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Abstract

The inverse eigenvalue problem for T -alternating matrix polynomials over arbi-
trary algebraically closed fields of characteristic different from two is considered. The
main result shows that the necessary conditions obtained in [10] for a matrix poly-
nomial to be the Smith form of a T -alternating matrix polynomial are under mild
conditions also sufficient to be the Smith form of a T -alternating matrix polyno-
mial with invertible leading coefficient which is additionally in anti-triangular form..
In particular, this result implies that any T -alternating matrix polynomial with in-
vertible leading coefficient is equivalent to a T -alternating matrix polynomial in anti-
triangular form that has the same finite and infinite elementary divisors as the original
matrix polynomial. Finally, the inverse eigenvalue problem for T -palindromic matrix
polynomials is considered excluding the case that both +1 and −1 are eigenvalues.

Key words. Matrix polynomial, matrix pencil, Smith form, alternating matrix polynomial,
palindromic matrix polynomial, triangularization, anti-triangular form.

AMS subject classification. 65F15, 15A18, 15A21, 15A54, 15B57

1 Introduction

Matrix polynomials and polynomial eigenvalue problems have been studied intensively in
the last few decades. Recently, two particular topics have gained considerable interest:
inverse polynomial eigenvalue problems and the triangularization of matrix polynomials.
The aim of this paper is to combine these two topics with special emphasis on T -alternating
matrix polynomials..

A matrix polynomial of degree k, where k is a positive integer, is an expression P (λ) =∑k
j=0 λ

jAj with coefficient matrices Aj ∈ Fn×m over an arbitrary field F. If n = m and the

characteristic of F is different from two, such a P (λ) is called T -even if P (−λ) = P (λ)T ,
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and it is called T -odd if P (−λ) = −P (λ)T . Observe that these definitions are equivalent
to the fact that the sequence of coefficient matrices (A0, A1, . . . , Ak) alternates between
symmetric and skew-symmetric matrices, starting with a symmetric A0 in the T -even case
and with a skew-symmetric A0 in the T -odd case. Therefore, the term T -alternating has
been introduced in [15] as a hypernym for T -even and T -odd matrix polynomials.

In [9] it was observed that there exist T -alternating matrix polynomials that do not
allow a T -alternating strong linearization and a detailed explanation of this effect was
presented in [10] by characterizing the possible Smith forms of T -alternating matrix poly-
nomials in terms of pairing properties of elementary divisors (see Section 2 for details). In
particular, it was shown that those paring conditions for the elementary divisors of a given
matrix polynomial S(λ) in Smith form were necessary and sufficient for the existence of a
T -alternating matrix polynomial P (λ) having S(λ) as its Smith form, but the constructed
P (λ) may have a rather high degree resulting in many infinite elementary divisors. Thus,
the following question cannot be answered based on the results obtained in [10]:

Problem 1.1 Let S(λ) = diag
(
d1(λ), . . . , dn(λ)

)
be a matrix polynomial in Smith form

that satisfies the necessary conditions for being a Smith form of a T -even matrix polynomial,
and assume that

∑n
j=1 deg(dj) = nk. Does there exist a T -even n × n matrix polynomial

P (λ) of degree k with invertible leading coefficient that has the Smith form S(λ)?

An important application for inverse quadratic eigenvalue problems is the design of feed-
back controllers for second order systems, see [1, 16]. Since in many cases the coefficient
matrices of the second order system are symmetric, the inverse symmetric quadratic eigen-
value problem has been studied intensively. Important contributions to its solution have
been made in [4, 5, 7] under the additional assumption that the eigenvalues of the designed
systems are semisimple. While this limitation may not be of importance in applications,
it turns out to be a restriction to the solution of Problem 1.1, where the eigenvalues of the
given Smith form need not be semisimple. Other techniques to tackle inverse quadratic
eigenvalue problems include solvents [6] and the construction of quasi-canonical forms [8],
but it is not clear if these techniques can easily be generalized to inverse polynomial eigen-
value problems of higher degree.

A different approach to the solution of inverse polynomial eigenvalue problems involves
the triangularization of matrix polynomials : in [19], the authors raised the question whether
any regular, complex, quadratic matrix polynomial can be transformed to a quadratic
matrix polynomial in triangular form with the same finite and infinite elementary divisors.
Here, triangular form means that all coefficient matrices of the matrix polynomial are
upper triangular. The question was motivated by the lack of existence of a generalized
Schur form for matrix polynomials of degree greater than one: in general, it is not possible
to transform a given matrix polynomial to triangular form under strict equivalence, let
alone under strict unitary equivalence.

On the other hand, it was shown in the proof of [2, Theorem 1.7] that any complex
matrix polynomial P (λ) of degree k with nonsingular leading coefficient is unimodularly
equivalent to a monic upper triangular matrix polynomial T (λ) of degree k. Thus, in
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particular P (λ) and T (λ) have the same elementary divisors. Recently, the result hidden
in the proof of [2, Theorem 1.7] has been generalized in [19] in the case of quadratic
matrix polynomials by relaxing the condition of nonsingularity of the leading coefficient
and allowing regular matrix polynomials. Finally, it was shown in [17] that any rectangular
n ×m matrix polynomial over an algebraically closed field is unimodularly equivalent to
a matrix polynomial in triangular form if n ≤ m. In particular, those results solve an
inverse eigenvalue problem as it was highlighted in [17, Lemma 3.2]: If d1(λ), . . . , dn(λ)
are monic polynomials with entries in an algebraically closed field F such that dj(λ) divides
dj+1(λ) for j = 1, . . . , n− 1, then there exists a monic, triangular n×n matrix polynomial
P (λ) of degree k over F with d1(λ), . . . , dn(λ) as invariant polynomials if and only if∑n

j=1 deg(dj) = nk.
In the case of T -alternating polynomials, triangular forms turn out to be too restrictive.

Indeed, if P (λ) is a T -alternating matrix polynomial in triangular form, then all symmet-
ric coefficient matrices are diagonal and all skew-symmetric coefficient matrices are zero.
Instead, we aim to construct anti-triangular forms. Recall that a matrix A = [aij] ∈ Fn×n
is called anti-triangular if aij = 0 for all (i, j) satisfying i+ j ≤ n, see, e.g., [14].

The remainder of the paper is organized as follows. In Section 2, we compile some
preliminary results that will be needed in the following. In Section 3, we state and prove the
main result Theorem 3.1 which gives an affirmative answer to Problem 1.1 by constructing a
T -even, anti-triangular matrix polynomial whose Smith form is the given matrix polynomial
S(λ). This result is generalized in Section 4 to related structures of matrix polynomials.

