conjugate eigenvalues,
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see [14]. Again, we state a new version of this result that also gives information on the
selfadjoint and skewadjoint parts of X. Since in its proof we will have to deal with real
Jordan blocks associated with complex conjugate eigenvalues, we will need some auxiliary
results concerning matrices from the algebra Mn×n

C introduced in Remark 4.

Define the permutation matrix

Ωm,n = [e1, en+1, . . . , e(m−1)n+1, e2, en+2, . . . , e(m−1)n+2, . . . , en, e2n, . . . , emn],

where ej denotes the jth unit column vector of length mn. If A ∈ Cm×m and B ∈ Cn×n

then Ωm,n has the following effect:

Ω−1
m,n

(

A⊗ B
)

Ωm,n = B ⊗A.

Proposition 13 Let X ∈ Cm×m be a matrix having the only eigenvalue α + iβ, where
α, β ∈ R, β 6= 0. If Y ∈ R2m×2m commutes with φ(X), then Y ∈Mm×m

C .

Proof. We may assume without loss of generality that X is in Jordan canonical form.
Indeed, let X0 = S−1XS be the Jordan canonical form of X, where S ∈ Cm×m is some
nonsingular matrix. Clearly, φ(S)−1Y φ(S) commutes with X0, and if we already know
that φ(S)−1Y φ(S) ∈Mm×m

C , then we obviously have Y ∈Mm×m
C , too.

Thus, assume that there exists anm×m nilpotent matrixN = diag
(

Jp1(0), . . . ,Jpk
(0)
)

such that

φ(X) = φ
(

(α + iβ)Im +N
)

= Im ⊗
[

α β

−β α

]

+N ⊗ I2.

Moreover, let P = Ωm,2 and Q = 1√
2
P

[

iIm Im
Im iIm

]

. Then

P−1φ(X)P =

[

α β

−β α

]

⊗ Im + I2 ⊗N =

[

αIm +N βIm
−βIm αIm +N

]

.

Let P−1Y P =

[

Y1 Y2
Y3 Y4

]

be partitioned conformable to P−1φ(X)P . Then

Q−1φ(X)Q =

[

(α− iβ)Im +N 0
0 (α + iβ)Im +N

]

and Q−1Y Q =
1

2

[

Y1 + Y4 + i(Y3 − Y2) Y2 + Y3 + i(Y4 − Y1)
Y2 + Y3 + i(Y1 − Y4) Y1 + Y4 + i(Y2 − Y3)

]

.

It follows from Proposition 8 that Y2 + Y3 + i(Y4 − Y1) = 0, that is Y4 = Y1 and Y3 = −Y2.
From this, we find that

P−1Y P =

[

Y1 Y2
−Y2 Y1

]

and this implies Y ∈Mm×m
C .

The proof of the following lemma is straightforward.
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Lemma 14 Let A ∈ Cn×n and M ∈Mn×n
C . Then the following statements hold.

1.
(

φ(A)
)T

= φ(A∗) and φ−1(MT ) =
(

φ−1(M)
)∗
.

2. (In ⊗ Z2)φ(A)(In ⊗ Z2) = φ(A).

We are now able to state and prove the real analogue of Theorem 10.

Theorem 15 Let H be real and X ∈ Rn×n be H-normal. Furthermore, let X = A + S,
where A ∈ AR(H) and S ∈ SR(H). Then there exists a nonsingular matrix P ∈ Rn×n such
that

P−1XP = X1 ⊕ . . .⊕Xk, P−1AP = A1 ⊕ . . .⊕ Ak,

P ∗HP = H1 ⊕ . . .⊕Hk, P−1SP = S1 ⊕ . . .⊕ Sk,
(17)

where Xj, Aj, Sj, and Hj have the same size, Xj is indecomposable with respect to Hj, and
for each j one and only one of the following conditions is satisfied.

1. We have σ(Aj) = {α}, σ(Sj) = {0}, and σ(Xj) = {α} for some α ∈ R.

2. We have σ(Aj) = {α} and σ(Sj) = {±iδ} for some α ∈ R, δ > 0. Furthermore,
σ(Xj) = {α± iδ}.

3. We have

Xj =

[

Xj1 0
0 Xj2

]

, Aj =

[

Aj1 0
0 AT

j1

]

, Sj =

[

Sj1 0
0 −ST

j1

]

, and Hj =

[

0 I

I 0

]

,

where σ(Aj1) = {α} and σ(Sj1) = {γ} for some α ∈ R, γ > 0. Furthermore,
σ(Xj1) = {α + γ} and σ(Xj2) = {α− γ}.

4. We have

Xj =

[

Xj1 0
0 Xj2

]

, Aj =

[

Aj1 0
0 AT

j1

]

, Sj =

[

Sj1 0
0 −ST

j1

]

, and Hj =

[

0 I

I 0

]

,

where σ(Aj1) = {α} and σ(Sj1) = {γ ± iδ} for some α ∈ R, γ, δ > 0. Furthermore,
σ(Xj1) = {(α + γ)± iδ} and σ(Xj2) = {(α− γ)± iδ}.

5. We have σ(Xj) = σ(Aj) = {α ± iβ} and σ(Sj) = {0} for some α ∈ R, β > 0.
Furthermore, if p is the size of Aj then p is even and Hj has p

2
positive and p

2

negative eigenvalues.

6. We have

Xj =

[

Xj1 0
0 Xj2

]

, Aj =

[

Aj1 0
0 AT

j1

]

, Sj =

[

Sj1 0
0 −ST

j1

]

, and Hj =

[

0 I

I 0

]

,

where σ(Aj1) = {α±iβ} and σ(Sj1) = {±iδ} for some α ∈ R, β, δ > 0. Furthermore,
σ(Xj1) = {α± i(β + δ)} and σ(Xj2) = {α± i(β − δ)}.
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7. We have

Xj =

[

Xj1 0
0 Xj2

]

, Aj =

[

Aj1 0
0 AT

j1

]

, Sj =

[

Sj1 0
0 −ST

j1

]

, and Hj =

[

0 I

I 0

]

,

where σ(Aj1) = {α± iβ} and σ(Sj1) = {γ} for some α ∈ R, β, γ > 0. Furthermore,
σ(Xj1) = {(α + γ)± iβ} and σ(Xj2) = {(α− γ)± iβ}.

