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Abstract

We discuss structure-preserving Jacobi-like algorithms for the solution of the in-
definite generalized Hermitian eigenvalue problem. We discuss a method based on the
solution of Hermitian 4-by-4 subproblems which generalizes the Jacobi-like method
of Bunse-Gerstner/Faßbender for Hamiltonian matrices. Furthermore, we discuss
structure-preserving Jacobi-like methods based on the solution of non-Hermitian 2-
by-2 subproblems. For these methods a local convergence proof is given. Numerical
test results for the comparison of the proposed methods are presented.
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1 Introduction

The generalized Hermitian eigenvalue problem arises in many applications. One important
example is the linear quadratic optimal control problem, see [18, 19, 24] and the references
therein. This is the problem of minimizing the cost functional

1

2

∫ ∞

t0

(

x(t)∗Qx(t) + u(t)∗Ru(t) + u(t)∗S∗x(t) + x(t)∗Su(t)
)

dt (1)

subject to the dynamics

Eẋ(t) = Ax(t) +Bu(t), t0 < t (2)

x(t0) = x0, (3)

where A,E,Q ∈ Cn×n, B, S ∈ Cn×m, R ∈ Cm×m, Q, R Hermitian, x0, x(t), u(t) ∈ Cn,
and t0, t ∈ R. It is known that solutions of (1)–(3) can be obtained via the solution of a
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boundary value problem, see [23, 24] and the references therein. For the solution of this
boundary value problem one has to compute deflating subspaces of the matrix pencil

λA− B = λ





0 −E∗ 0
E 0 0
0 0 0



−





Q A∗ S
A 0 B
S∗ B∗ R



 .

Setting G0 = iA and H0 = B, we find that λG0 − H0 is a Hermitian pencil, i.e., both G0

and H0 are Hermitian. Clearly, both pencils λA − B and λG0 − H0 have the same right
deflating subspaces and the eigenvalues of λG0−H0 coincide with the eigenvalues of λA−B
multiplied by i.

Another important application is the Hermitian quadratic eigenvalue problem, i.e., the
problem of finding λ ∈ C and x ∈ Cn\{0} such that (λ2M + λC + K)x = 0, where
M,C,K ∈ Cn×n are Hermitian. This problem arises for example in the analysis of geo-
metrical nonlinear buckling structures with finite element methods (see [1, 12]) or in the
theory of damped oscillatory systems (see [9, 17]). With the substitution µ = 1

λ
for λ 6= 0,

the problem can be linearized such that it reduces to the generalized Hermitian eigenvalue
problem

µ

[

C M
M 0

] [

λx
x

]

=

[

−K 0
0 M

] [

λx
x

]

, (4)

see, e.g., [12].
There are numerous algorithms for the solution of the generalized Hermitian eigenvalue

problem λGx = Hx for the case that G (or H, respectively) is positive definite. For
example, one could compute the Cholesky factorization G = LLT and then consider the
standard eigenvalue problem λI − L−1AL−T , see [11] and the references therein. But,
there is no software available that takes advantage of the symmetry and possible spectral
properties for the case that the generalized eigenvalue problem λG − H is indefinite [32],
although these problems arise frequently in applications. Indeed, easy examples show that
the eigenvalue problems λG0x = H0x and (4) are in general indefinite.

On the other hand, it is well known that the indefinite generalized Hermitian eigenvalue
problem is related to the standard eigenvalue problem for a matrix that is selfadjoint with
respect to an indefinite inner product. Indeed, if G is nonsingular, then λG−H is equivalent
to the pencil λI − G−1H, where G−1H is selfadjoint with respect to the indefinite inner
product induced by G, i.e., (G−1H)∗G = G(G−1H). This fact gives rise to the following basic
idea: given a method for the solution of the standard eigenvalue problem for a matrix that
is structured with respect to an indefinite inner product, try to generalize this method to
Hermitian pencils.

In recent years, there has been interest in generalizing Jacobi’s algorithm for the sym-
metric eigenvalue problem to other structured eigenvalue problems, in particular to Hamil-
tonian or doubly structured eigenvalue problems, see [2, 3, 8]. Hamiltonian matrices are
skew-adjoint with respect to the indefinite inner product induced by the matrix

J := Jn =

[

0 In
−In 0

]

∈ C2n×2n, (5)
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where In denotes the n× n identity matrix. Thus, a matrix H ∈ C2n×2n is Hamiltonian if
and only if HJ + JH∗ = 0. Analogously, a matrix S ∈ C2n×2n is called skew-Hamiltonian
if and only if SJ − JS∗ = 0. Following the basic idea just mentioned, it will be shown
in this paper that Jacobi-like methods for Hamiltonian matrices can be generalized to the
case of Hermitian pencils. We will focus on even-sized pencils. A generalization to odd-
sized Hermitian pencils is possible, but this needs a more detailed discussion which is not
presented here.

The interest in generalized Jacobi-like methods is due to several reasons. First, these
methods are inherently parallelizable and backward stable if one restricts oneself to unitary
transformation matrices. (E.g., backward stability for the Jacobi-like methods proposed
in [8] has been shown in [31].) Moreover, Jacobi’s classical algorithm is more accurate
than the QR-algorithm if a proper stopping criterion is used [5, 20] and has the advan-
tage of converging very fast, if the matrix under consideration is already close to being
diagonal. Thus, given a structured eigenvalue problem with a matrix already close to a
condensed form that is to be computed, Jacobi-like algorithms are expected to converge
much faster than methods that ignore this special property. Hence, Jacobi-like methods
may be attractive for the solution of eigenvalue problems that depend on a parameter,
e.g., H∞ control problems [34], where one has to compute the eigenvalues of a Hamiltonian
matrix H(γ) depending continuously on a real parameter γ. Once, a Hamiltonian Schur
form for a matrix H(γ0) with some specific value γ0 has been computed, the corresponding
transformations will transform matrices H(γ), where γ is sufficiently close to γ0, to a form
close to Hamiltonian Schur form. It is then reasonable to use a Jacobi-like method for the
solution of the eigenvalue problem with H(γ).

The paper is organized as follows. After reviewing anti-triangular forms for Hermitian
pencils and relating them to the Hamiltonian Schur form of Hamiltonian matrices in Sec-
tion 2, we will introduce the algorithm JIGH4 (a Jacobi-like method that is based on the so-
lution of 4×4 subproblems and that generalizes the algorithm of Bunse-Gerstner/Faßbender
for Hamiltonian matrices [2]) in Section 3. In Section 4, we will propose the algorithm
JIGH2 (a method based on the solution of 2 × 2 subproblems) that we will prove to be
locally quadratically convergent in Section 5. Since this algorithm may sometimes stag-
nate, we propose a slightly modified version called MJIGH2 in Section 6 that is also locally
quadratically convergent, but that does not stagnate in practice. In Section 7, we present
numerical test results for the comparison of the methods JIGH4 and MJIGH2.