Throughout the paper, F denotes an arbitrary field of characteristic different from two.
By F[λ]n×n, we will denote the set of n×n matrix polynomials over F. Finally, Rn denotes
the n× n reverse identity

Rn =

 0 1

. .
.

1 0

 .
2 Preliminaries

Recall that P (λ), Q(λ) ∈ F[λ]n×n are called unimodularly equivalent (short: equivalent)
if there exist E(λ), F (λ) ∈ F[λ]n×n that are unimodular (i.e., having constant nonzero
determinant) such that

Q(λ) = E(λ)P (λ)F (λ).

We will also denote equivalence of matrix polynomials by P (λ) ∼ Q(λ).. In some of our
results, we will need a more restrictive equivalence relation than equivalence, the so-called
unimodular alternating-congruence.

Definition 2.1 P (λ), Q(λ) ∈ F[λ]n×n are called unimodularly alternatingly-congruent
(short: congruent) if there exists a unimodular E(λ) ∈ F[λ]n×n such that

Q(λ) = E(λ)P (λ)ET (−λ).

3



It is straightforward to check that the T -alternating structure of matrix polynomials is
preserved under unimodular alternating-congruence: If P (λ) and E(λ) are n × n matrix
polynomials and P (λ) is T -even or T -odd, then also E(λ)P (λ)ET (−λ) is T -even or T -odd,
respectively.

Due to this feature, we added the prefix “alternating-” in order to distinguish it prop-
erly from unimodular congruence transformations of the form P (λ) 7→ E(λ)P (λ)ET (λ)
introduced in [13] for the sake of preserving the structure of skew-symmetric matrix poly-
nomials. For simplicity, we will use the term congruence instead of unimodular alternating-
congruence as there will be no ambiguity in this paper.

Unfortunately, a canonical form for matrix polynomials under congruence seems not to
be available yet; hence, we will mainly use (unimodular) equivalence transformations and
the Smith form, which is the corresponding canonical form, see, e.g., [2] for details.

Theorem 2.2 (Smith form) Let P (λ) ∈ F[λ]n×n. Then, there exists a nonnegative in-
teger r and unimodular E(λ), F (λ) ∈ F[λ]n×n such that

E(λ)P (λ)F (λ) = diag
(
d1(λ), . . . , dr(λ), 0, . . . , 0

)
,

where d1(λ), . . . , dr(λ) are monic and dj(λ) | dj+1(λ) for j = 1, . . . , r − 1. Moreover, r and
d1(λ), . . . , dr(λ) are unique.

The polynomials d1(λ), . . . , dr(λ) are called the invariant polynomials of P (λ) and can
be characterized in terms of greatest common divisors (short: gcd’s) of minors of P (λ). We
recall that a minor of order j of P (λ) is defined to be the determinant of a j× j submatrix
of P (λ) that is obtained by extracting j rows and j columns of P (λ).

Theorem 2.3 Let P (λ) ∈ F[λ]n×n have the Smith form

S(λ) = diag
(
d1(λ), . . . , dr(λ), 0, . . . , 0

)
.

Set p0(λ) ≡ 1 and define pj(λ) ≡ 0 if all minors of P (λ) of order j are zero, otherwise let
pj(λ) be the greatest common divisor (gcd) of all minors of P (λ) of order j. Then r is the
largest integer j such that pj(λ) 6≡ 0 and the invariant polynomials of P (λ) are given by

dj(λ) =
pj(λ)

pj−1(λ)
, j = 1, . . . , r.

In order to apply this result, we will need a few lemmas involving gcd’s. The first one
is well-known; a proof can be found, e.g., in [3].

Lemma 2.4 (Lemma of Bézout) Let p(λ), q(λ) ∈ F[λ], then there exist polynomials
z1(λ), z2(λ) ∈ F[λ] such that

z1(λ)p(λ) + z2(λ)q(λ) = gcd
{
p(λ), q(λ)

}
.
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Since the matrix polynomials focused on in this paper are T -alternating, we define the
parity ε(p) of an alternating scalar polynomial p(λ) ∈ F[λ] to be ε(p) := +1 if p(λ) = p(−λ)
is even, and ε(p) := −1 if p(λ) = −p(−λ) is odd. The proof of the following lemma can be
found in [10].

Lemma 2.5 Let p(λ) ∈ F[λ] be divided by d(λ) ∈ F[λ] \ {0} with deg(d) ≤ deg(p) to get

p(λ) = d(λ)q(λ) + r(λ), deg(r) < deg(d).

If p(λ) and d(λ) are alternating (not necessarily with the same parity), then q(λ) and r(λ)
are alternating as well. Moreover, p(λ), r(λ), and d(λ)q(λ) all three have the same parity.

A key lemma in our constructions will be the following factorization result for even
scalar polynomials.

Lemma 2.6 Let s(λ) ∈ F[λ] be even and of degree 2k, where k is a nonnegative integer,
and let the field F be algebraically closed. Then, there exists an x(λ) ∈ F[λ] of degree k
such that

s(λ) = x(λ)x(−λ).

If s(0) 6= 0, then x(λ) can be chosen such that

gcd
{
x(λ), x(−λ)

}
= 1.

Proof. By [10, Lemma 4.1], s(λ) admits the factorization

s(λ) = c λα0 [(λ− λ1)(λ+ λ1)]
α1 · · · · · [(λ− λr)(λ+ λr)]

αr ,

where α0 ∈ N is even, c ∈ F \ {0}, α1, . . . , αr ∈ N \ {0}, and λ1, . . . , λr,−λ1, . . . ,−λr are
pairwise distinct. The result then follows easily by setting

x(λ) :=
√

(−1)kc λα0/2

r∏
j=1

(λ− λj)αj . �

The following theorems are the main results from [10]; they completely characterize the
possible Smith forms of T -alternating matrix polynomials.

Theorem 2.7 (E-Smith form) Suppose that

S(λ) = diag
(
λα1p1(λ), λα2p2(λ), . . . , λαrpr(λ), 0, . . . , 0

)
∈ F[λ]n×n,

where 0 ≤ α1 ≤ · · · ≤ αr are nonnegative integers, all pj(λ) are monic with pj(0) 6= 0, and
pj(λ) | pj+1(λ) for j = 1, . . . , r − 1. Then S(λ) is the Smith form of some T -even n × n
matrix polynomial if and only if:

1) pj(λ) is even for j = 1, . . . , r.
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2) If ν is the number of odd exponents among α1, . . . , αr, then ν is an even integer.
Letting k1 < k2 < · · · < kν be the positions on the diagonal of S(λ), where these odd
exponents αkj occur, the following properties hold:

(a) adjacency-pairing of positions:

k2 = k1 + 1, k4 = k3 + 1, . . . , kν = kν−1 + 1,

(b) equality-pairing of odd exponents:

αk2 = αk1 , αk4 = αk3 , . . . , αkν = αkν−1 . (2.1)

Theorem 2.8 (O-Smith form) Suppose that

S(λ) = diag
(
λα1p1(λ), λα2p2(λ), . . . , λαrpr(λ), 0, . . . , 0

)
∈ F[λ]n×n,

where 0 ≤ α1 ≤ · · · ≤ αr are nonnegative integers, all pj(λ) are monic with pj(0) 6= 0, and
pj(λ) | pj+1(λ) for j = 1, . . . , r − 1. Then S(λ) is the Smith form of some T -odd n × n
matrix polynomial if and only if:

1) pj(λ) is even for j = 1, . . . , r.