8. We have

Xj =

[

Xj1 0
0 Xj2

]

, Aj =

[

Aj1 0
0 AT

j1

]

, Sj =

[

Sj1 0
0 −ST

j1

]

, and Hj =

[

0 I

I 0

]

,

where σ(Aj1) = {α± iβ} and σ(Sj1) = {γ± iδ} for some α ∈ R, γ > 0, and β, δ > 0.
Furthermore, σ(Xj1) = {(α + γ)± i(β + δ)} and σ(Xj2) = {(α− γ)± i(δ − β)}.

Proof. It is sufficient to show that every H-normal matrix can be decomposed into a
direct sum of blocks of type 1.–8. That these blocks can be chosen to be indecomposable
then follows from the fact that we may always start with the case that the matrix X

under consideration is already indecomposable. According to Proposition 8 and in view of
Theorems 5 and 7, it is sufficient to consider the following cases.

Case (a): A has the only eigenvalue α ∈ R.

Considering the four different subcases that S may only have the eigenvalue zero, a pair
of purely imaginary eigenvalues, a pair of real eigenvalues, or a quadruple of nonreal and non
purely imaginary eigenvalues, respectively, it follows from Theorem 7 and Propositions 8
and 9 that A, S, and H can be brought to the forms 1., 2., 3., or 4. of the theorem,
respectively.

Case (b): The spectrum of A is {α ± iβ}, where α ∈ R and β > 0. This means in
particular that the size of A is even, i.e., n = 2q for some q ∈ N. Considering the four
different subcases for the spectrum of S according to Theorem 7, we obtain the forms 5.–8.
of the theorem.

5.: Assume σ(S) = {0}. This subcase follows from Theorem 5 and Proposition 8.

6.: Assume σ(S) = {±iδ} for some δ > 0. We show in the following that X necessarily
has two pairs of conjugate complex eigenvalues (unless |β| = |δ|, in which case X has one
pair of conjugate complex eigenvalues and one real eigenvalue).

Assume that (A,H) is in real canonical form (7), i.e., there exists a nilpotent matrix
N in Jordan canonical form, such that

A = Im ⊗
[

α β

−β α

]

+N ⊗ I2 and H = Z2m.
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Now it follows from Proposition 13 that S ∈ Mm×m
C . Therefore, Ã = φ−1(A) and S̃ =

φ−1(S) (and also φ−1(H)) are well-defined. By construction, Ã has only the eigenvalue
α + iβ and according to Remark 4, S̃ may have the eigenvalues iδ and/or −iδ. Now let
Q ∈ Cm×m be such that

Q−1S̃Q =

[

S̃11 0

0 S̃22

]

,

where S̃11 ∈ Ck×k has only the eigenvalue iδ and S̃22 ∈ C(m−k)×(m−k) has only the eigenvalue
−iδ. Then it follows from Proposition 8 that

Q−1ÃQ =

[

Ã11 0

0 Ã22

]

,

where the blocks have sizes corresponding to S̃11 and S̃22. Now consider the images of
these matrices under φ. We obtain

Â := φ(Q−1ÃQ) =

[

φ(Ã11) 0

0 φ(Ã22)

]

, Ŝ := φ(Q−1S̃Q) =

[

φ(S̃11) 0

0 φ(S̃22)

]

,

and Ĥ := φ(Q)∗Hφ(Q) =

[

H11 H12

H∗
12 H22

]

,

where Ĥ is partitioned conformable to Ŝ and Â. Since every complex matrix is similar to
its transpose, there exists a nonsingular matrix W ∈ Cm×m such that ÃT

11 = W−1Ã11W .
In view of Lemma 14 we have
(

φ(Ã11)
)T

= (Iq ⊗ Z2)φ(Ã
T
11)(Iq ⊗ Z2) = (Iq ⊗ Z2)φ(W )−1φ(Ã11)φ(W )(Iq ⊗ Z2). (18)

Note that Â is still Ĥ-selfadjoint, i.e.,
(

φ(Ã11)
)T

H11 = H11φ(Ã11). This together with (18)

implies
φ(Ã11)φ(W )(Iq ⊗ Z2)H11 = φ(W )(Iq ⊗ Z2)H11φ(Ã11).

Thus, Proposition 13 implies

φ(W )(Iq ⊗ Z2)H11 ∈Mm×m
C .

This means that we also have (Iq ⊗ Z2)H11 ∈ Mm×m
C , i.e., there exists G ∈ Cm×m, such

that
φ(G) = (Iq ⊗ Z2)H11.

Since Ŝ is Ĥ-skewadjoint, we have:

−
(

φ(S̃11)
)T

H11 = H11φ(S̃11).

This equation is equivalent to the equation

−φ(S̃T11)(Iq ⊗ Z2)H11 = (Iq ⊗ Z2)H11φ(S̃11),
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and this implies: −S̃T11G = GS̃11. But S̃11 has the only eigenvalue iδ and the only eigenvalue
of −S̃T11 is −iδ, hence this equation has only the solution G = 0. This implies H11 = 0.
In an analogous way, we show that H22 = 0. Since H is nonsingular, it follows that m is
even, k = m

2
, and H12 is nonsingular. Setting finally

R = φ(Q)

[

I 0
0 H−1

12

]

,

we obtain that the matrices R−1AR, R−1XR, R−1SR, R∗HR have the following forms:

R−1AR =

[

A11 0
0 A22

]

, R−1SR =

[

S11 0
0 S22

]

,

R−1XR =

[

X11 0
0 X22

]

, R∗HR =

[

0 I

I 0

]

.

Moreover, we have by symmetry that A22 = AT
11 and S22 = −ST

11, and by construction
that σ(A11) = {α ± iβ}, σ(S11) = {±iδ} and furthermore σ(X11) = {α ± i(β + δ)} and
σ(X22) = {α ± i(β − δ)}. (This follows from the fact that S̃11 has only one eigenvalue iδ
and Ã11 has only the eigenvalue α+ iβ. Thus, σ(Ã11+ S̃11) = {α+ i(β+ δ)} and it follows
from Remark 4 that X11 has the eigenvalues α ± i(β + δ). A similar argument holds for
X22.)

7.: Assume σ(S) = {±γ}, where γ > 0. The proof in this case follows easily from the
structure of S given in Theorem 7 and from Proposition 8.