2 Anti-triangular forms for Hermitian pencils

The Jacobi-like algorithms that will be presented in this paper are supposed to be structure
preserving algorithms. (The eigenvalues of Hermitian pencils occur in pairs (λ, λ̄), see,
e.g., [30], and we want to maintain this property.) The structure of Hermitian pencils
is preserved under congruence transformations λG − H 7→ P ∗(λG − H)P , where P is
nonsingular, and since we are interested in restricting ourselves to unitary transformations
for the sake of numerical stability, we will consider the problem of finding condensed forms
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for Hermitian pencils under simultaneous unitary similarity. The classical Schur form would
be such that both G and H are diagonal. However, it is well known that a pair of Hermitian
matrices is simultaneously unitarily diagonalizable if and only if the matrices commute. On
the other hand, indefinite Hermitian pencils may have complex conjugate eigenvalues and in
this case a diagonal form cannot exist, even if we allow general congruence transformations
instead of unitary ones. An alternative to diagonal forms are the so-called anti-triangular
forms that have been introduced in [22]. An n × n-matrix A = (ajk) is called lower
anti-triangular if ajk = 0 for all j, k such that j + k ≤ n, i.e., if A has the pattern

[

¡
¡¡

]

.

Definition 1 We say that a Hermitian pencil λG − H ∈ Cn×n is in anti-triangular form
if both G and H are lower anti-triangular.

Clearly, anti-triangular forms display the eigenvalues of the pencil and a nested set of
deflating subspaces. Moreover, anti-triangular forms for Hermitian pencils are related to
Schur-like forms for skew-Hamiltonian/Hamiltonian pencils that have been discussed in
[21], and thus, they are related to Hamiltonian Schur forms for Hamiltonian matrices. (A
skew-Hamiltonian/Hamiltonian pencil is a pencil λS−H such that S is skew-Hamiltonian
and H is Hamiltonian.) If λS−H is a skew-Hamiltonian/Hamiltonian pencil in Schur-like
form, i.e., λS −H has the pattern

[

@@
@@

]

,

then λiJS − JH is a Hermitian pencil and has the pattern
[

@@

@@

]

∼
[

¡¡
¡¡

]

.

Here, ∼ denotes congruence, i.e., λiJS − JH is congruent to a pencil in anti-triangular
form. From this point of view, anti-triangular forms are the natural forms to look for if one
is interested in obtaining condensed forms for indefinite Hermitian pencils under unitary
transformations.

It is well known that the Hamiltonian Schur form for Hamiltonian matrices or analo-
gously the Schur-like form for skew-Hamiltonian/Hamiltonian pencils does not always exist
if the matrix or pencil under consideration has purely imaginary eigenvalues. A similar
observation can be made for anti-triangular forms for Hermitian pencils. Here, real eigen-
values are the ones that might cause problems. A necessary and sufficient condition for the
existence of anti-triangular forms for Hermitian pencils was obtained in [22] Theorem 15
and Corollary 21. We will not quote those results in full generality, but only the following
important special case:

Proposition 2 Let λG − H ∈ Cn×n be a Hermitian pencil having no real eigenvalues if
n is even, or exactly one real eigenvalue (counting multiplicities) if n is odd. Then there
exists a unitary matrix U ∈ Cn×n such that λU∗GU − U∗HU is in anti-triangular form.
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3 A method working on 4-by-4 subproblems (JIGH4)

In this section, we will generalize the Jacobi-like algorithm for Hamiltonian matrices by
Bunse-Gerstner/Faßbender [2] to the case Hermitian pencils. We start with the following
short survey.

3.1 A short survey on Jacobi methods

The idea of Jacobi’s original method [15] for the diagonalization of a symmetric matrix
A = (aij) ∈ Rn×n is to successively apply similarity transformations with rotation matrices
such that each one diagonalizes a particular 2×2 submatrix of A. In each step, one chooses
a pivot pair of indices (k, l) and applies a similarity transformation with a rotation matrix
U = (uij) that annihilates the entries (l, k) and (k, l) of A. Here, U coincides with the
identity except for the elements ukk = ull = cosα and −ukl = ulk = sinα.

The classical Jacobi algorithm chooses indices (k, l) such that a2
kl is maximal in each

step while cyclic Jacobi methods use fixed sequences of indices (k, l) such as

(k, l) = (1, 2), (1, 3), . . . , (1, n), (2, 3), . . . , (2, n), . . . , (n− 1, n),

where every possible index pair is considered exactly once. Usually, the performance of
n(n− 1)/2 Jacobi steps is called a sweep, and hence, cyclic Jacobi methods consider every
possible index pair once in a sweep. Under certain conditions both the classical Jacobi
method and the cyclic Jacobi methods are convergent and their asymptotic convergence
rate is quadratic, see [14, 16, 26, 33].

Jacobi’s method has been adapted to other classes of matrices, see, e.g., [2, 3, 6, 8,
10, 13, 25]. In particular, Stewart [28] and Eberlein [7] generalized Jacobi’s method to
the computation of the Schur decomposition of a general complex matrix. Similarly to
Jacobi’s original method, a pivot pair (k, l) is chosen and a similarity transformation with
a rotation U = (uij) is applied that yields the Schur decompositions of the corresponding
2×2 subproblem. Again, U coincides with the identity except for the elements ukk = ull =
cosα, ukl = −e−iθ sinα, and ulk = eiθ sinα. While Stewart proposed to only use pivot
elements from the lower subdiagonal, Eberlein proposed to allow all elements from the
lower triangular part of the matrix as pivot elements. Moreover, both methods differ in the
choice of rotation parameters. Charlier and van Dooren [4] generalized Stewart’s method
to the computation of the generalized Schur decomposition of matrix pencils and were able
to prove global convergence under certain restrictions, whereas there is no convergence
proof for the method of Eberlein so far. But, it has been observed that Eberlein’s method
converges faster than Stewart’s method if the matrix under consideration is not close to
being normal.

In 1990, Byers [3] adapted Stewart’s method to the computation of the Hamiltonian
Schur form of a Hamiltonian matrix A. In order to preserve the structure of Hamiltonian
matrices in each step, the proposed algorithm considers 4 × 4 subproblems rather than
2 × 2 subproblems. However, it has been observed that convergence may be very slow if
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the matrix under consideration is not close to a normal matrix. Sometimes, the method
does not converge at all. One problem is that some of the 4×4 subproblems may have purely
imaginary eigenvalues such that a reduction as proposed in the algorithm is not possible.
Subproblems with purely imaginary eigenvalues may occur even when the original matrix
A has no purely imaginary eigenvalues.

In 1997, Bunse-Gerstner/Faßbender proposed a different Jacobi-like algorithm that
generalizes Eberlein’s method. Again, the algorithm considers 4 × 4 subproblems instead
of 2×2 subproblems. As for Byers’ method, subproblems with purely imaginary eigenvalues
may occur such that a reduction in the current step is not necessarily possible. However,
the authors were able to observe convergence for all their test problems and found that
the performance of their method was superior to the one of Byers’ when the Hamiltonian
matrix under consideration was not normal. Unfortunately, there is no convergence proof
for this method so far.

It is the aim of this section to generalize Jacobi-like methods for Hamiltonian matrices
to the case of indefinite Hermitian pencils. Given the fact that the convergence behavior of
Bunse-Gerstner/Faßbender’s method is superior to the one of Byers’ method if the matrix
under consideration is not normal (a pair of simultaneously unitarily anti-diagonalizable
Hermitian matrices could be interpreted as a Hermitian pencil corresponding to a normal
Hamiltonian matrix), we will focus on the first method. Moreover, we will restrict ourselves
to the case of even-sized pencils. Generalizations to the case of odd-sized pencils are
possible but will involve the solution of some 3 × 3 subproblems. Details will not be
presented in this paper.