2) If ν is the number of even exponents among α1, . . . , αr, then ν is an even integer.
Letting k1 < k2 < · · · < kν be the positions on the diagonal of S(λ) where these even
exponents αkj occur, the following properties hold:

(a) adjacency-pairing of positions:

k2 = k1 + 1, k4 = k3 + 1, . . . , kν = kν−1 + 1,

(b) equality-pairing of even exponents:

αk2 = αk1 , αk4 = αk3 , . . . , αkν = αkν−1 . (2.2)

Finally, we review the result that was obtained in the proof of [2, Theorem 1.7] for the
case F = C, but the proof easily generalizes to arbitrary algebraically closed fields. For
this and for the remainder of the paper, let k always denote a positive integer.

Theorem 2.9 Let P (λ) ∈ F[λ]n×n satisfy deg
(

detP (λ)
)

= nk and assume the field F to
be algebraically closed. Then P (λ) is equivalent to an upper triangular matrix polynomial,
whose diagonal elements have degree k.

We note that the matrix polynomial P (λ) in Theorem 2.9 may have off-diagonal entries
of arbitrary degree, which can by a simple procedure be reduced to degree k − 1 or less,
which is shown in [17]. However, for our purpose the statement in Theorem 2.9 is sufficient.
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3 The inverse T -even polynomial eigenvalue problem

In this section, we will prove our main theorem.

Theorem 3.1 Let the field F be algebraically closed and let S(λ) ∈ F[λ]n×n be in E-Smith
form as in Theorem 2.7. If deg

(
detS(λ)

)
= nk, then S(λ) is equivalent to a T -even,

lower anti-triangular n × n matrix polynomial of degree k, whose leading coefficient is
anti-diagonal.

The proof of Theorem 3.1 will be carried out in the following subsections and proceed
in two main steps:

I) Construct a T -even, lower anti-triangular matrix polynomial such that all entries on
the anti-diagonal have degree k. (The entries below the main anti-diagonal may have
arbitrary degree.)

II) Reduce the degrees of the entries in the strict lower anti-triangular part so that the
resulting matrix polynomial has degree k.

We will begin by describing the procedure that will be used to carry out Step II in Subsec-
tion 3.1. In the following subsections, we will then prove Theorem 3.1 by executing Step I
in the case n = 2 in Subsection 3.2, in the case of even n in Subsection 3.3, and in the case
of odd n in Subsection 3.4 thereby completing the proof of Theorem 3.1.

3.1 Reducing the degree

In the following result, the field F need not be algebraically closed.

Theorem 3.2 Let P (λ) =
[
pij(λ)

]n
i,j=1

∈ F[λ]n×n be T -even and lower anti-triangular,

and let its anti-diagonal elements all have degree k. Then, P (λ) is congruent to a T -even,
lower anti-triangular matrix polynomial of degree k with anti-diagonal leading coefficient.
More precisely, there exists a unimodular E(λ) ∈ F[λ]n×n such that

E(λ)P (λ)E(−λ)T =: P̆ (λ) =
[
p̆ij(λ)

]n
i,j=1

is lower anti-triangular and has the same anti-diagonal elements as P (λ) and all other
elements have degrees not exceeding k − 1, i.e.,

p̆i,n+1−i(λ) = pi,n+1−i(λ) and deg(p̆ij) ≤ k − 1 for i+ j > n+ 1, i, j = 1, . . . , n.

Proof. Letting κ := bk/2c, we will construct P̆ (λ) in two steps. In the first step, the
degrees of the elements in the diagonal positions (n − κ + 1, n − κ + 1), . . . , (n, n) will
be reduced to k − 1 or less, in the second step, all other elements in the strict lower
anti-triangular part will be considered.
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Step 1: reducing the diagonal elements. For each i = n − κ + 1, . . . , n we aim to
reduce the degree of the element in the (i, i) position to k − 1 or less. Hence, for any i
let p̃(λ) := pi,n−i+1(λ) be the anti-diagonal element in the same row as pii(λ); since P (λ)
is T -even, we obtain pn−i+1,i(λ) = p̃(−λ). If deg(pii) ≥ k (else there is nothing to do),
consider polynomials q(λ), r(λ) such that

p̃(λ)q(λ) + r(λ) = pii(λ) = pii(−λ) = p̃(−λ)q(−λ) + r(−λ),

where deg(r) < deg(p̃ ) ≤ k. Then, adding the
(
− q(λ)/2

)
-multiple of the (n + i − 1)st

column to the ith column and then the
(
−q(−λ)/2

)
-multiple of the (n+ i−1)st row to the

ith row (this is a congruence transformation), the element in the (i, i) position is changed
to

pii(λ)− q(λ)p̃(λ)

2
− q(−λ)p̃(−λ)

2
=
r(λ) + r(−λ)

2
,

which is even and of degree k − 1 or less. Observe that no anti-diagonal elements and no
diagonal elements other than pii(λ) have been changed. Thus, executing this procedure
for i = n − κ + 1, . . . , n, we obtain a matrix polynomial again denoted by P (λ) which is
T -even, lower anti-triangular, and whose diagonal elements have degree k − 1 or less.

Step 2: reducing the off-diagonal elements. Now, we will use an induction argument
to simultaneously reduce the degrees of the elements in the (i, j) and (j, i) positions for
j = n− i+2, . . . , i−1 and for i = κ+2, . . . , n. To illustrate this, consider the 7×7 scheme

•
• ◦

• ? ◦
• � ? ◦

• � • ? ◦
• ? ? ? • ◦

• ◦ ◦ ◦ ◦ ◦ •

 .

In this case, the above loops mean that first the �-elements are treated simultaneously,
then the ?-elements are reduced simultaneously from top to bottom and from left to right,
and then the ◦-elements are operated on simultaneously from top to bottom and from left
to right.