8.: Assume σ(S) = {γ±iδ,−γ±iδ}, γ > 0. Then, we may assume in view of Theorem 7
and Proposition 8 that

X = A+ S, A =

[

A11 0
0 AT

11

]

, S =

[

S11 0
0 −ST

11

]

, and H =

[

0 Iq
Iq 0

]

,

where σ(S11) = {γ± iδ}. It follows in particular that the sizes of A11 and S11 are even, i.e.,
q = 2p for some p ∈ N and thus, n = 2q = 4p. Assuming furthermore that A11 ∈ Cq×q is

in real Jordan canonical form, we obtain by Proposition 13 that S11 ∈ M
q
2
× q

2

C . Moreover,
we also have X,A, S,H ∈Mn×n

C and their images under φ−1 have the following forms:

φ−1(A) =

[

φ−1(A11) 0

0
(

φ−1(A11)
)∗

]

, φ−1(S) =

[

φ−1(S11) 0

0 −
(

φ−1(S11)
)∗

]

,

φ−1(X) = φ−1(A) + φ−1(S), φ−1(H) =

[

0 Ip
Ip 0

]

.

Note that φ−1(A) and φ−1(S) are φ−1(H)-selfadjoint and -skewadjoint, respectively. Fur-
thermore, φ−1(A) has a pair of conjugate complex eigenvalues, namely α± iβ. Therefore,
we may apply Theorem 10 and we find that φ−1(A), φ−1(S) and φ−1(H) can be decom-
posed into blocks of type (2) of Theorem 10. Retranslating this result to the real case via
φ, we obtain the form stated in 8..

16



Remark 16 Comparing our result with the result in [14], we find the five cases listed
there for an indecomposable block X:

Eigenvalues of X Case number in Theorem 15
one real eigenvalue 1.
two distinct real

eigenvalues 3.
one pair of complex
conjugate eigenvalues 2. and 5.
two pairs of complex
conjugate eigenvalues 4., 7., and 6. and 8. for |β| 6= |δ|
one real eigenvalue

and one pair of complex 6. and 8. for |β| = |δ|
conjugate eigenvalues

An interesting special case is when the matrix X has blocks of type 2. and 5. for a
fixed α and δ = β. Although in this case both blocks display the same pair of eigenvalues,
namely α± iβ, Theorem 15 shows that X can still be decomposed, using the knowledge on
the structure of the H-selfadjoint and H-skewadjoint parts of X. A similar situation occurs
if X has blocks of type 4. and 7. with a fixed α and β = δ. Again, a further decomposition
is possible although both blocks of both types 4. and 7. display the eigenvalues (α+γ)±iβ
and (α− γ)± iβ.

4 Exponential and logarithmic functions

In this section we develop some results concerning exponential and logarithmic functions
of H-selfadjoint and H-normal matrices. Besides the uses in the present paper for H-polar
decompositions with commuting factors, these results are independently interesting.

We start with the following well-known result from Lie theory (it is easily deduced from
the fact that the range of the exponential map from a Lie algebra into the corresponding
Lie group contains a neighborhood of identity).

Proposition 17 The set
{eX : X is H-skewadjoint} (19)

coincides with the connected component of identity of the group of H-unitary matrices.

Furthermore, we immediately obtain the following lemma from the fact that the expo-
nential of a matrix M is a power series in M .
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Lemma 18 Let AF(H) and NF(H) denote the sets of H-selfadjoint and H-normal n× n

matrices, respectively, with entries in F. Then

exp
(

AF(H)
)

⊆ AF(H) and exp
(

NF(H)
)

⊆ NF(H).

These results offer the following approach for the discussion of H-polar decompositions.
If X = A + S is an H-normal matrix given as a sum of its selfadjoint and skewadjoint
parts A and S, respectively, we obtain the following equation by applying the exponential
map, using the fact that A and S commute.

exp(X) = exp(S + A) = exp(S) exp(A)

Note that this is a polar decomposition of exp(X) with commuting factors. Hence, the
question arises which H-selfadjoint and H-normal matrices possess a logarithm within each
class. We consider both real and complex cases.

First let us look at H-selfadjoint matrices. The answer which intrinsic conditions
determine the set exp(AF(H)) is given in the next result.

Proposition 19 Let A be an H-selfadjoint matrix with entries in F. Then the following
statements are equivalent.

1. There exists an H-selfadjoint matrix B ∈ Fn×n such that A = exp(B).

2. A is nonsingular and has an H-selfadjoint square root, i.e., there exists an H-
selfadjoint matrix C ∈ Fn×n such that A = C2.

3. A is nonsingular, and if λ0 < 0 is a negative real eigenvalue of A, then the part in
the canonical form of (A,H) associated with λ0 takes the form

(

r
⊕

j=1

[

Jpj
(λ0) 0
0 Jpj

(λ0)

]

,

r
⊕

j=1

[

Zpj
0

0 −Zpj

]

)

.

Proof. ’1)⇒ 2)’: This is obvious, take C = exp
(

1
2
B
)

.

’2)⇔ 3)’: Follows from Lemmas 7.7 and 7.8 of [1].

’3)⇒ 1)’: Consider first the complex case. We may assume that (A,H) is in canonical
form (2). Thus, it is sufficient to consider the blocks separately.

Case a): A is a block associated with a pair of nonreal eigenvalues, i.e., using formula (5),

A =

[

Jp(λe) 0
0 Jp(λe)∗

]

and H =

[

0 Ip
Ip 0

]

,
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where λe ∈ C\R and p ∈ N.

Choose λ0 ∈ C, such that λe = eλ0 . Then exp(Jp(λ0)) is similar to Jp(eλ0), i.e., there
exists a nonsingular matrix T ∈ Cp×p, such that

exp
(

T−1Jp(λ0)T
)

= T−1 exp
(

Jp(λ0)
)

T = Jp(eλ0) = Jp(λe).

Define B =

[

T−1Jp(λ0)T 0
0 T ∗Jp(λ0)∗(T−1)∗

]

. Then B is H-selfadjoint and

exp(B) =





exp
(

T−1Jp(λ0)T
)

0

0 exp
(

T−1Jp(λ0)T
)∗



 = A.

Case b): A is a block associated with a positive real eigenvalue, i.e., A = Jp(λe) and
H = εZp, where λe > 0 and ε ∈ {1,−1}. Choose λ0 ∈ R, such that eλ0 = λe. Then
exp(Jp(λ0)) is similar to Jp(eλ0). Since Jp(λ0) is H-selfadjoint, by Lemma 18 the matrix
exp(Jp(λ0)) is also H-selfadjoint. This together with Theorem 2 applied to exp(Jp(λ0))
implies that there exists a nonsingular matrix T ∈ Cp×p, such that

exp
(

T−1Jp(λ0)T
)

= Jp(λe) and T ∗HT = δZp = ±H,

where δ = ±1. Letting B = T−1Jp(λ0)T , we see that the matrix

HB = HT−1Jp(λ0)T = ±T ∗HJp(λ0)T

is Hermitian. Thus, B is H-selfadjoint and satisfies exp(B) = A.