3.2 Solving the eigenvalue problem for 4-by-4 Hermitian pencils

The anti-triangular form for 4 × 4 Hermitian pencils (provided that this form exists) can
be computed by adapting the method for the computation of Schur-like forms for skew-
Hamiltonian/Hamiltonian pencils developed in [21]. This requires an a-priori knowledge
of eigenvalues and eigenvectors. (In our MATLAB implementation, the routine ‘eig’ has
been used for the solution of the 4× 4 eigenvalue problems.) If λG −H is a regular 4× 4
Hermitian pencil we have to distinguish three different cases:

(i) λG −H has two pairs of complex conjugate eigenvalues;

(ii) λG −H has two real eigenvalues and a pair of complex conjugate eigenvalues;

(iii) λG −H has four real eigenvalues.

Here, possible infinite eigenvalues are considered to be real eigenvalues. If we are in Case (i)
or (ii), let v be an eigenvector associated with a nonreal eigenvalue λ1 of λG − H. Then
Gv (or Hv) and v are orthogonal, because of

λ1v
∗Gv = v∗Hv = (v∗Hv)∗ = λ̄1v

∗Gv.
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Thus, there exists a unitary matrix Q = [q1, q2, q3, q4] such that q1 = v/‖v‖ and q4 =
Gv/‖Gv‖. We then obtain

Q∗(λG −H)Q = λ









0 0 0 g14

0 g22 g23 g24

0 g23 g33 g34

g14 g24 g34 g44









−









0 0 0 h14

0 h22 h23 h24

0 h23 h33 h34

h14 h24 h34 h44









. (6)

The eigenvalues of this pencil are λ1 = h14/g14 and λ̄1 together with the eigenvalues of the
subpencil

λ

[

g22 g23

g23 g33

]

−
[

h22 h23

h23 h33

]

. (7)

If we are in Case (ii), then (7) has two real eigenvalues and we stop the reduction process.
The form (6) will be called partial anti-triangular form. If we are in Case (i), then (7) has
a pair of complex conjugate eigenvalues and we repeat the procedure above to transform
this subpencil to anti-triangular form. For our 4× 4 pencil, this means that there exists a
unitary matrix Q̃ such that

Q̃∗(λG −H)Q̃ = λ









0 0 0 g14

0 0 g̃23 g̃24

0 g̃23 g̃33 g̃34

g14 g̃24 g̃34 g44









−











0 0 0 h14

0 0 h̃23 h̃24

0 h̃23 h̃33 h̃34

h14 h̃24 h̃34 h44











.

Clearly, there is a continuum of simultaneous unitary similarity transformations that bring
λG −H to anti-triangular form, if there are no real eigenvalues. Thus, the question arises,
which one to choose, in order to guarantee best convergence properties of the corresponding
Jacobi-like method. One could choose the matrix Q̃ that is nearest to the identity or such
that the sum of the absolute values of the left lower triangular part of Q̃ is minimized.
At this stage, we do not know which strategy is the best. The two strategies mentioned
above work well for pencils that are already close to anti-triangular form, but they seem
to slow down the convergence process for random Hermitian pencils. In our numerical
experiments, we observed fastest convergence by using the following strategy for choosing
the eigenvectors used in the reduction procedure for Case (i) and Case (ii) above:

1. for the first reduction step (towards partial anti-triangular form), consider only eigen-
vectors associated with eigenvalues with negative imaginary part and among those
choose the normalized eigenvector that is closest to the first unit vector;

2. for the second reduction step (only in Case (i)), choose the eigenvector associated
with the eigenvalue with negative imaginary part.

Thus, we only consider eigenvectors associated with eigenvalues with negative imaginary
parts. (Clearly, one can also consider an analogous strategy that only chooses eigenvectors
associated with eigenvalues with positive imaginary part.)
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3.3 The algorithm JIGH4

We have provided all ingredients to formulate the algorithm JIGH4 (Jacobi-like algorithm
for the indefinite generalized Hermitian eigenvalue problem based on 4× 4 subproblems).
We use a cyclic-by-row-type ordering scheme of pivot indices, e.g., in the 8× 8 case:

(1, 2, 7, 8), (1, 3, 6, 8), (1, 4, 5, 8), (2, 3, 6, 7), (2, 4, 5, 7), (3, 4, 5, 6), (1, 2, 7, 8), . . .

Throughout the rest of this paper, if X = (xij) ∈ C2n×2n, let X
(4)
kl denote the matrix

X
(4)
kl =









xkk xkl xk,2n+1−l xk,2n+1−k

xlk xll xl,2n+1−l xl,2n+1−k

x2n+1−l,k x2n+1−l,l x2n+1−l,2n+1−l x2n+1−l,2n+1−k

x2n+1−k,k x2n+1−k,l x2n+1−k,2n+1−l x2n+1−k,2n+1−k









.

Then algorithm JIGH4 takes the form as given below.

Algorithm JIGH4: Given a 2n× 2n Hermitian pencil λG −H, having no real
eigenvalues and a strategy for the solution of 4× 4 subproblems, the algorithm
computes the anti-triangular form of λG −H.

while stopping criterion not satisfied
for k = 1, . . . , n− 1

for l = k + 1, . . . , n

if λG(4)
kl −H

(4)
kl is singular or has real eigenvalues only

Q = I4;

elseif λG(4)
kl −H

(4)
kl has no real eigenvalues

compute a unitary Q such that Q∗(λG(4)
kl −H

(4)
kl )Q

is in anti-triangular form;
else

compute a unitary Q such that Q∗(λG(4)
kl −H

(4)
kl )Q

is in partial anti-triangular form;
end

set Q̃ := I2n and Q̃
(4)
kl := Q;

set G := Q̃∗GQ̃ and H := Q̃∗HQ̃;
end

end
end

Following [2], a ‘sweep’ denotes one performance of the ‘while’-loop, although this does
not correspond to n(n− 1)/2 single Jacobi-steps. Thus, assuming that all occurring 4× 4
subproblems can be solved, a sweep in the 8 × 8 case proceeds as indicated in the sketch
below. The current subpencil is marked by the bold and the blank discs, where the blank
discs display the elements that will be annihilated in the current step.
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























◦ ◦ · · · · ◦ •
◦ ◦ · · · · • •
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
◦ • · · · · • •
• • · · · · • •

























Ã

























◦ · ◦ · · ◦ · •
· · · · · · · ·
◦ · ◦ · · • · •
· · · · · · · ·
· · · · · · · ·
◦ · • · · • · •
· · · · · · · ·
• · • · · • · •

























Ã

























◦ · · ◦ ◦ · · •
· · · · · · · ·
· · · · · · · ·
◦ · · ◦ • · · •
◦ · · • • · · •
· · · · · · · ·
· · · · · · · ·
• · · • • · · •

























Ã

























· · · · · · · ·
· ◦ ◦ · · ◦ • ·
· ◦ ◦ · · • • ·
· · · · · · · ·
· · · · · · · ·
· ◦ • · · • • ·
· • • · · • • ·
· · · · · · · ·

























Ã

























· · · · · · · ·
· ◦ · ◦ ◦ · • ·
· · · · · · · ·
· ◦ · ◦ • · • ·
· ◦ · • • · • ·
· · · · · · · ·
· • · • • · • ·
· · · · · · · ·

























Ã

























· · · · · · · ·
· · · · · · · ·
· · ◦ ◦ ◦ • · ·
· · ◦ ◦ • • · ·
· · ◦ • • • · ·
· · • • • • · ·
· · · · · · · ·
· · · · · · · ·

























Unfortunately, as for the method by Bunse-Gerstner/Faßbender, there is no convergence
proof for JIGH4, but convergence can be observed in experiments.