Back to the general case, assume that we are currently considering the elements in the
(i, j) and (j, i) positions and denote the matrix polynomial resulting from the previous
steps again by P (λ). For simplicity, set p̂(λ) := pij(λ) and p̃(λ) := pi,n−i+1(λ). Since P (λ)
is T -even, we obtain

pji(λ) = p̂(−λ) and pn−i+1,i(λ) = p̃(−λ).

If deg(p̂ ) ≥ k (else there is nothing to do), let p̂(λ) = p̃(λ)q(λ) + r(λ), where deg(r) <
deg(p̃ ) = k. Adding the

(
− q(−λ)

)
-multiple of the (n − i + 1)st row to the jth row and

the
(
− q(λ)

)
-multiple of the (n − i + 1)st column to the jth column (note that this is a

congruence transformation), we obtain a matrix polynomial again denoted by P (λ) with
elements in the (i, j) and (j, i) positions now given by

p̂(λ)− q(λ)p̃(λ) = r(λ) and p̂(−λ)− q(−λ)p̃(−λ) = r(−λ),
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respectively. These polynomials have degrees less than or equal to k − 1. Furthermore,
P (λ) is T -even and lower anti-triangular and all elements on the anti-diagonal, as well
as those on the diagonal and those previously reduced are unchanged. Completing the
induction, we finally obtain a matrix polynomial in the desired form that is congruent to
the matrix polynomial we started with.

3.2 The 2× 2 case

For the remainder of this paper we will assume the additional condition that the field F is
algebraically closed.

Let S(λ) = diag
(
λαp1(λ), λβp2(λ)

)
be a possible Smith form of a T -even matrix poly-

nomial, where p1(0), p2(0) 6= 0. Then, by Theorem 2.7 both p1(λ) and p2(λ) are even poly-
nomials, and the exponents α and β are either both even (including the case α = β = 0)
or they are both odd and equal. Furthermore, since p1(λ) divides p2(λ), the latter can
be factorized as p2(λ) = p1(λ)s(λ), where by Lemma 2.5 also s(λ) is even. The following
lemma therefore covers Theorem 3.1 in the case n = 2.

Lemma 3.3 Let S(λ) ∈ F[λ]2×2 be in Smith form

S(λ) = diag
(
λαp(λ), λβp(λ)s(λ)

)
,

where 0 ≤ α ≤ β and where p(λ) and s(λ) are monic, even polynomials with p(0), s(0) 6= 0,
and assume deg

(
detS(λ)

)
= 2k.

1) If β 6= α, but β−α is even, then S(λ) is equivalent to a lower anti-triangular matrix
polynomial of degree k of the form[

0 (−λ)(α+β)/2p(λ)x(−λ)
λ(α+β)/2p(λ)x(λ) λαp(λ)

]
, (3.1)

where x(λ)x(−λ) = s(λ). Moreover, the matrix polynomial (3.1) is T -even if α (and
therefore also β) is even.

2) If β = α, then S(λ) is equivalent to a T -even, lower anti-diagonal matrix polynomial
of degree k of the form [

0 (−λ)αp(λ)x(−λ)
λαp(λ)x(λ) 0

]
, (3.2)

where x(λ)x(−λ) = s(λ).

Proof. Since s(λ) is even with s(0) 6= 0, it follows from Lemma 2.6 that it can be factorized
as s(λ) = x(λ)x(−λ) for some polynomial x(λ) satisfying gcd{x(λ), x(−λ)} = 1.
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We will first prove 1). Observe that[
λαp(λ) 0

0 λβp(λ)s(λ)

]
∼

[
λαp(λ) 0

−λ(α+β)/2p(λ)x(−λ) λβp(λ)s(λ)

]
∼

[
λαp(λ) λ(α+β)/2p(λ)x(λ)

−λ(α+β)/2p(λ)x(−λ) 0

]
.

Indeed, the first equivalence follows by adding the
(
− λ(β−α)/2x(−λ)

)
-multiple of the

first row of S(λ) to its second row, and the second equivalence follows by adding the(
λ(β−α)/2x(λ)

)
-multiple of the first column of the resulting matrix polynomial to its sec-

ond column. The latter matrix polynomial is easily seen to be equivalent to the desired
shape (3.1) by multiplying the second row with a suitable power of −1 followed by a row
and column permutation. It is now straightforward to check that the constructed matrix
polynomial has degree k and that it is T -even if α is even.

Next, let us prove 2) assuming β = α. As in 1), it follows that S(λ) is equivalent to[
0 (−λ)αp(λ)x(−λ)

λαp(λ)x(λ) λαp(λ)

]
with gcd{x(λ), x(−λ)} = 1. Hence, by Lemma 2.4 there exist polynomials z1(λ), z2(λ)
such that

z1(λ)λαp(λ)x(λ) + z2(λ) (−λ)αp(λ)x(−λ) = λαp(λ).

Subtracting the z1(λ)-multiple of the first column from the second column and the z2(λ)-
multiple of the first row from the second row we obtain the desired form (3.2).

3.3 The case of even n

In this subsection, we prove a result that in particular covers Theorem 3.1 in the case that
n is even but greater than two.

Lemma 3.4 Let n ∈ N be even and let S(λ) ∈ F[λ]n×n be in E-Smith form as in Theo-
rem 2.7. Then, S(λ) is equivalent to a T -even, lower anti-triangular matrix polynomial. If
additionally deg

(
detS(λ)

)
= nk, this matrix polynomial can be chosen to have degree k

and an anti-diagonal leading coefficient.

Proof. We will proceed with the proof in two steps. In the first step we will transform
S(λ) to a lower anti-triangular matrix polynomial that is T -even, and in the second step
we will reduce its degree to k if the additional hypothesis is satisfied.

Step 1: reduction to anti-triangular form. Let

S(λ) = diag
(
λα1p1(λ), λα2p2(λ), . . . , λαnpn(λ)

)
,

where pj(0) 6= 0 for j = 1, . . . , n. Further, let k1 < · · · < kν denote the indices j for
which αj is odd and let `1 < · · · < `µ denote the indices j for which αj is even. Then, by
Theorem 2.7 the integer ν is even and thus with n also µ must be even. We go on to define

S1(λ) :=diag
(
λαk1pk1(λ), ..., λαkν pkν (λ)

)
and S2(λ) :=diag

(
λα`1p`1(λ), ..., λα`µp`µ(λ)

)
,
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then S1(λ) and S2(λ) are both in E-Smith form as in Theorem 2.7, and both of them have
even size. Further, applying row and column permutations we obtain S(λ) ∼ S1(λ)⊕S2(λ)
which we continue to modify as follows:

Partitioning both S1(λ) and S2(λ) into 2× 2 diagonal blocks, each occuring 2× 2 block
is also in E-Smith form, as the occuring exponents of λ are either both even or odd and
equal. Hence, applying Lemma 3.3 we find that each such block is equivalent to a T -even
matrix polynomial of the form (3.1) or (3.2). Executing this step for all 2 × 2 diagonal
blocks of S1(λ) and S2(λ), we find that S1(λ) ⊕ S2(λ) is equivalent to a T -even matrix
polynomial of the form[

0 q1(−λ)
q1(λ) r1(λ)

]
⊕
[

0 q2(−λ)
q2(λ) r2(λ)

]
⊕ · · · ⊕

[
0 qκ(−λ)

qκ(λ) rκ(λ)

]
,

defining κ := n/2. We apply a row and column permutation to obtain the T -even matrix
polynomial [

0 T (−λ)T

T (λ) R(λ)

]
, where T (λ) =

 0 qκ(λ)

. .
.

q1(λ) 0


is anti-diagonal and R(λ) = diag

(
r1(λ), . . . , rκ(λ)

)
is diagonal.

Step 2: reduction to degree k. If also deg
(

detS(λ)
)

= nk is satisfied, it follows that
deg

(
detT (λ)

)
= κk. Thus, by Theorem 2.9 there are unimodular κ×κ matrix polynomials

E(λ), F (λ) such that E(λ)T (λ)F (λ) is an upper triangular matrix polynomial of degree

k. Hence, setting Ẽ(λ) := RκE(λ) and M(λ) := Ẽ(λ)T (λ)F (λ), we obtain that[
F (−λ)T 0

0 Ẽ(λ)

] [
0 T (−λ)T

T (λ) R(λ)

] [
F (λ) 0

0 Ẽ(−λ)T

]
=

[
0 M(−λ)T

M(λ) Ẽ(λ)R(λ)Ẽ(−λ)T

]
is a T -even, lower anti-triangular matrix polynomial equivalent to S(λ) with anti-diagonal
entries of degree k. Thus, by Theorem 3.2 it is congruent to a T -even, lower anti-triangular
matrix polynomial of degree k, whose leading coefficient is anti-diagonal.

3.4 The case of odd n

The proof of Theorem 3.1 in the case that n is odd is more involved. The key difficulty
is that a T -even, lower anti-triangular matrix polynomial of odd dimension has a middle
element in the

(
(n + 1)/2, (n + 1)/2

)
-position that is exceptional as it does not have

a symmetrically placed counterpart on the anti-diagonal unlike all other anti-diagonal
elements. If we aim to proceed as in the proof of Lemma 3.4 and decompose S(λ) into
2× 2 blocks, then one element will remain because n is odd. If this polynomial has degree
k, then it could be used as the exceptional middle element, but in general S(λ) may not
contain such an entry. The next natural step would be to try to create that polynomial
from a 3 × 3 submatrix of S(λ). The following lemma provides conditions when this is
indeed possible.
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Lemma 3.5 Let S(λ) = diag
(
d1(λ), d2(λ), d3(λ)

)
∈ F[λ]3×3 be in E-Smith form as in

Theorem 2.7 and let k ∈ N\{0} be even. If deg(d1) ≤ k ≤ deg(d3), then S(λ) is equivalent
to a T -even, lower anti-triangular matrix polynomial, whose middle entry has degree k.

Proof. By Theorem 2.7 we may assume that S(λ) has the form

S(λ) = diag
(
λαp(λ), λβp(λ)s(λ), λγp(λ)s(λ)t(λ)

)
,

where 0 ≤ α ≤ β ≤ γ and where p(λ), s(λ), t(λ) are monic, even polynomials with
p(0), s(0), t(0) 6= 0. Thus, the condition on k now translates into

α + deg(p) ≤ k ≤ γ + deg(p) + deg(s) + deg(t), (3.3)

from which we can distinguish two cases:
Case (1): α is even. Then, by Theorem 2.7 either both β and γ are even or they are

both odd and equal. We set δ := β − α, ε := γ − α, and

Ŝ(λ) := diag
(
1, λδs(λ), λεs(λ)t(λ)

)
in order to obtain λαp(λ)Ŝ(λ) = S(λ). Note that either both δ and ε are even or they
are both odd and equal. This lemma is now equivalent to showing that there is a T -even,
lower anti-triangular matrix polynomial T (λ) equivalent to Ŝ(λ), whose middle entry has
degree m := k − α− deg(p). It is clear that m is even and from (3.3) we obtain

0 ≤ m ≤ ε+ deg(s) + deg(t).

Since deg(s) and deg(t) are both even, there exist nonnegative, even integers `, ˜̀, ̂̀with

m = ` + ˜̀+ ̂̀ such that also ` ≤ ε, ˜̀≤ deg(s), and ̂̀≤ deg(t) are satisfied. Since F is

algebraically closed, there exist monic even polynomials ŝ(λ) of degree (deg(s)− ˜̀) and t̂(λ)

of degree ̂̀, such that ŝ(λ) | s(λ) and t̂(λ) | t(λ). Then, by Lemma 2.5 the corresponding
quotients are again even and thus Lemma 2.6 can be applied, so there exist polynomials
x(λ), y(λ) such that

s(λ) = ŝ(λ)x(λ)x(−λ) and t(λ) = t̂(λ)y(λ)y(−λ). (3.4)

Finally, if δ is even, we use Lemma 2.6 to obtain a polynomial z(λ) such that

λ` t̂(λ)x(λ)x(−λ)− λδs(λ) = z(λ)z(−λ), (3.5)

since the polynomial on the left hand side is even. If δ is odd, we apply Lemma 2.6 to
obtain a polynomial a(λ) such that

t(λ) = a(λ)y(λ) a(−λ)y(−λ) and gcd
{
a(λ)y(λ), a(−λ)y(−λ)

}
= 1, (3.6)
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to define z(λ) := λ`/2a(−λ)x(λ) in this case. We remark that in both cases, z(λ) contains
the root zero with multiplicity min{δ, `}/2. (Indeed, if δ is odd, then ` < ε = δ.) We now
aim to show that

T (λ) :=

 0 0 (−λ)n ŝ(λ)x(−λ)y(−λ)

0 λ` t̂(λ)x(λ)x(−λ) z(−λ)
λn ŝ(λ)x(λ)y(λ) z(λ) 1

 ,
where we set n := (δ + ε − `)/2, is the desired matrix polynomial. It is straightforward
that T (λ) is T -even and that its middle entry has degree m. Thus, we remain to show

that the Smith form of T (λ) is given by Ŝ(λ). Applying Theorem 2.3, we immediately find
p1(λ) = 1. Moreover,

p2(λ) = gcd
{

0, 0, λn+` t̂(λ)x(λ)x(−λ)2 ŝ(λ)y(−λ), 0, λ2n ŝ(λ)2x(λ)y(λ)x(−λ)y(−λ),

λnz(λ)ŝ(λ)x(−λ)y(−λ), λn+` ŝ(λ)x(λ)2y(λ)t̂(λ)x(−λ),

λn ŝ(λ)x(λ)y(λ)z(−λ), λ` t̂(λ)x(λ)x(−λ)− z(λ)z(−λ)
}
,

where the 2 × 2 minors of T (λ) are given in lexicographical order and powers of −1 are
ignored. First, we compute that the last minor is equal to λδs(λ) by (3.5) if δ is even and
that it is equal to 0 by (3.6) otherwise. Further observe that:

2n = δ + ε− ` ≥ δ, n+
`

2
=
δ + ε

2
≥ δ, and n+

δ

2
= δ +

ε− `
2
≥ δ.