Case c): According to 3), the remaining case is now

A =

[

Jp(λe) 0
0 Jp(λe)

]

and H =

[

−Zp 0
0 Zp

]

, λe < 0.

Define X = 1√
2

[

Ip −Zp

Ip Zp

]

. Then

X−1AX =

[

Jp(λe) 0
0 Jp(λe)∗

]

and X∗HX =

[

0 Ip
Ip 0

]

.

Choose λ0 = log(−λe)+ iπ. Then eλ0 = λe. Analogously to Case a), we find a nonsingular

matrix T , such that B =

[

T−1Jp(λ0)T 0
0 T ∗Jp(λ0)∗(T−1)∗

]

is H-selfadjoint and eB = A.

Consider now the real case. From the discussion of the complex case, we know that
there exists a possibly complex H-selfadjoint matrix B̃ such that exp(B̃) = A. Now
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Corollary 6 implies that there exists a nonsingular matrix S ∈ Cn×n such that S−1B̃S

and S∗HS are real. But then, also exp(S−1B̃S) = S−1AS is real. Since the real pairs
(A,H) and (S−1AS, S∗HS) have the same complex canonical form, they also have the
same real canonical form. This follows from Theorems 2 and 5 if we observe that in both
the real and the complex case, the canonical forms are uniquely determined by the same
sets of invariants. Hence, we find that there exists a nonsingular matrix T ∈ Rn×n such
that A = T−1S−1AST and H = T ∗S∗HST . Now choose the real H-selfadjoint matrix
B = T−1S−1B̃ST ∈ Rn×n. Then eB = A.

Remark 20 It follows from Corollary 2.1 of [4] that the matrix A satisfying the equivalent
statements of Proposition 19 is H-consistent, i.e., the number of positive (resp., negative)
eigenvalues of HA does not exceed the number of positive (resp., negative) eigenvalues
of H; the eigenvalues are counted according to their multiplicities. Equivalently, an H-
selfadjoint matrix A is H-consistent if and only if HA = Y ∗HY for some (not necessarily
invertible) matrix Y ∈ Fn×n.

For the case of H-normal matrices, the following general fact concerning functions of
H-normal matrices is useful.

Lemma 21 Let X ∈ Cn×n be an H-normal matrix, and let Γ be a simple (i.e., without
self-intersections) closed rectifiable contour in the complex plane such that the eigenvalues
of X are inside Γ. Then for every (single-valued) function f(z) which is analytic on Γ and
in the interior of Γ, the matrix f(X) defined by the functional calculus

f(X) =
1

2πi

∫

Γ

f(z)(zI −X)−1dz (20)

is also H-normal.

If in addition X is real, the contour Γ is symmetric with respect to the real line, and
the function f(z) is such that f(z) = f(z), then f(X) is real as well.

Proof. For the first part of the lemma, approximate the integral in (20) by Riemann sums

N−1
∑

j=0

(zj+1 − zj)f(zj)(zjI −X)−1; (21)

here z0, · · · , zN−1 are consecutive partition points on Γ in the counterclockwise direction,
and we let zN = z0. Now using the easily verified property

(zI −X)−1H−1(wI −X∗)−1H = H−1(wI −X∗)−1H(zI −X)−1, z, w ∈ C,

which follows from H-normality of X, one obtains that f(X) is H-normal. For the second
part, assuming without loss of generality that Γ is connected and therefore intersects the
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real axis, observe that one can choose the points zj in (21) so that N is odd, zj = zN−j,
(j = 1, · · · , N − 1), and z0 = zN is real. Applying the complex conjugation to (21), we see
that −2πif(X) can be approximated by the sums

N−1
∑

j=0

(zj+1 − zj)f(zj)(zjI −X)−1 =
N−1
∑

j=0

(zN−j−1 − zN−j)f(zN−j)(zN−jI −X)−1,

which, upon the change of index k = N − j, take the form

N
∑

k=1

(zk−1 − zk)f(zk)(zkI −X)−1 = −
N
∑

k=1

(zk − zk−1)f(zk)(zkI −X)−1.

In view of (20), the latter sums (with the sign minus in front) approximate −2πif(X), so
we indeed have f(X) = f(X).

Using Lemma 21 with a contour Γ that does not intersect any ray from the origin
that contains eigenvalues of X, and with f(z) = log(z), a (single valued) analytic function
defined on the closure of the interior of Γ, we have in the complex case:

Proposition 22 In the complex case, the set

exp
(

NF(H)
)

= {eX : X is H-normal} (22)

coincides with the set of nonsingular H-normal matrices.

Clearly, this result does not hold in the real case, because it is well known that a real
matrix Y has a real logarithm if and only if for every negative eigenvalue λ0, and every
size p, the number of Jordan blocks Jp(λ0) in the Jordan form of Y is even (see, e.g., [5]).
However, Proposition 22 could be restated in the following way: in the complex case every
H-normal matrix that has a logarithm has also an H-normal logarithm. But this formu-
lation does not hold in the real case, either. We give the following two counterexamples.

Example 23 F = R. Let 0 < λ ∈ R and consider

X =









−λ 0 cos(γ) sin(γ)
0 −λ − sin(γ) cos(γ)
0 0 −λ 0
0 0 0 −λ









, Y =









−λ 0 0 1
0 −λ r 0
0 0 −λ 0
0 0 0 −λ









, (23)

and H =

[

0 I2
I2 0

]

, (24)

where 0 < γ < π and r ∈ R such that |r| > 1. Then it was shown in [14] that X and Y are
indecomposable H-normal matrices that are not H-unitarily similar. On the other hand,
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is easy to see that X and Y have the same Jordan forms. However, X has an H-normal
logarithm, and Y does not. Setting

LX =









log(λ) π − cos γ
λ

− sin γ
λ

−π log(λ) sin γ
λ

− cos γ
λ

0 0 log(λ) π

0 0 −π log(λ)









, (25)

one finds that LX is H-normal and that exp(LX) = X. On the other hand, one can show
that Y has no real H-normal logarithm. Indeed, we first note that an H-normal logarithm
LY of Y necessarily has to be indecomposable, for if LY is decomposable, i.e., there exists
a nonsingular matrix P ∈ C4×4 such that