4 A method working on 2-by-2 subproblems (JIGH2)

In this section, we discuss the algorithm JIGH2 (Jacobi-like algorithm for the indefinite
generalized Hermitian eigenvalue problem based on 2 × 2 subproblems). But first, let us
have another look at the algorithm JIGH4. Why do we consider 4×4 subproblems instead
of 2 × 2 subproblems? This comes from the fact that we want to deal with subproblems
which have a structure corresponding to the one of the original problem. For example, if
we consider the 8×8 pencil sketched below, then the 4×4 subpencil indicated by the bold
discs is the smallest Hermitian subpencil that contains the (2, 3)-entry ‘∗’ of the pencil and
that may be used to transport ‘weight’ from the upper anti-triangular part of the pencil
into the lower anti-triangular part.

λG −H =

























· · · · · · · ·
· • ∗ · · • • ·
· • • · · • • ·
· · · · · · · ·
· · · · · · · ·
· • • · · • • ·
· • • · · • • ·
· · · · · · · ·

























Thus, if we want to work on 2× 2 subproblems, some of them have to be non-Hermitian.
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Suppose that we want to eliminate the (k, l)-entry (and thus, simultaneously the (l, k)-
entry) of the pencil in one Jacobi step, where we assume k < l ≤ n. This entry is contained
in the 2× 2 subpencil

λG̃ − H̃ = λ

[

gkl gk,2n+1−k

g2n+1−l,l g2n+1−l,2n+1−k

]

−
[

hkl hk,2n+1−k

h2n+1−l,l h2n+1−l,2n+1−k

]

(8)

which we assume to be regular. This subpencil is indicated by bold discs in the sketch (9)
below for the 8× 8 case with (k, l) = (2, 3).

Q̃∗(λG −H)Q̃ =

























· · · · · · · ·
· · • · · · • ·
· ∗ · · · ∗ · ·
· · · · · · · ·
· · · · · · · ·
· · • · · · • ·
· ∗ · · · ∗ · ·
· · · · · · · ·

























(9)

(Analogously, the subpencil indicated by stars contains the (3, 2)-entry, but for the moment,
we ignore this subpencil.) Clearly, the subpencil (8) is no longer Hermitian, but we can
use it to transport ‘weight’ from the upper anti-triangular part of the pencil into the
lower anti-triangular part by applying an anti-triangular version of the generalized Schur
decomposition, i.e., we compute unitary matrices U = (uij) and V = (vij) such that
U(λG̃−H̃)V is in anti-triangular form. Indeed, if w = (w1, w2)

T is a normalized eigenvector
of λG̃ − H̃ and if x = (x1, x2)

T = G̃w/‖G̃w‖ (or x = (x1, x2)
T = H̃w/‖H̃w‖ if G̃w = 0),

then

U =

[

−x2 x1

x1 x2

]

, V =

[

w1 −w2

w2 w1

]

are unitary and U(λG̃ − H̃)V is in anti-triangular form.
In order to preserve the structure of the Hermitian pencil, we define Q̃ to be the matrix

that differs from the identity I2n only in the submatrix

Q̃
(4)
kl = Q =









u11 0 u21 0
0 v11 0 v12

u12 0 u22 0
0 v21 0 v22









or Q̃
(4)
kl = Q =









u11 u21 0 0
u12 u22 0 0
0 0 v11 v12

0 0 v21 v22









, (10)

if l < n+1− l or l > n+1− l, respectively. (Note that the case l = n+1− l cannot occur
if n is even.) Then, we transform the pencil via Q̃∗(λG − H)Q̃. To illustrate the effect of
this simultaneous similarity transformation, we again refer to the sketch in (9). Note that
in the updated pencil, the subpencil indicated by the bold discs in (9) is just U(λG̃ −H̃)V .
Since we used a structure preserving transformation, also the subpencil indicated by the
stars is transformed to anti-triangular form. From this point of view, we again worked on

10



a 4×4 subpencil, but the transformation was computed by solving an (unstructured) 2×2
problem only. We note that the unstructured subpencil λG̃ − H̃ can always be reduced to
anti-triangular form provided that the subpencil is regular. This is different if we want to
eliminate the (k, k)-entry of the Hermitian pencil, where k ≤ n. Then, we have to consider
the 2× 2 Hermitian subpencil

λ

[

gkk gk,2n+1−k

gk,2n+1−k g2n+1−k,2n+1−k

]

−
[

hkk hk,2n+1−k

hk,2n+1−k h2n+1−k,2n+1−k

]

and if this pencil has real eigenvalues, then an anti-triangular form under simultaneous
unitary similarity need not exist. (In this case, we do not transform the subpencil at all.)

For the rest of the paper, if X = (xij) ∈ C2n×2n, let X
(2)
kl denote the matrix

X
(2)
kl =

[

xkl xk,2n+1−k

x2n+1−l,l x2n+1−l,2n+1−k

]

.

During the computation of the 2 × 2 anti-triangular forms, there are two choices for the
transformation matrices. As a strategy, we suggest to choose the transformation matrices
that are closest to the identity, i.e., in the computations, we start with the (normalized)
eigenvector that is closest to the first unit vector.

Algorithm JIGH2: Given a strategy for the solution of 2× 2 subproblems, the
algorithm computes the anti-triangular form of a 2n× 2n Hermitian pencil
λG −H having no real eigenvalues.

while stopping criterion not satisfied
for k = 1, . . . , n

if λG(2)
kk −H

(2)
kk is regular and has no real eigenvalues

compute a unitary Q ∈ C2×2 such that Q∗(λG(2)
kk −H

(2)
kk )Q

is in anti-triangular form;
else

set Q = I2;
end

set Q̃ := I2n and Q̃
(2)
kk := Q;

set G := Q̃∗GQ̃ and H := Q̃∗HQ̃;
for l = k + 1, . . . , 2n− k

if λG(2)
kl −H

(2)
kl is regular

compute unitary U, V ∈ C2×2 such that U(λG
(2)
kl −H

(2)
kl )V

is in anti-triangular form and set Q as in (10);

set Q̃ := I2n, and Q̃
(4)
kl := Q;

set G := Q̃∗GQ̃ and H := Q̃∗HQ̃;
end

end
end

end

11



Again, a ‘sweep’ will denote one complete performance of the ‘while’-loop. Assuming
that all Hermitian 2 × 2 problems can be solved, a sweep in the 6 × 6 case proceeds as
indicated in the sketch below. Again, the current subpencil is marked by the bold and blank
discs, where the blank discs display the elements that will be annihilated in the current
step. The subpencil marked by the stars will also be transformed to anti-triangular form
for symmetry reasons.

