Hence, the multiplicities of the root zero occuring in all but the last above 2 × 2 minors
(including the multiplicity n + min{δ, `}/2 in the 6th and 8th minor) are greater than or
equal to δ. Because of (3.4), also all 2 × 2 minors are divisible by s(λ); since powers of
λ and s(λ) are relatively prime, λδs(λ) divides all 2× 2 minors of T (λ). Thus, we obtain
p2(λ) = λδs(λ) in the case that δ is even; otherwise p2(λ) is a divisor of the gcd of the 6th
and 8th minor, i.e.,

p2(λ) | gcd
{
λn+`/2s(λ)a(−λ)y(−λ), λn+`/2s(λ)a(λ)y(λ)

}
= λδs(λ),

using (3.6) and the definitions of n and z(λ), resulting in p2(λ) = λδs(λ) in this case as
well. Finally, p3(λ) is the normalized determinant of T (λ):

p3(λ) = gcd
{
λ`+2n ŝ(λ)2 t̂(λ)x(λ)2x(−λ)2y(λ)y(−λ)

}
= λδ+εs(λ)2t(λ),

where the last equality follows from the definition of n and (3.4). The invariant polynomials

of T (λ) thus match the diagonal entries of Ŝ(λ) from which we obtain the assertion.
Case (2): α is odd. In this case, we have β = α and that γ is even. Also, S(λ) =

λα−1p(λ)Ŝ(λ) holds for Ŝ(λ) := diag
(
λ, λ s(λ), λδs(λ)t(λ)

)
as we define δ := γ − α + 1.

In this case, setting m := k − α + 1 − deg(p), clearly m is even and we obtain 1 ≤ m ≤
δ + deg(s) + deg(t) from (3.3). As 1 is odd and m is even, there exist nonnegative, even

integers `, ˜̀, ̂̀with m = `+ ˜̀+ ̂̀ such that also 2 ≤ ` ≤ δ, ˜̀≤ deg(s), and ̂̀≤ deg(t) are
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satisfied. As in the previous case, we obtain even polynomials ŝ(λ) of degree (deg(s)− ˜̀)

and t̂(λ) of degree ̂̀, such that (3.4) holds for certain polynomials x(λ), y(λ).
Finally, since s(λ) is even with s(0) 6= 0, using Lemma 2.6 we factorize s(λ) = z(λ)z(−λ)

such that gcd{z(λ), z(−λ)} = 1. Now, let us show that λα−1p(λ)T (λ) with

T (λ) :=

 0 0 (−λ)n ŝ(λ)x(−λ)y(−λ)

0 λ` t̂(λ)x(λ)x(−λ) −λ z(−λ)
λn ŝ(λ)x(λ)y(λ) λ z(λ) 0

 ,
where we set n := 1 + (δ − `)/2, is the desired matrix polynomial. It is straightforward
that T (λ) is T -even and that its middle entry has degree m. Thus, we remain to show that

the Smith form of T (λ) is given by Ŝ(λ). Applying Theorem 2.3, since z(λ) and z(−λ) are
relatively prime, it is p1(λ) = λ. Moreover,

p2(λ) = gcd
{

0, 0, λn+` t̂(λ)x(λ)x(−λ)2 ŝ(λ)y(−λ), 0,

λ2n ŝ(λ)2x(λ)y(λ)x(−λ)y(−λ), λn+1z(λ)ŝ(λ)x(−λ)y(−λ),

λn+` ŝ(λ)x(λ)2y(λ)t̂(λ)x(−λ), λn+1 ŝ(λ)x(λ)y(λ)z(−λ), λ2z(λ)z(−λ)
}
,

where again the 2× 2 minors of T (λ) are given in lexicographical order and powers of −1
are ignored. Because of (3.4), clearly p2(λ) = λ2s(λ) holds. Finally, p3(λ) is the normalized
determinant of T (λ) given by p3(λ) = λδ+2s(λ)2t(λ), which is computed using the definition

of n and (3.4); thus T (λ) has the Smith form Ŝ(λ).

We are now in the position to prove Theorem 3.1 in the case that n is odd.

Lemma 3.6 Let n ∈ N be odd and let S(λ) ∈ F[λ]n×n be in E-Smith form as in The-
orem 2.7 satisfying deg

(
detS(λ)

)
= nk. Then, S(λ) is equivalent to a T -even, lower

anti-triangular matrix polynomial of degree k, whose leading coefficient is anti-diagonal.

Proof. First, we highlight that k is even because by [10, Lemma 3.4] the determinant of
a T -even matrix polynomial is an even scalar polynomial, so it has even degree. Thus, as
n is odd, k must be even. As in the proof of Lemma 3.4, we now proceed in two steps.

Step 1: reduction to anti-triangular form. Let

S(λ) = diag
(
λα1p1(λ), λα2p2(λ), . . . , λαnpn(λ)

)
,

where pj(0) 6= 0 for j = 1, . . . , n. As in the proof of Lemma 3.4, let k1 < · · · < kν denote
the indices j for which αj is odd and let `1 < · · · < `µ denote the indices j for which αj is
even. Then ν is even and thus µ is odd as n is odd. Now, we aim to apply Lemma 3.5 to a
suitable 3× 3 submatrix of S(λ) that we construct depending on the degree of λα`1p`1(λ).
If on the one hand α`1 + deg(p`1) ≤ k, we define

Ŝ(λ) := diag
(
λα`1p`1(λ), λαn̂pn̂(λ), λαnpn(λ)

)
,

where n̂ := kν−1 if n = kν and n̂ := `µ−1 if n = `µ, and we claim that Ŝ(λ) fulfills

the hypotheses of Lemma 3.5. First, by our definition of n̂, it is clear that Ŝ(λ) is in
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Smith form. Then, αn + deg(pn) ≥ k holds as well, since otherwise a contradiction to
deg

(
detS(λ)

)
= nk would be obtained.