P−1LY P = L1 ⊕ . . .⊕ Lm and P ∗HP = H1 ⊕ . . .⊕Hm,

then clearly also exp(LY ) = Y is decomposable. Furthermore, the spectrum of LY has
to contain only pairs of complex conjugate numbers of the form log(λ) + i(2k + 1)π, k
an integer, since the spectrum of Y is {−λ}. Checking the list of real indecomposable H-
normal matrices in [14] for the given H, one finds that LY necessarily has to be H-unitarily
similar to one of the following types of matrices.

type 1 : LY =









log(λ) β 0 0
−β log(λ) 0 0

0 0 log(λ) β̂

0 0 −β̂ log(λ)









,

type 2 : LY =









log(λ) β cos(δ) sin(δ)
−β log(λ) − sin(δ) cos(δ)
0 0 log(λ) β

0 0 −β log(λ)









,

type 3 : LY =









log(λ) β 0 1
−β log(λ) 1 0
0 0 log(λ) −β
0 0 β log(λ)









,

where β = π + 2z1π, β̂ = π + 2z2π for some integers z1, z2 and 0 ≤ δ < 2π. For type
1, the matrix exp(LY ) has a Jordan structure different from Y . For type 2, one finds
that exp(LY ) is H-unitarily similar to a matrix of the same type of X in (23) for some
parameter γ, and for type 3, one finds that LY and exp(LY ) are H-selfadjoint in contrast
to Y . Thus, Y cannot have a real H-normal logarithm.

Example 24 Consider the pair (X,H) in the canonical form

X = [−1]⊕
[

−1 0
0 1

]

and H = [1]⊕
[

0 1
1 0

]

.
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Note that H has one negative eigenvalue, and that X is the direct sum of two indecom-
posable blocks ([8]). Suppose that Y ∈ R3×3 is H-normal and exp(Y ) = X. Given the
canonical forms for H-normal operators for the case that H has one negative eigenvalue
(see [14]), we may assume that there exists a nonsingular matrix P ∈ R3×3 such that

P−1Y P = Y1 ⊕ . . .⊕ Ym and P ∗HP = H1 ⊕ . . .⊕Hm.

From this, we see that (X,H) = (exp(Y ), H) can be decomposed into at least m blocks.
Thus, the uniqueness of the decomposition into indecomposable blocks (see [8]) implies
m ≤ 2. If m = 1 then it follows from [14] that Y has only one eigenvalue, hence so does
X, which is a contradiction. This implies m = 2. But then

P−1XP = P−1 exp(Y )P = exp(Y1)⊕ exp(Y2).

Thus, the uniqueness of the decomposition into indecomposable blocks implies that both

[−1] and
[

−1 0
0 1

]

have a real logarithm. This is a contradiction.

However, using Lemma 21 with f(z) = log(z), an analytic function in C \ (−∞, 0], we
obtain the following sufficient condition.

Lemma 25 Let H be real. Then every nonsingular real H-normal matrix with no negative
eigenvalues has a real H-normal logarithm.

Example 23 shows that the fact whether a real H-normal matrix X has a real H-normal
logarithm or not is determined not only by the Jordan structure of X, but by some further
invariants. Since a complete classification of H-normal matrices up to H-unitary similarity
is unknown (this is a “wild” problem as shown in [8]), the problem of characterizing the
set of H-normal matrices that have an H-normal logarithm remains unsolved for the case
F = R.

5 H-polar decompositions

In this section we discuss H-polar decompositions of H-normal matrices. As it was pointed
out in the introduction, it is well-known that in the case H = I, a matrix X is normal if
and only if X has a polar decomposition with commuting factors (assuming the selfadjoint
factor is in fact positive semidefinite). Thus, the question arises whether this is still true
for the case that H is indefinite. Therefore, we will be interested in the following two
questions.

• Does every H-normal matrix have an H-polar decomposition?
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• If an H-normal matrix has an H-polar decomposition, does it have an H-polar de-
composition with commuting factors?

First, let us consider the second question. We immediately obtain the following result.

Lemma 26 Assume that X admits an H-polar decomposition X = UA. Then X is H-
normal if and only if UA2 = A2U .

The proof is straightforward.

However, simple examples show that an H-normal matrix need not have an H-polar
decomposition with commuting factors even when it admits an H-polar decomposition:

Example 27 Complex case: Let

X =

[

0 0
0 i

]

, H = Z2.

It is easy to see that X is H-normal. In fact, X [∗]X = XX [∗] = 0. It is easy to see that all
H-polar decompositions X = UA of X are described by the formulas

U =

[

0 ix

ix−1 y

]

, A =

[

0 x

0 0

]

,

where x 6= 0 and y are arbitrary real numbers. Clearly, U and A do not commute for any
values of the parameters x and y.

Next, we show in general that every indecomposable H-normal matrix X ∈ C2n×2n that
has two distinct eigenvalues λ = 0 and µ 6= 0 and that allows an H-polar decomposition
cannot have an H-polar decomposition with commuting factors. First, we may assume that
(X,H) is in the canonical form of Theorem 10, i.e.,

X =

[

X1 0
0 X2

]

, H =

[

0 In
In 0

]

, and X [∗] =

[

X∗
2 0
0 X∗

1

]

,

where X1 ∈ Cn×n is singular and X2 ∈ Cn×n is nonsingular. Let X = UA be an H-polar
decomposition, where U ∈ C2n×2n is H-unitary and A ∈ Cn×n is H-selfadjoint and assume
that UA = AU . This implies

X [∗] = A[∗]U [∗] = AU−1 = U−1A = U−2X.

Since X1 is singular, there exists a vector x ∈ Cn\{0} such that X1x = 0. Since X2 is
nonsingular, we obtain that

0 6= X∗
2x = X [∗]

[

x

0

]

= U−2X

[

x

0

]

= U−2X1x = 0;

and this is a contradiction. Hence, UA 6= AU .
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Example 28 Real case: Let

X =

[

1 0
0 −1

]

, H = Z2.

Then X is H-normal and admits an H-polar decomposition X = U0A0, where

U0 =

[

0 −1
−1 0

]

, A0 =

[

0 1
−1 0

]

.

Again, U0 and A0 do not commute. Note that we have in every H-polar decomposition

X = UA with A =

[

a b

c a

]

that U−1 = AX−1 =

[

a −b
c −a

]

. Since U−1 is H-unitary, we

obtain that
[

0 1
1 0

]

= H = (U−1)∗HU−1 =

[

2ac −a2 − bc

−a2 − bc 2ab

]

.

If a 6= 0, then b = c = 0 and −a2 = 1 which is a contradiction. Hence a = 0 and

A =

[

0 b

−b−1 0

]

, U =

[

0 −b
−b−1 0

]

for some b ∈ R \ {0}. But U and A do not commute.