◦ · · · · •
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
• · · · · •

















Ã

















· ◦ · · · •
∗ · · · ∗ ·
· · · · · ·
· · · · · ·
· • · · · •
∗ · · · ∗ ·

















Ã

















· · ◦ · · •
· · · · · ·
∗ · · ∗ · ·
· · • · · •
· · · · · ·
∗ · · ∗ · ·

















Ã

















· · · ◦ · •
· · · · · ·
· · · • · •
∗ · ∗ · · ·
· · · · · ·
∗ · ∗ · · ·

















Ã

















· · · · ◦ •
· · · · • •
· · · · · ·
· · · · · ·
∗ ∗ · · · ·
∗ ∗ · · · ·

















Ã

















· · · · · ·
· ◦ · · • ·
· · · · · ·
· · · · · ·
· • · · • ·
· · · · · ·

















Ã

















· · · · · ·
· · ◦ · • ·
· ∗ · ∗ · ·
· · • · • ·
· ∗ · ∗ · ·
· · · · · ·

















Ã

















· · · · · ·
· · · ◦ • ·
· · · • • ·
· ∗ ∗ · · ·
· ∗ ∗ · · ·
· · · · · ·

















Ã

















· · · · · ·
· · · · · ·
· · ◦ • · ·
· · • • · ·
· · · · · ·
· · · · · ·

















Since JIGH2 works on 2 × 2 subproblems rather than on 4 × 4 problems, it can be
considered a direct generalization of Eberlein’s method [7].

5 Proof of local convergence of JIGH2

In this section we proof that JIGH2 converges quadratically, if the the given Hermitian
pencil λG − H is already sufficiently close to being in anti-triangular form and if for the
solution of 2×2 subproblems the strategy is used that chooses the transformation matrices
that are closest to the identity. But first, let us introduce some notation which is adopted
from [27] (see also [29]). Given two pairs (a1, b1), (a2, b2) ∈ (C× C) \ {(0, 0)}, let

dif
(

(a1, b1), (a2, b2)
)

:= inf
p,q:max(|p|,|q|)=1

max(pa1 + qa2, pb1 + qb2).

Then by [29] Theorem VI.1.11 we have that dif((a1, b1), (a2, b2)) > 0 if and only if the
spectra of the 1× 1 pencils λa1 − b1 and λa2 − b2 are disjoint.
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Lemma 3 Let ε, η > 0 and

λG −H = λ

[

g11 g12

g12 g22

]

−
[

h11 h12

h12 h22

]

be such that |g11|, |h11| < ε, |g22|, |h22| < η, and

% = dif
(

(g12, h12), (g12, h12)
)

> 0.

If 4ηε/%2 < 1, then λG − H has no real eigenvalues and, in particular, λG − H can be
transformed to anti-triangular form.

Proof. With the assumptions above, λG − H has two distinct eigenvalues by [29] Theo-
rem VI.2.13. For t ∈ R consider the pencil

P (t) := λ

[

tg11 g12

g12 g22

]

−
[

th11 h12

h12 h22

]

.

Then P (t) is a regular Hermitian pencil for all t ∈ [0, 1] (this follows by investigating its
determinant) and P (1) = λG−H. Since % > 0, the pencil P (0) has two complex conjugate
eigenvalues. Assume that the eigenvalues of P (1) are real. Consider

t̃ := inf
t∈[0,1]

{t : P (t) has real eigenvalues}.

Since the eigenvalues of regular pencils depend continously on the entries of the pencil,
we obtain that P (t̃) has a real eigenvalue with multiplicity two. Since |t̃g11|, |t̃h11| < ε,
this contradicts Theorem VI.2.13. in [29]. (This theorem states, in particular, that the
eigenvalues must be distinct.) Thus, λG −H cannot have real eigenvalues.

Before we show local convergence of JIGH2, let us analyze what happens in one single
Jacobi-step of the algorithm. Let us assume that we are in the µth sweep and that we
perform the pth Jacobi step in this sweep. Since any sweep consists of

s :=
n2

4
=

n/2
∑

k=1

(2k − 1)

Jacobi steps, we are performing step number ν := µs+p, currently working on the updated
pencil λGν−Hν , Gν = (g

(ν)
ij ), Hν = (h

(ν)
ij ), where λG0−H0 := λG−H. Assume, furthermore,

that we want to eliminate the (k, l)-entry (and the (l, k)-entry if k 6= l) of the current pencil
λGν −Hν , where k ≤ l ≤ n. Let

δν := max
{

|g(ν)
ij |, |h

(ν)
ij |
∣

∣

∣
i < k or (i = k and i ≤ j < l)

}

, (11)

εν := max
{

|g(ν)
ij |, |h

(ν)
ij |
∣

∣

∣
i+ j ≤ n

}

, (12)

ην := max
{

|g(ν)
ij |, |h

(ν)
ij |
∣

∣

∣
i+ j ≥ n+ 1

}

, (13)

%ν := min
i6=j

dif
(

(g
(ν)
i,n+1−i, h

(ν)
i,n+1−i), (g

(ν)
j,n+1−j , h

(ν)
j,n+1−j)

)

, (14)

13



where we assume %ν > 0 and 4ενην/%
2
ν < 1. Thus, εν and ην , respectively, are the largest

absolute values of entries of Gν and Hν in the strict upper anti-triangular part or in the
lower anti-triangular part (including the anti-diagonal), respectively, while δν is the largest
absolute value of entries in the strict upper anti-triangular part that have already been
considered (and possibly annihilated) once in the current sweep. In the following, we will
distinguish two cases.

Case (1) k = l. Then the current step of JIGH2 computes a unitary Q ∈ C2×2 such
that

Q∗

(

λ

[

gkk gk,n+1−k

gk,n+1−k gn+1−k,n+1−k

]

−
[

hkk hk,n+1−k

hk,n+1−k hn+1−k,n+1−k

])

Q

is in anti-triangular form. Note that such a Q exists by Lemma 3. Clearly, Q can be taken
of the form

Q =

[

cos x −e−iα sinx
eiα sinx cos x

]

.

for some x, α ∈ R. By Theorem VI.2.13 in [29], we then obtain | sinx| < 2εν/%ν . Note
that only elements in the kth and (n + 1 − k)th rows and columns of the updated pencil
λGν+1 −Hν+1 have been changed. For i < k, we obtain

|g(ν+1)
ik | = |g(ν)

ik cos x+ g
(ν)
i,n+1−ke

iα sin x| ≤ |g(ν)
ik |+ |g

(ν)
i,n+1−k| · | sinx| < δν

(

1 + 2
εν
%ν

)

.

The same bound holds for |h(ν+1)
ik |. Similarly, we obtain for k < i < n+ 1− k that

|g(ν+1)
ik |, |h(ν+1)

ik | < εν

(

1 + 2
ην
%ν

)

.

Moreover, we obtain

g
(ν+1)
n+1−k,k

= −g(ν)
kk e

iα sinx cos x+ g
(ν)
n+1−k,k cos

2 x− g
(ν)
k,n+1−k(e

iα sinx)2 + g
(ν)
n+1−k,n+1−ke

iα sin x cos x

= g
(ν)
n+1−k,k +∆k, (using cos2 x = 1− sin2 x)

where

|∆k| < εν · 2
εν
%ν

+ ην · 4
ε2
ν

%2
ν

+ ην · 4
ε2
ν

%2
ν

+ ην · 2
εν
%ν

= 2
(ε2

ν

%ν
+ 4ην

ε2
ν

%2
ν

+ ην
εν
%ν

)

.