If on the other hand α`1 + deg(p`1) > k, then

Ŝ(λ) := diag
(
λα1p1(λ), λα2p2(λ), λα`1p`1(λ)

)
,

that we will also show to satisfy the hypotheses of Lemma 3.5. First, clearly α1 = α2 is odd,
further α1+deg(p1) < k, as otherwise we would obtain a contradiction to deg

(
detS(λ)

)
=

nk. Therefore, the diagonal entries of Ŝ(λ), that are invariant polynomials of S(λ), are in

the right order so that Ŝ(λ) is in Smith form.

In both cases, by Lemma 3.5 we have that Ŝ(λ) is equivalent to some T -even, lower

anti-triangular matrix polynomial T̂ (λ), whose middle entry has degree k. Also, clearly

S(λ) ∼ Ŝ(λ) ⊕ S̃(λ) for a certain (n − 3) × (n − 3) matrix polynomial S̃(λ) that is in

E-Smith form as in Theorem 2.7. Thus, by Lemma 3.4 we obtain that S̃(λ) is equivalent
to a T -even, lower anti-triangular matrix polynomial Q(λ), therefore

S(λ) ∼ Ŝ(λ)⊕ S̃(λ) ∼ T̂ (λ)⊕Q(λ).

Denoting the middle entry of T̂ (λ) by q̂(λ), it is deg(q̂ ) = k; applying row and column
permutations, we obtain a T -even matrix polynomial of the form 0 0 T (−λ)T

0 q̂(λ) a(−λ)T

T (λ) a(λ) R(λ)

 . (3.7)

Step 2: Reduction to degree k. Clearly, the determinant of (3.7) has degree nk. Since
q̂ has degree k, it follows that detT (λ) has degree κk, where κ := (n − 1)/2. Thus,
Theorem 2.9 implies that there are unimodular κ× κ matrix polynomials E(λ), F (λ) such
that E(λ)T (λ)F (λ) is an upper triangular matrix polynomial of degree k. Hence, setting

Ẽ(λ) := RκE(λ) and M(λ) := Ẽ(λ)T (λ)F (λ), we obtain thatF (−λ)T 0 0
0 1 0

0 0 Ẽ(λ)

 0 0 T (−λ)T

0 q̂(λ) a(−λ)T

T (λ) a(λ) X(λ)

F (λ) 0 0
0 1 0

0 0 Ẽ(−λ)T


=

 0 0 M(−λ)T

0 q̂(λ) a(−λ)T Ẽ(−λ)T

M(λ) Ẽ(λ)a(λ) Ẽ(λ)X(λ)Ẽ(−λ)T


is a T -even, lower anti-triangular matrix polynomial equivalent to S(λ) with anti-diagonal
entries of degree k. Hence, by Theorem 3.2, it is congruent to a T -even, lower anti-
triangular matrix polynomial of degree k, whose leading coefficient is anti-diagonal.
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4 Inverse polynomial eigenvalue problems for related

structures

It is straightforward to generalize the results derived in the last section to T -odd matrix
polynomials.
Theorem 4.1 Let S(λ) ∈ F[λ]n×n be in O-Smith form as in Theorem 2.8 satisfying
deg

(
detS(λ)

)
= nk. Then S(λ) is equivalent to a T -odd, lower anti-triangular matrix

polynomial of degree k, whose leading coefficient is anti-diagonal.

Proof. Comparing the conditions of Theorems 2.7 and 2.8, we observe that if S(λ) is in

Smith form satisfying the conditions of Theorem 2.8, then Ŝ(λ) := λS(λ) is also in Smith

form and satisfies the conditions of Theorem 2.7. Moreover, deg
(

det Ŝ(λ)
)

= n(k + 1).
Hence, by Theorem 3.1, there exist unimodular matrix polynomials E(λ), F (λ) such that

E(λ)Ŝ(λ)F (λ) = λE(λ)S(λ)F (λ)

is a T -even, lower anti-triangular matrix polynomial of degree k + 1. Then E(λ)S(λ)F (λ)
is the desired T -odd, lower anti-triangular matrix polynomial of degree k.

Let us now consider Theorem 3.1 and Theorem 4.1 in a different way: If P (λ) ∈
F[λ]n×n is T -alternating with nonsingular leading coefficient, we can apply Theorem 3.1
or 4.1 to its Smith form to obtain a T -alternating anti-triangular form T (λ). Since the
leading coefficient of T (λ) is anti-diagonal, it can be ’normalized’ by a final congruence
transformation T (λ) 7→MTT (λ)M as follows:

Corollary 4.2 Let P (λ) ∈ F[λ]n×n be a T -alternating matrix polynomial of degree k with
invertible leading coefficient. Then P (λ) is equivalent to a T -alternating matrix polynomial
of degree k that is in lower anti-triangular form and has either the leading coefficient Rn

or [
0 Rn/2

−Rn/2 0

]
.

Next, let us turn to palindromic matrix polynomials. Recall that a matrix polynomial
P (λ) =

∑k
j=0 λ

jAj (where leading coefficients Ak, Ak−1, . . . are allowed to be zero) is called

T -palindromic (or T -palindromic of type +1) if revP (λ) = P (λ)T and that it is called T -
anti-palindromic (or T -palindromic of type −1) if revP (λ) = −P (λ)T , where

revP (λ) =
k∑
j=0

λjAk−j

is the reversal of P (λ). We will further call P (λ) palindromic if it is either T -palindromic or
T -anti-palindromic. In [11, Theorem 7.6] necessary conditions for a Smith form to be that
of a palindromic matrix polynomial were presented consisting of pairing conditions for the
elementary divisors associated with +1 and −1 that are parallel to the pairing conditions
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for the elementary divisors associated with zero in Theorem 2.7 and Theorem 2.8. However,
these conditions were not sufficient. In particular, it was highlighted that the problem of
finding conditions that are both necessary and sufficient for a matrix polynomial in Smith
form to be the Smith form of a palindromic matrix polynomial remains an open problem.
Based on Theorem 3.1, we are able to get one step closer to solving this open problem.

As a tool, we will consider the Cayley transformations of matrix polynomials that were
used in [9] to relate palindromic and T -alternating matrix polynomials. Recall that for a
matrix polynomial P (λ) the two Cayley transformations with pole at −1 and +1 are given
by

C−1(P )(µ) := (µ+ 1)kP

(
µ− 1

µ+ 1

)
and C+1(P )(µ) := (1− µ)kP

(
1 + µ

1− µ

)
, (4.1)

respectively. The following table is extracted from [9] and adapted to our focus, it dis-
plays the correspondence in the structures of the matrix polynomial P (λ) and its Cayley
transforms.