Based on our results from the previous section, we can prove the following theorem
that establishes a sufficient condition for the existence of H-polar decompositions with
commuting factors.

Theorem 29 F = C or F = R. Let X be a nonsingular H-normal matrix, and in the real
case assume in addition that X has no negative eigenvalues. Then X admits an H-polar
decomposition X = UA with commuting factors U,A ∈ Fn×n, and such that U belongs to
the connected component of identity in the F-group of H-unitary matrices and A belongs
to the set of H-selfadjoint matrices that possess an H-selfadjoint logarithm.

Proof. Let X be a nonsingular H-normal matrix. By Proposition 22, or Lemma 25 in
the real case, we have X = eY for some H-normal matrix Y . Write Y = Y1 + Y2, where
Y1 is H-selfadjoint and Y2 is H-skewadjoint. Then X = UA with U = eY2 , A = eY1 is
an H-polar decomposition of X with the required properties; the connected component
property of U follows from Proposition 17.

It follows from Remark 20 that the matrix A in Theorem 29 is H-consistent (in the
terminology of [4]).

Compare Theorem 29 with a general result on H-polar decompositions on H-normal
matrices proved in [1]:
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Theorem 30 F = C or F = R. Every nonsingular H-normal matrix admits an H-polar
decomposition.

Theorem 30 does not assert that the factors of the H-polar decomposition commute;
as we have seen in Example 28 the factors need not commute under the hypotheses of
Theorem 30.

Furthermore, we note that for the case H = I, we obtain from Theorem 29 and Propo-
sition 19 the well-known fact (see [6], for example) that a nonsingular normal matrix X has
a polar decomposition X = UA with commuting factors such that A is positive definite.
Moreover, the polar decomposition is unique in this case. Therefore, the question arises
if a decomposition as in Theorem 29 is unique as well. The answer is negative, as the
following example shows:

Example 31 Consider the (2n)× (2n) matrices

X =

[

0 In
−In 0

]

and H =

[

0 In
In 0

]

.

It is easy to see that X is H-normal, in fact, X is H-selfadjoint. Note that X has two
different H-polar decompositions.

X = U1A1 =

[

In 0
0 In

] [

0 In
−In 0

]

= U2A2 = (−U1)(−A1) =

[

−In 0
0 −In

] [

0 −In
In 0

]

Both A1 and A2 satisfy the conditions of Proposition 19 and thus, they have H-selfadjoint
logarithms. On the other hand both U1 and U2 have H-skewadjoint logarithms in the
complex case: 0 = logU1; iπI = logU2. In the real case consider the case that n = 2m is
even. Then









0 πIm 0 0
−πIm 0 0 0

0 0 0 −πIm
0 0 πIm 0









is a real H-selfadjoint logarithm of U2.

We now consider the question if any H-normal matrix has an H-polar decomposition
(with not necessarily commuting factors). Therefore, let us review the following criterion
from [1], [4]. In Propositions 32 and 33 the matrix X is not assumed to be H-normal.

Proposition 32 Let X ∈ Fn×n and let A ∈ Fn×n be H-selfadjoint such that A2 = X [∗]X

and KerX = KerA. Then X admits an H-polar decomposition.
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We quote also another result from [1] (Lemma 4.2):

Proposition 33 If X ∈ Rn×n admits an H-polar decomposition X = UcAc with H-unitary
Uc ∈ Cn×n and H-selfadjoint Ac ∈ Cn×n, then X admits also an H-polar decomposition
X = UrAr with H-unitary Ur ∈ Rn×n and H-selfadjoint Ar ∈ Rn×n. (It is assumed that
H is real.)

Thus, it is sufficient to consider the complex case. We already know from Theorem 30
that every nonsingular H-normal matrix has an H-polar decomposition. We generalize
this result as follows.

Theorem 34 F = R or F = C. Let X be an H-normal matrix such that each singular
H-indecomposable block over C of X (if any) either:

(i) has two distinct complex eigenvalues (one of them must be zero), or:

(ii) is similar to one (necessarily nilpotent) Jordan block.

Then X admits an H-polar decomposition over F.

Proof. In view of Proposition 33 we may assume F = C. It suffices to prove existence
of an H-polar decomposition for each indecomposable block of X. By Theorem 30 it is
sufficient to consider singular blocks, i.e., blocks that have the eigenvalue zero. We then
have to consider two different cases.

Consider first the case when the indecomposable block has two distinct eigenvalues
λ = 0 and µ 6= 0. By Theorem 10 we may assume that

X =

[

X1 0
0 X2

]

and H =

[

0 I

I 0

]

,

where σ(X1) = {0}, σ(X2) = {µ}. In view of Proposition 32, it is sufficient to construct
an H-selfadjoint matrix A such that A2 = X [∗]X = XX [∗] and KerX = KerA.

Since X [∗] =

[

X∗
2 0
0 X∗

1

]

, we obtain that

XX [∗] =

[

X1X
∗
2 0

0 X2X
∗
1

]

.

Since X1 and X
∗
2 commute, it follows that X1X

∗
2 is nilpotent and thus, the only eigenvalue

of XX [∗] is zero. This implies that there exists a nonsingular matrix P such that we obtain,

setting P =

[

P 0
0 (P−1)∗

]

:

P−1XX [∗]P =

[

P−1X1X
∗
2P 0

0 P ∗X2X
∗
1 (P

−1)∗

]

=

[

J 0
0 J ∗

]

and P∗HP = H,

(26)
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where J = Jp1(0) ⊕ . . . ⊕ Jpk
(0) is a nilpotent matrix in Jordan form. We note that if

x1, . . . , xk is a basis of Ker(P−1X1X
∗
2P ) then

[

x1

0

]

, . . . ,
[

xk

0

]

is a basis of Ker(P−1XP).
From this and the obvious fact that there exists a permutation matrix Q such that

Q−1P−1XX [∗]PQ =
k
⊕

j=1

[

Jpj
(0) 0
0 Jpj

(0)∗

]

and Q∗P∗HPQ =
k
⊕

j=1

[

0 Ipj

Ipj
0

]

,

we see that it is sufficient to consider the case

XX [∗] =

[

Jm(0) 0
0 Jm(0)∗

]

and H =

[

0 Im
Im 0

]

and to construct an H-selfadjoint matrix A such that A2 = XX [∗] and

Ker(A) = Span
{

[

1 0 . . . 0
]T
}

.

Hence, the proof in the case of two distinct eigenvalues is concluded by choosing

A =

[

0 Zm

ZmJm(0) 0

]

.