A corresponding result holds for h
(ν+1)
n+1−k,k. Then the inequality

dif
(

(a1+e1, b1+f1), (a2+e2, b2+f2)
)

≥ dif
(

(a1, b1), (a2, b2)
)

−max
(

|e1|+ |e2|, |f1|+ |f2|
)

,

see formula (2.19) in [29], implies

dif
(

(g
(ν+1)
n+1−i,i, h

(ν+1)
n+1−i,i), (g

(ν+1)
n+1−j,j , h

(ν+1)
n+1−j,j)

)

> %ν − 4

(

ε2
ν

%ν
+ 4ην

ε2
ν

%2
ν

+ ην
εν
%ν

)

14



for all i, j = 1, . . . , n; i 6= j.
Case (2) k 6= l. Then the current step of JIGH2 computes unitary matrices P,Q ∈ C2×2

such that

P ∗

(

λ

[

g
(ν)
kl g

(ν)
k,n+1−k

g
(ν)
n+1−l,l g

(ν)
n+1−l,n+1−k

]

−
[

h
(ν)
kl h

(ν)
k,n+1−k

h
(ν)
n+1−l,l h

(ν)
n+1−l,n+1−k

])

Q

is in anti-triangular form. Without loss of generality, we may assume that P and Q have
the forms

P ∗ =

[

cos x −e−iα sinx
eiα sin x cos x

]

and Q =

[

cos y −e−iβ sin y
eiβ sin y cos y

]

,

where x, y, α, β ∈ R. By Theorem VI.2.13 in [29], we have | sin x|, | sin y| < 2εν/%ν . Only
elements of the kth, lth, (n + 1 − l)th, and (n + 1 − k)th rows and columns of Gν+1 and
Hν+1 have been changed. If l < n+ 1− l, then we obtain that

|g(ν+1)
kk |

= |g(ν+1)
kk cos2 x− g

(ν+1)
n+1−l,ke

−iα cos x sin x− g
(ν+1)
k,n+1−le

iα cos x sin x+ g
(ν+1)
n+1−l,n+1−l sin

2 x|

< δν + εν · 2
εν
%ν

+ εν · 2
εν
%ν

+ ην · 4
ε2
ν

%2
ν

= δν + 4
ε2
ν

%ν
+ 4

ε2
νην
%2
ν

and if furthermore k < i < l, then we obtain that

|g(ν+1)
ik | = |g(ν)

ik cos y − g
(ν)
i,n+1−le

iβ sin y| < δν + 2
ε2
ν

%ν
.

By this and similar computations, we finally obtain for i < k and j ≤ n+ 1− k that

|g(ν+1)
ij |, |h(ν+1)

ij | < δν

(

1 + 2
εν
%ν

)

.

For i ≥ k and for the case l < n + 1 − l we obtain that |g(ν+1)
ij | and |h(ν+1)

ij | have the
following upper bounds:

j = k j = l j = n+ 1− l

i = k δν + 4 ε2
ν

%ν
+ 4 ε2

ν
ην

%2
ν

0 εν

(

1 + 2 δν+ην
%ν

+ 4 ε2
ν

%2
ν

)

k < i < l δν + 2 ε2
ν

%ν
εν

(

1 + 2ην
%ν

)

εν

(

1 + 2 δν
%ν

)

i = l 0 εν

(

1 + 4ην
%ν

+ 4 ενην
%2
ν

)

−−
l < i < n+ 1− l εν

(

1 + 2ην
%ν

)

εν

(

1 + 2ην
%ν

)

−−
i = n+ 1− l εν

(

1 + 2 δν+ην
%ν

+ 4 ε2
ν

%2
ν

)

−− −−
n+1−l

<i<n+1−k
εν

(

1 + 2ην
%ν

)

−− −−
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Analogously, we obtain for the case l > n + 1 − l that |g(ν+1)
ij | and |h(ν+1)

ij | have the
following upper bounds:

j = k j = n+ 1− l j = l

i = k δν + 4 ενδν
%ν

+ 4 ε3
ν

%2
ν

δν + 2 ε2
ν
+ενδν
%ν

+ 4 ε2
ν
δν

%2
ν

0

k < i < n+ 1− l δν + 2 ε2
ν

%ν
εν

(

1 + 2 δν
%ν

)

εν

(

1 + 2ην
%ν

)

i = n+ 1− l δν + 2 ε2
ν
+ενδν
%ν

+ 4 ε2
ν
δν

%2
ν

εν

(

1 + 4 δν
%ν

+ 4 ενδν
%2
ν

)

−−
n+ 1− l < i < l δν + 2 ε2

ν

%ν
εν

(

1 + 2 δν
%ν

)

−−

i = l 0 −− −−
l < i < n+ 1− k εν

(

1 + 2ην
%ν

)

−− −−

Furthermore, we obtain that

g
(ν+1)
n+1−k,k = g

(ν)
n+1−k,k +∆1,

g
(ν+1)
n+1−l,l = g

(ν)
n+1−l,l +∆2,

h
(ν+1)
n+1−k,k = h

(ν)
n+1−k,k +∆3,

h
(ν+1)
n+1−l,l = h

(ν)
n+1−l,l +∆4,

where

|∆1|, |∆2|, |∆3|, |∆4| < 2

(

ε2
ν

%ν
+ 4ην

ε2
ν

%2
ν

+ ην
εν
%ν

)

.

From the analysis of both Case (1) and (2) and using δν ≤ εν ≤ ην and 4ενην/%
2
ν < 1,

we find that

δν+1 = 0, if ν is a multiple of
n2

4
, (15)

δν+1 < δν + 4
ε2
ν

%ν
+ 4

ε2
νην
%2
ν

, if ν is not a multiple of
n2

4
, (16)

εν+1 < εν

(

1 + 4
ην
%ν

+ 4
ενην
%2
ν

)

< εν

(

2 + 4
ην
%ν

)

, (17)

%ν+1 > %ν − 4

(

ε2
ν

%ν
+ 4ην

ε2
ν

%2
ν

+ ην
εν
%ν

)

. (18)

An analysis of the elements in the lower anti-triangular parts of Gν and Hν would also
produce a bound for ην+1, but for our purpose it is sufficient to note that ην+1 is bounded
by η = max(‖G‖F , ‖H‖F ). Using the above, we will now show that JIGH2 is locally
convergent and that the asymptotic convergence rate is quadratic.
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Theorem 4 Let λG −H ∈ Cn×n be a Hermitian pencil and for ν ∈ N∪{0}, let δν, εν, ην,
and %ν be defined as in (11)–(14). Moreover, let

η := max(‖G‖F , ‖H‖F ), % :=
%0

2
, and ε := ε0

(

2 + 4
η

%

)s

, (19)

where s := n2

4
. If %0 > 0 and if ε0 is such small that

εη

%2
<

1

4
,

ε2

%
+ 4η

ε2

%2
+ η

ε

%
≤ 1

4n2
, and 2n2ε2

(

1

%
+

η

%2

)

≤ ε0, (20)

then there exists a constant C > 0 such that ε(µ+1)s < Cε2
µs for all µ ∈ N ∪ {0}.