Table 4.1: Cayley transforms of structured matrix polynomials.

C−1(P )(µ) C+1(P )(µ)

P (λ) k even k odd k even k odd

T -palindromic T -even T -odd T -even

T -anti-palindromic T -odd T -even T -odd

T -even T -palindromic T -palindromic T -anti-palindromic

T -odd T -anti-palindromic T -anti-palindromic T -palindromic

In order to keep the discussion short, we do not review in detail the necessary conditions
for a matrix polynomial to be in P-Smith form, instead we refer the reader to [11, Theorem
7.6]. Then, we obtain the following result parallel to Theorem 3.1.

Theorem 4.3 Let S(λ) ∈ F[λ]n×n be regular with deg
(

detS(λ)
)

= nk −m, where m is
the algebraic multiplicity of the eigenvalue λ0 = 0. Further, let S(λ) be in P-Smith form
as in [11, Theorem 7.6], i.e., it is the possible Smith form of a T -palindromic or T -anti-
palindromic matrix polynomial.
Then, S(λ) is equivalent to a T -palindromic or T -anti-palindromic, respectively, matrix
polynomial in lower anti-triangular form of degree k if +1 and −1 are not both eigenvalues
of S(λ).

Proof. We will only prove the theorem in the case that S(λ) is the possible Smith form of
a T -palindromic matrix polynomial and that −1 is not an eigenvalue of S(λ). The other
cases, i.e., S(λ) is the possible Smith form of a T -anti-palindromic matrix polynomial
and/or +1 is not an eigenvalue of S(λ) can be shown analogously.
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By [11, Theorem 7.6] we have

S(λ) = diag
(
λα1(λ− 1)β1p1(λ), . . . , λαn(λ− 1)βnpn(λ)

)
, (4.2)

where 0 ≤ α1 ≤ · · · ≤ αn, 0 ≤ β1 ≤ · · · ≤ βn, and pj(−1), pj(0), pj(1) 6= 0 for j = 1, . . . , n.
Furthermore, all pj(λ) are palindromic (of type +1) and all odd exponents βj occur in
equal pairs in adjacent diagonal positions.

Now, consider the list of all elementary divisors of S(λ) including infinite elementary
divisors of degrees α1, . . . , αn. (More precisely, the degrees of the infinite elementary divi-
sors in this list are exactly the nonzero entries of (α1, . . . , αn) as elementary divisors have
positive degree.) Then, because of

∑n
j=1 αj = m, the sum of the degrees of all (finite and

infinite) elementary divisors in this list is nk.
Hence, by [17, Section 5] this list of elementary divisors is realizable by an n×n matrix

polynomial Q(λ) of degree k, i.e., the Smith form of Q(λ) is S(λ) and its infinite elementary
divisors have the degrees α1, . . . , αn. Also, since all pj(λ) from (4.2) are palindromic, for

all λ̂ ∈ F \ {−1, 0, 1} the elementary divisors of Q(λ) associated with λ̂ and λ̂−1 are paired

by [11, Corollary 5.9], i.e., if (λ− λ̂)γ1 , . . . , (λ− λ̂)γν are the elementary divisors associated

with λ̂, then (λ− λ̂−1)γ1 , . . . , (λ− λ̂−1)γν are the elementary divisors associated with λ̂−1.
Then, the Cayley transformation C+1 transforms Q(λ) into the matrix polynomial

Q̂(λ) := C+1(Q)(λ) of degree k. As by [18, Theorem 3.4], only the eigenvalue −1 is

transformed to an eigenvalue ∞ under C+1, Q̂(λ) only has finite eigenvalues. Let

Ŝ(λ) = diag
(
λβ̃1 p̃1(λ), . . . , λβ̃n p̃n(λ)

)
be the Smith form of Q̂(λ), where 0 ≤ β̃1 ≤ · · · ≤ β̃n and p̃j(0) 6= 0 for j = 1, . . . , n. Now,

we will show that Ŝ(λ) is in E-Smith form as in Theorem 2.7. Indeed, by [18, Theorem 3.4]

(see also [12]), the Cayley transform C+1 transports elementary divisors of Q(λ) at λ̂ to

elementary divisors of Q̂(λ) at µ̂, where µ̂ = (λ̂− 1)/(λ̂+ 1) as λ̂ 6= −1. Thus, the degrees

of the elementary divisors of Q̂(λ) at µ̂ and −µ̂ are given by γ1, . . . , γν if µ̂ ∈ F \ {−1, 0, 1}
and by α1, . . . , αn if µ̂ ∈ {−1, 1}. Hence, p̃1(λ), . . . , p̃n(λ) are necessarily even. Finally,
the degrees of the elementary divisors of Q(λ) at 1 are those of the elementary divisors of

Q̂(λ) at 0, hence β̃j = βj for j = 1, . . . , n. As all odd βj’s occur in equal pairs in adjacent

diagonal positions, Ŝ(λ) is indeed in E-Smith form as in Theorem 2.7.

Moreover, deg
(

det Ŝ(λ)
)

= deg
(

det Q̂(λ)
)

= nk as Q̂(λ) is regular and does not
have the eigenvalue ∞. Thus, by Theorem 3.1 there exist unimodular matrix polynomials
E(λ), F (λ) such that P̂ (λ) := E(λ)Q̂(λ)F (λ) is a T -even, lower anti-triangular matrix
polynomial of degree k. Now applying the inverse Cayley transform C−1, we obtain that
P (λ) := C−1(P̂ )(λ) is a T -palindromic matrix polynomial, which is in anti-triangular form.
Clearly, the Smith form of P (λ) is S(λ) (using again [18, Theorem 3.4]) which concludes
the proof.
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5 Conclusion

We have studied the inverse T -alternating and T -palindromic polynomial eigenvalue prob-
lem over arbitrary algebraically closed fields of characteristic different from two. In partic-
ular, we have developed sufficient conditions under which an n×n matrix polynomial is the
Smith form of a T -alternating n×n matrix polynomial with nonsingular leading coefficient
of degree k. The analogous problem for T -palindromic matrix polynomials was considered
in the case that not both +1 and −1 are eigenvalues. Additionally, the constructed matrix
polynomials are in lower anti-triangular form. It remains an open problem to consider the
inverse T -alternating eigenvalue problem for the case that not only finite elementary divi-
sors, but also infinite elementary divisors are prescribed − then the techniques developed
in this paper cannot be applied. Similarly, the inverse T -palindromic eigenvalue problem
remains unsolved if both +1 and −1 are prescribed eigenvalues.
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