Consider the case of an indecomposable X having only one Jordan block associated
with the eigenvalue λ = 0. By Theorem 1 of [10], we may further assume that X is an
upper triangular Toeplitz matrix and that H = ±Zn. Therefore, it is clear that at least
one of the matrices

A =
1

2
(X +X [∗]) and S =

1

2
(X −X [∗])

has only one Jordan block associated with the eigenvalue zero, say A. Thus, applying a
transformation

A→ T−1AT, S → T−1ST, H → T ∗HT

for some nonsingular T , we may assume that A = Jn(0). Since S commutes with A and is
H-skewadjoint, it follows that

S = s1Jn(0) + s2Jn(0)2 + . . .+ sn−1Jn(0)n−1,

where s1, . . . , sn−1 ∈ iR. According to Proposition 32, it is sufficient to show that X [∗]X

has an H-selfadjoint square root R such that Ker(R) = Ker(X). We find that X [∗]X has
the form

X [∗]X = A2 − S2 = x2Jn(0)2 + . . .+ xn−1Jn(0)n−1, (27)

where the xj are real, nonnegative and x2 6= 0. Let us try

R =
n−1
∑

k=1

rkJn(0)k = r1Jn(0) + r2Jn(0)2 + . . .+ rn−1Jn(0)n−1.
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Then clearly Ker(R) = Ker(X), if r1 6= 0. Assuming n ≥ 3 (the cases n = 1 and n = 2
being trivial), we obtain

R2 =
n−1
∑

k=2

(

k−1
∑

l=1

rlrk−l

)

Jn(0)k

= r21Jn(0)2 +
n−1
∑

k=3

(

2r1rk−1 +
k−2
∑

l=2

rlrk−l

)

Jn(0)k. (28)

Note that the coefficient of Jn(0)k in (28) is linear in rk−1 for k > 2. Comparing (27) and
(28), we can now find the square root R in the following way. First, we solve the equation
r21 = x2 over R (recall that x2 > 0). Then we compute r2, . . . , rn−2 subsequently as the
unique solution of nontrivial linear equations r1rk−1 = bk−1, for some bk−1 ∈ R, and finally
we choose an arbitrary rn−1 ∈ R. This completes the proof.

6 The cases of small numbers of negative eigenvalues

of H

In this section we prove the following result:

Theorem 35 Let F be either C or R. If the nonsingular real symmetric (in the real case)
or complex Hermitian (in the complex case) n × n matrix H has at most two negative
eigenvalues, counted with multiplicities, then every H-normal matrix admits an H-polar
decomposition.

Proof. In the case of H having only one negative eigenvalue, the result of Theorem 35
was proved in [1], Theorem 5.2.

We will use the forms for indecomposable normal matrices obtained in [13] for the proof
of Theorem 35. Leaving aside the well-known situation when H is positive definite, and the
already proved result of Theorem 35 in the case of H having only one negative eigenvalue,
we have to consider two cases: (1) F = C and H has exactly two negative eigenvalues; (2)
F = R and H has exactly two negative eigenvalues. In view of Proposition 33, we need
to consider the complex case (1) only. We use a complete list of relevant indecomposable
normal matrices X (obtained in [13]), and for each matrix on the list write explicitly the
factors A and U from an H-polar decomposition X = UA. By Proposition 32, existence of
an H-polar decomposition of X is guaranteed if and only if there exists an H-selfadjoint
matrix A such that

X [∗]X = A2 and KerA = KerX. (29)

Verification that in every case the matrix A indeed has the indicated properties is straight-
forward.
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We assume therefore F = C. We leave aside indecomposable normals of size 1× 1 (for
those, existence of polar decomposition is trivial), indecomposable normals for which the
corresponding matrix H has only one negative eigenvalue (this case was proved in Theorem
5.2 of [1]), and those forms that have either two distinct eigenvalues or only one Jordan
block for all allowable values of parameters (these are taken care of by Theorem 34). We
are left with the following list of indecomposable normals. In the list, we give the form X

of the indecomposable normals, the matrix H that describes the corresponding indefinite
inner product, the H-selfadjoint matrix A having the properties (29), and the H-unitary
matrix U such that an H-polar decomposition X = UA holds. Only the case λ = 0 will
be considered, and the matrices A and U will be given under this assumption. (If λ 6= 0,
then X is nonsingular; this case is taken care of by Theorem 30.)

The search for suitable matrices A and U was conducted using MAPLE, assuming in
many cases that A is upper triangular. When the matrices X, A, or U are upper triangular,
this is indicated by blanks in the strictly lower triangular part.

I.

X =









λ 1 0 0
λ 0 z

λ 0
λ









; |z| = 1, H = Z4. (30)

U =









1 0 0 0
0 0 z 0
0 z 0 0
0 0 0 1









; A =









0 1 0 0
0 0 0

0 1
0









.

II.

X =









λ 1 κ 0
λ 0 z

λ κ(1 + ir)z
λ









; |z| = 1, r > 0, κ = ±1; H = Z4. (31)

A =









0 1 κ 0
0 0 0 κ

0 0 0 1
0 0 0 0









, U =









1 0 0 0
0 κz 0 0
0 irz κz 0
0 0 0 1









. (32)

III.

X =













λ 1 0 r2

2
+ is 0

λ 0 z 0
λ 0 r

λ z2

λ













, |z| = 1, r > 0, s ∈ R, H = Z5. (33)
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A =













0 z 0 1
2
r2z 0

0 0 0 1 1
2
r2z

0 0 0 0 0
0 0 0 0 z

0 0 0 0 0













, U =













z is −iszr −1
2
isr2 0

0 z −rz2 −1
2
r2z 0

0 0 1 zr 0
0 0 0 z iz2s

0 0 0 0 z













. (34)

IV.

X =

















λ 1 2ir 0 0 0
λ 1 ir 0 2r2 − 1

2
s2 + it

λ 1 0 0
λ 0 1

λ s

λ

















, r, t ∈ R, s > 0, H =









0 0 0 1
0 Z3 0 0
0 0 1 0
1 0 0 0









.

(35)

A =

















0 1 ir 3
2
r2 − it 0 rt

0 0 1 0 0 3
2
r2 + it

0 0 0 1 0 −ir
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

















, (36)

U =

















1 ir −3
2
r2 + it −3ir3 − rt −1

2
irs 15

8
r4 − 1

2
t2 − 1

8
r2s2

0 1 ir −1
2
r2 − 1

2
s2 −s −2ir3

0 0 1 ir 0 1
2
r2 + it

0 0 0 1 0 ir

0 0 0 s 1 1
2
irs

0 0 0 0 0 1

















. (37)

V.