Proof. From (17) and (18) we obtain that εν (and %ν , respectively) may increase (or
decrease, respectively) in each Jacobi step. We first show by induction that this increase
(decrease, respectively) remains under control, i.e., that for µ ∈ N ∪ {0} and p = 0, . . . , s,
we have that

εµs ≤
ε0

2µ
, %µs ≥ %0 −

µ
∑

j=1

1

2µ+1
%0 > %, and (21)

εµs+p ≤ εµs

(

2 + 4
η

%

)p

, %µs+p ≥ %µs − p
%0

2µn2
. (22)

‘(µ, p) = (0, 0)’: There is nothing to prove.
‘(µ, p) ⇒ (µ, p + 1)’: Let p < s. By the induction hypothesis for (µ, p) and (µ, 0), we

have that

εµs+p ≤ εµs

(

2 + 4
η

%

)p

≤ ε0

2µ

(

2 + 4
η

%

)p

≤ ε

2µ

and %µs+p ≥ %µs − p
%0

2µn2
≥ %0 −

µ
∑

j=1

1

2j+1
%0 −

n2

4

%0

2µn2
= %0 −

µ+1
∑

j=1

1

2j+1
%0 > %.

Then we obtain from (17) and (18) that

εµs+p+1 < εµs+p

(

2 + 4
ηµs+p

%µs+p

)

≤ εµs+p

(

2 + 4
η

%

)

≤ εµs

(

2 + 4
η

%

)p+1

;

%µs+p+1 > %µs+p − 4

(

ε2
µs+p

%µs+p

+ 4η
ε2
µs+p

%2
µs+p

+ η
εµs+p

%µs+p

)

≥ %µs − p
%0

2µn2
− 4

(

ε2

(2µ)2%
+ 4η

ε2

(2µ)2%2
+ η

ε

2µ%

)

≥ %µs − p
%0

2µn2
− 4

2µ

(

ε2

%
+ 4η

ε2

%2
+ η

ε

%

)

≥ %µs − (p+ 1)
%0

2µn2
.

(

by (20)
)
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‘(µ, p) ⇒ (µ + 1, 0)’: For obtaining a bound for ε(µ+1)s, let us note that during the
(µ + 1)st sweep each entry in the strict upper anti-triangular part of the current pencil
is set to zero at one step, and may then increase according to (16) during the rest of the
sweep. Since εµs+p ≤ ε/2µ and %µs+p ≥ % for p = 0, . . . , s, we obtain by using (16) and (20)
that

ε(µ+1)s <
n2

4

( ε

2µ

)2
(

4

%
+ 4

η

%2

)

≤ 1

2

ε0

(2µ)2
≤ ε0

2µ+1
. (23)

This concludes the proof of (21) and (22). In particular, (22) implies that

εµs+p ≤ εµs

(

2 + 4
η

%

)s

.

Using this inequality instead of εµs+p ≤ ε/2µ, we obtain analogously to (23) that

ε(µ+1)s < n2ε2
µs(2 + 4η/%)2s

(

1

%
+

η

%2

)

= Cε2
µs,

where C only depends on n, η, and %.

We note that the main purpose of the proof of Theorem 4 is to show asymptotic
quadratic convergence and not to produce optimal estimation bounds. ence, for the sake
of simplification of the discussion, we did some rather rough estimates. A more detailed
investigation could certainly produce better bounds, but this would complicate our discus-
sion considerably.

6 A modified method (MJIGH2)

Unfortunately, JIGH2 does not converge globally. Consider the following example:

λG −H = λ









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









−









2 0 0 i
0 0 2i 1
0 −2i −4 0
−i 1 0 1









Then this pencil has the spectrum
{

±1
2
+
√

7
4
i, ±1

2
−
√

7
4
i
}

, whereas the subpencil

λ

[

0 1
1 0

]

−
[

2 i
−i 1

]

has the spectrum {1,−1}. Thus, JIGH2 stagnates although the pencil can be reduced
to anti-triangular form. The phenomenom of stagnation also occurs during numerical
experiments. This problem can be solved by slightly modifying the algorithm JIGH2. Note
that if during one sweep of JIGH2, we encounter a 2 × 2-subpencil with real eigenvalues
(and thus, there is a chance of stagnation of JIGH2), then this 2 × 2-subpencil may be
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contained in a 4 × 4-subpencil that has (at least two) nonreal eigenvalues. In this case,
performing Jacobi-steps as in JIGH4 may avoid stagnation of the method. This idea
motivates the following modification of JIGH2 presented below that we will call MJIGH2
(modified Jacobi-like algorithm for the indefinite generalized Hermitian eigenvalue problem
based on 2× 2 subproblems).

Algorithm MJIGH2: Given a 2n× 2n Hermitian pencil λG −H, having no real
eigenvalues and strategies for the solution of 2× 2 and 4× 4 subproblems, the
algorithm computes the anti-triangular form of λG −H.

while stopping criterion not satisfied
for k = 1, . . . , n

if λG(2)
kk −H

(2)
kk is regular and has no real eigenvalues

compute a unitary Q ∈ C2×2 such that Q∗(λG(2)
kk −H

(2)
kk )Q

is in anti-triangular form;

set Q̃ = I2n and Q̃
(2)
kk := Q;

set G := Q̃∗GQ̃ and H := Q̃∗HQ̃;
for l = k + 1, . . . , 2n− k

compute unitary U, V ∈ C2×2 such that U(λG(2)
kl −H

(2)
kl )V

is in anti-triangular form and set Q as in (10);

set Q̃ := I2n, and Q̃
(4)
kl := Q;

set G := Q̃∗GQ̃ and H := Q̃∗HQ̃;
end

else
for l = k + 1, . . . , n

if λG(4)
kl −H

(4)
kl is singular or has real eigenvalues only

Q = I4;

elseif λG(4)
kl −H

(4)
kl has no real eigenvalues

compute a unitary Q such that Q∗(λG(4)
kl −H

(4)
kl )Q

is in anti-triangular form;
else

compute a unitary Q such that Q∗(λG(4)
kl −H

(4)
kl )Q

is in partial anti-triangular form;
end

set Q̃ := I2n and Q̃
(4)
kl = Q;

set G := Q̃∗GQ̃ and H := Q̃∗HQ̃;
end

end
end

end
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Thus, whenever a Hermitian 2 × 2 subproblems having real eigenvalues occurs, we
continue the second ‘for’-loop by solving 4× 4 subproblems instead of 2× 2 problems. As
seen in Section 5, no 2 × 2 Hermitian subproblems having only real eigenvalues occur if
λG −H is sufficiently close to being in anti-triangular form and thus, MJIGH2 reduces to
JIGH2 in this case. This means that MJIGH2 has the same local convergence properties
as JIGH2. In addition, convergence has been observed for all test examples in the current
research.

7 Numerical experiments

For numerical tests, the algorithms JIGH4 and MJIGH2 were implemented in MATLAB
Version 5.3 and run on a PC with a Pentium III processor (800 MHz). The relative machine
precision was eps = 2.2204× 10−16. The strategies used for the solution of the 4× 4 and
2×2 subproblems were the ones explained in Section 3.2 and Section 4. Given a Hermitian
pencil λG −H ∈ Cn×n, G = (gij), H = (hij), with

norm(G,H) :=
√

‖G‖2
F + ‖H‖2

F = 1,

we chose as a stopping criterion

e(G,H) := max
{

|gij|, |hij|
∣

∣

∣
i+ j ≤ n

}

< 50eps. (24)

(In practice, one should compare |gij|, |hij| with |gn+1−i,i|, |hn+1−i,i|, |gn+1−j,j|, |hn+1−j,j|,
|gn+1−i,n+1−j |, and |hn+1−i,n+1−j | generalizing the componentwise error analysis for Jacobi’s
algorithm for positive definite matrices in [20]. This topic is currently under investigation.)

A first test was run for 50 randomly generated 2n × 2n Hermitian pencils λG − H
having no real eigenvalues and with norm(G,H) = 1. This test was run over different
dimensions n = 3, 4, . . . , 9, 10, 15, 20, 25, 30. Convergence of both JIGH4 and MJIGH2 has
been observed for all test problems. Figure 1 shows the average number of sweeps necessary
for convergence. Note that except for the case n = 3, this number was always lower with
MJIGH2 than with JIGH4.

Figure 2 shows the typical convergence behavior of both methods for the case n = 10,
i.e., for a randomly generated 20 × 20 Hermitian pencil. At the beginning both methods
show a similar behavior. In both cases, the convergence rate is not necessarily monotone,
but, as soon as the pencil tends to being close to anti-triangular form, the convergence rate
of MJIGH2 becomes quadratic very fast, while the one of JIGH4 is somewhere in between
linear and quadratic, slowly approaching quadratic convergence towards the end of the
process.

Thus, MJIGH2 converges faster than JIGH4. But, for a fair comparison, we also have
to compare the cost per sweep of each method. Since an estimate of flop count is difficult
to obtain (it depends on the nature of the eigenvalues of the 4× 4 and 2× 2 subpencils),
the average flop count per sweep has been determined experimentally and is presented in
the left graph of Figure 3 for both JIGH2 and JIGH4.
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Figure 1: 50 randomly generated Hermitian pencils, ’—’ MJIGH2, ’· · ·’ JIGH4
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Figure 2: Typical convergence behavior, ’—’ MJIGH2, ’· · ·’ JIGH4
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Figure 3: flop count, ’—’ JIGH2, ’· · ·’ JIGH4

The right graph of Figure 3 displays the average flop count per sweep for JIGH2 in
percentage of the one for JIGH4. Clearly, the corresponding flop count for MJIGH2 is
somewhere in between the ones for JIGH2 and JIGH4, due to the fact that some loops
of MJIGH2 corresponds to loops as in JIGH4 if 2 × 2 Hermitian subpencils having real
eigenvalues occur. However, the numerical experiments showed that this only happens a
few number of times and only during the first few sweeps such that the average flop count
per sweep for MJIGH2 is almost the same as the one for JIGH2.

In order to compare the performance of JIGH4 with the one of the algorithm of Bunse-
Gerstner/Faßbender for Hamiltonian matrices, a second test was run over 50 pencils of the
form

λG −H =

[

Zn 0
0 In

]

(iλJn − JnH)

[

Zn 0
0 In

]

, (25)

with norm(G,H) = 1, where Zn is the n × n matrix with ones on the anti-diagonal and
zeros elsewhere and H ∈ C2n×2n is a randomly generated Hamiltonian matrix having
no eigenvalues on the imaginary axis. (Such matrices have been used for the numerical
experiments in [2].) Thus, pencils as in (25) can be interpreted as ‘Hamiltonian matrix’-
pencils and we expect JIGH4 to perform similarly for them as the method of Bunse-
Gerstner/Faßbender does for Hamiltonian matrices.
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Figure 4: 50 random ‘Hamiltonian matrix’-pencils, ’—’ MJIGH2, ’· · ·’ JIGH4

Figure 4 shows the average number of sweeps necessary for convergence for different
dimensions n = 3, 4, . . . , 9, 10, 15, 20, 25, 30, 35, 40. For the left graph, we used a stopping
criterion corresponding to the one used in [2], i.e., we chose the criterion

σ(G,H) :=

√

√

√

√

2n−1
∑

i=1

i
∑

j=1

(‖gj,i+1−j‖2 + ‖hj,i+1−j‖2) <
√
eps. (26)

Indeed, the graph corresponding to the algorithm JIGH4 is quite similar to the graph ob-
tained by Bunse-Gerstner/Faßbender for their experiments on Hamiltonian matrices. This
shows that JIGH4 performs indeed similar to the algorithm by Bunse-Gerstner/Faßbender
for Hamiltonian matrices, as it was expected.

On the other hand, the average number of sweeps was always lower with MJIGH2 than
with JIGH4. This becomes even more evident in the right graph where we used the more
rigid stopping criterion (24). Note that there is hardly any difference of the two graphs
corresponding to MJIGH2. Once, the stopping criterion (26) was satisfied with MJIGH2,
then at most (if at all) one additional sweep was needed such that the stopping criterion (24)
was also satisfied. This is due to the fact that the convergence rate of MJIGH2 was already
quadratic when σ(G,H) ≈ √eps. In contrast, when the stopping criterion (26) was satisfied
with JIGH4, then several additional sweeps (e.g., an average number of eight sweeps in
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the case n = 40) were needed until the stopping criterion (24) was also satisfied. Note
that for both JIGH4 and MJIGH2 the average number of sweeps needed for convergence
was always lower for ‘Hamiltonian matrix’ pencils than for randomly generated Hermitian
pencils. This is obviously caused by the rather simple structure of G.

A third test was run over 50 Hermitian pencils close to being in anti-triangular form.
For this, we randomly generated Hermitian pencils λG −H having no real eigenvalues and
with norm(λG −H) = 1. Then, we used JIGH4 to reduce those pencils to anti-triangular
form and we randomly generated Hermitian pencils λG̃ − H̃ with norm(λG̃ − H̃) = 0.01.
Then the test was run over 50 pencils of the form λ(G + G̃) − (H + H̃), where again we
only allowed pencils having no real eigenvalues.
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Figure 5: 50 Hermitian pencils close to anti-triangular form, ’—’ MJIGH2, ’· · ·’ JIGH4

Figure 5 shows the average number of sweeps necessary for convergence. Note that this
number increases drastically with JIGH4. For the dimension n = 30 an average of already
more than 20 sweeps was necessary for convergence. Although this number is much lower
than the corresponding one for randomly generated Hermitian pencils, it is way to high to
be favorable considering the fact that the pencil is already close to being in anti-triangular
form. On the other hand, the average number of sweeps necessary for convergence was
almost constant between 4 and 5 with MJIGH2. Thus, the convergence rate of MJIGH2
was almost quadratic already from the start. Hence, MJIGH2 exploits the special structure
of Hermitian pencils that are close to anti-triangular form much better than JIGH4 does.
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8 Conclusions

We presented Jacobi-like methods for the solution of the indefinite generalized Hermit-
ian eigenvalue problem. JIGH4 generalizes the method of Bunse-Gerstner/Faßbender
for Hamiltonian matrices [2] while MJIGH2 is a slightly modified version of the locally
quadratically convergent method JIGH2 that can be interpreted as a direct generalization
of Eberlein’s method [7] to the case of Hermitian pencils. Numerical experiments show
that MJIGH2 is faster and less expensive than JIGH4. Moreover, MJIGH2 excels by the
almost constant low number of sweeps needed for convergence if the Hermitian pencil under
consideration is already close to being in anti-triangular form. Hence, this algorithm may
become attractive for the solution of such generalized Hermitian eigenvalue problems.

Several aspects have not been addressed in this paper. One the one hand, we restricted
our research to Hermitian pencils of even size, but we note that a generalization to the case
of odd-sized pencils is possible. On the other hand, Bunse-Gerstner/Faßbender showed in
[2] that their method allows parallel implementation. Clearly, this is possible for JIGH4
as well, while for MJIGH2 further modifications and investigations are needed.
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vorkommenden Gleichungen numerisch aufzulösen. J. Reine Angew. Math., 30:51–95,
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