X =

















λ 1 −2ir(Im z) 0 0 0

λ z r 0 (2r2(Im z)2 − s2

2
+ it)z2

λ z 0 0
λ 0 z2

λ s

λ

















, H =









0 0 0 1
0 Z3 0 0
0 0 1 0
1 0 0 0









,

(38)
where

|z| = 1, 0 < arg z < π, r, s, t ∈ R, s > 0.
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A =

















0 z −r
(

−1
2
r2 + 2r2(Im z)2 − it

)

z 0 −2r(Im z)t
0 0 1 rz + zr 0

(

2r2(Im z)2 + it− 1
2
r2
)

z

0 0 0 1 0 −r
0 0 0 0 0 z

0 0 0 0 0 0
0 0 0 0 0 0

















, (39)

U =

















z zr − 2ir(Im z) q3 q1 −z2sr q2
0 z −rz2 − z

2
(r2 + s2) −sz2 q4

0 0 z r 0 z2(2r2(Im z)2 + it+ 1
2
r2) + 2iz3r2(Im z)

0 0 0 z 0 −zr − 2iz2r(Im z)
0 0 0 zs 1 −2isr(Imz)
0 0 0 0 0 z

















,

(40)
where

q1 = 4ir3(Im z)3 + ir3(Im z) +

(

−1

2
r3 − 2r3(Im z)2 − irt

)

z

+2ir3z2(Im z) +

(

−1

2
r3 − 2r3(Im z)2 + irt

)

z,

q2 = −4ir4(Im z)3+ir4(Im z)−4r2t(Im z)+

(

−1

8
r4 + 6r4(Im z)4 − r4(Im z)2 − 1

2
s2r2 − 1

2
t2
)

z,

q3 = 2izr2(Im z)− z2r2 + 2ir2(Im z)z − 2r2(Im z)2 + it− 1

2
r2,

q4 = z

(

−irt+ 2r3(Im z)2 − 1

2
s2r

)

+ z2
(

is2r(Im z) + 4ir3(Im z)3
)

.

VI.

X =









λ 0 z r 1
2
(1− i

√
3)z

λ 0 1
2
(1 + i

√
3)z

λ 0
λ









, |z| = 1, r ∈ R, r ≥
√
3, H =

[

0 I2
I2 0

]

. (41)

A =









0 0 0 1
0 0 1 r

0 0 0 0
0 0 0 0









, U =









r
2
(−1− i

√
3)z z 0 0

1
2
(1 + i

√
3)z 0 0 0

0 0 0 z

0 0 1
2
(1 + i

√
3)z zr









. (42)

VII.

X =









λ 0 0 0
λ 1 0

λ 0
λ









, H =

[

0 I2
I2 0

]

. (43)
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U = Z2 ⊕ Z2, A =









0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0









. (44)

VIII.

X =













λ 0 1 0 0
λ 0 1 0

λ z 0
λ 0

λ













, |z| = 1, H =





0 0 I2
0 1 0
I2 0 0



 . (45)

A =













0 0 1 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0













, U =













1 0 0 0 0
0 −1

2
z 1 0 z

0 −1 z 0 0
0 0 0 1 0
0 z 0 0 0













. (46)

IX.

X =













λ 0 1 0 0
λ 0 r z

λ z2 0
λ 0

λ













, |z| = 1, r > 0. H =





0 0 I2
0 1 0
I2 0 0



 . (47)

A =













0 0 1 r2 zr

0 0 0 rz 1
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0













, U =













1 −zr 0 0 0
0 z 0 0 0
0 0 z2 0 0
0 0 0 1 0
0 0 0 r z













. (48)

X.

X =

















λ 0 1 0 ir 0
λ 0 1 s ir

λ 0 z 0
λ 0 z

λ 0
λ

















, |z| = 1, z 6= −1, r, s ∈ R, s > 0, H =





0 0 I2
0 I2 0
I2 0 0



 .

(49)
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A =

















0 0 0 1 s 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0

















, U =

















0 1 0 ir 0 −1
2
r2

1 0 ir 0 −1
2
r2 0

0 0 0 z 0 irz

0 0 z 0 irz 0
0 0 0 0 0 1
0 0 0 0 1 0

















. (50)

XI.

X =





















λ 0 1 0 0 0 0
λ 0 1 0 0 0

λ 0 0 −z1z2 cosα sinα cos β
λ 0 z1 sinα z2 cosα cos β

λ 0 sin β
λ 0

λ





















, H =





0 0 I2
0 I3 0
I2 0 0



 , (51)

where
|z1| = |z2| = 1, 0 < α, β ≤ π

2
.

A =





















0 0 1 0 0 0 0
0 0 0 z2 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 z2
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0





















, (52)

U =





















1 0 0 0 0 0 0
0 z2 0 0 0 0 0
0 0 −z1z2 cosα z2 sinα cos β − sinα sin β 0 0
0 0 z1 sinα cosα cos β −z2 cosα sin β 0 0
0 0 0 z2 sin β cos β 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 z2





















. (53)
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XII.

X =

























λ 0 1 0 0 0 0 0
λ 0 1 0 0 0 0

λ 0 0 0 −z1z2 sinα cos β cosα cos γ
λ 0 0 z1 cosα cos β z2 sinα cos γ

λ 0 sin β 0
λ 0 sin γ

λ 0
λ

























, H =





0 0 I2
0 I4 0
I2 0 0



 ,

(54)
where

|z1| = |z2| = 1, 0 ≤ α <
π

2
, 0 < β < γ ≤ π

2
.

A =

























0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

























, (55)

U =

























0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 cosα cos γ −z1z2 sinα cos β z1z2 sinα sin β − cosα sin γ 0 0
0 0 z2 sinα cos γ z1 cosα cos β −z1 cosα sin β −z2 sinα sin γ 0 0
0 0 0 sin β cos β 0 0 0
0 0 sin γ 0 0 cos γ 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

























.

(56)

This concludes the proof of Theorem 35.

Remark 36 We note that in each case I through XII the corresponding matrices A and
U do not commute.

Remark 37 The example of an indecomposableX in a space with indefinite inner product
of rank 2 that was given in [8] by

X =









0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0









and H = Z4
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appears in (VII.) in the forms (43) and (44). Indeed, setting

P =









1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0









,

one finds that

P−1XP =









0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0









and P ∗HP =

[

0 I2
I2 0

]

.
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