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1. Introduction. Given n × n matrices A0, . . . , Am, the corresponding matrix
polynomial P (z) := A0 + zA1 + · · · + zmAm is said to have an eigenvalue λ ∈ C,
with corresponding eigenvector v ∈ Cn \ {0} if P (λ)v = 0. We consider such eigen-
value problems for the special case that the coefficient matrices of P (z) satisfy certain
symmetries. This is indicated by stating that the ordered tuple (A0, . . . , Am) be-
longs to S where S ⊂ (Cn×n)m+1. In particular, given λ ∈ C, we are interested
in perturbations (∆0, . . . ,∆m) ∈ S, to (A0, . . . , Am) ∈ S that are minimal with re-
spect to a specified norm such that λ is an eigenvalue of the perturbed polynomial
P̃ (z) := (A0 − ∆0) + z(A1 − ∆1) · · · + zm(Am − ∆m). The norm of such a minimal
structure preserving perturbation is called the structured backward error of λ as an
approximate eigenvalue of P (z). We refer to this also as the structured eigenvalue
backward error of λ with respect to P (z) and S. In contrast, we refer to the norm
of a minimal but not necessarily structure preserving perturbation to P (z) such that
λ ∈ C is an eigenvalue of the perturbed polynomial simply as the eigenvalue backward
error of λ with respect to P (z).

Matrix polynomials with symmetries in their coefficients are referred to as struc-
tured matrix polynomials. For example the coefficients of Hermitian matrix polyno-
mials are all Hermitian matrices, i.e., they satisfy, A∗j = Aj , j = 0, 1, . . . ,m where
A∗ denotes the complex conjugate transpose of a matrix A. Other structured ma-
trix polynomials closely related to the Hermitian matrix polynomials are the skew-
Hermitian matrix polynomials where the coefficients are all skew-Hermitian matrices
and ∗-even and ∗-odd matrix polynomials where the coefficient matrices alternate be-
tween Hermitian and skew-Hermitian structure due to which they are also referred to
as ∗-alternating polynomials [20]. Yet another interesting class of structured matrix
polynomials are the ∗-palindromic polynomials where the coefficient matrices satisfy
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A∗j = Am−j , j = 0, . . . ,m. The ∗-palindromic polynomials P (z) have the property

that revP ∗(z) = P (z) where P ∗(z) := Σmj=0z
jA∗j , and revP (z) := zmP (1/z) repre-

sents the reversal of P (z) obtained by reversing the order of the coefficient matrices in
P (z). Replacing the complex conjugate transpose ∗ by the transpose T in the above
definition of ∗-palindromic matrix polynomials results in the T -palindromic matrix
polynomials which satisfy revPT (z) = P (z). Each of the above mentioned structured
matrix polynomials display a symmetry in their eigenvalue distributions as an im-
mediate consequence of the symmetry in their coefficient matrices. For example, the
eigenvalues of Hermitian and skew-Hermitian matrix polynomials occur in pairs (λ, λ̄).
Eigenvalues of ∗-even and ∗-odd matrix polynomials occur in pairs (λ,−λ̄) when the
polynomial is complex and in quadruples (λ,−λ̄, λ̄,−λ) when the polynomial is real.
On the other hand, for complex ∗-palindromic and T -palindromic matrix polynomials,
these pairings are (λ, 1/λ̄) and (λ, 1/λ), respectively. If these matrix polynomials are
real, then the eigenvalues occur in quadruples (λ, 1/λ̄, λ̄, 1/λ).

This paper is a follow up of [6] which considered the similar problem of find-
ing structured backward errors of approximate eigenvalues and associated minimal
structure preserving perturbations for the particular case of the Hermitian matrix
polynomial P (z) and related structures like skew-Hermitian and ∗-alternating matrix
polynomials. In the same work, it was stated that when the problem concerns ∗-
palindromic and T -palindromic structures, the solutions require a different treatment
from that of the Hermitian and related structures and the aim of this work is to focus
on such structures.

As already mentioned in [6], structured matrix polynomials occur widely in var-
ious applications. For example, Hermitian matrix polynomials occur in structural
mechanics, fluid flows and signal processing to name a few (for details, see [24] and
references therein) while ∗-even matrix polynomials arise in linear quadratic opti-
mal control problems [19, 22] and in gyroscopic systems [18]. On the other hand
∗-palindromic matrix polynomials occur in discrete time optimal control theory [20]
and T -palindromic matrix polynomials arise in the mathematical modelling and nu-
merical simulation of Surface Acoustic Wave (SAW) filters [25] and in the vibration
analysis of railway tracks excited by high speed trains [12, 13]. It is already well es-
tablished [24] that it is important to use algorithms that preserve the structure of the
matrix polynomials when computing their eigenvalues so that the eigenvalue pairing
associated with the structure remains intact under roundoff errors and any analysis or
application based on them is physically meaningful and useful. Therefore, structure
preserving perturbation and backward error analysis of eigenvalues and eigenvectors
of structured matrix polynomials play a crucial role in all applications involving such
polynomials. Significant contributions towards structured backward error and per-
turbation analysis have been made in [2, 3, 4, 10, 16, 17, 23].

The problem of finding minimal structure preserving perturbations to a given
structured polynomial P (z) such that the perturbed polynomial has a prescribed
eigenvalue λ and a corresponding eigenvector v gives the structured backward error
for the approximate eigenpair (λ, v) of P (z). This problem has been solved for several
classes of structured matrix pencils and polynomials in [2, 3]. However, except for the
work done in [6], the problem of computing structured eigenvalue backward errors
has not been undertaken so far.

The structured eigenvalue backward errors are important for the stability analysis
of structure preserving algorithms that compute only eigenvalues. They are also
important for finding solutions to distance problems involving structured matrices as
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in the case of the distance to bounded realness for Hamiltonian matrices [5] and in
the passivation of linear time invariant control systems. The backward error for an
approximate eigenvalue λ of P (z) may be obtained by minimizing the corresponding
expression for the backward error of the approximate eigenpair (λ, v) over all nonzero
vectors v. But, the expressions for the structured backward errors for approximate
eigenpairs in [2, 3] indicate that this approach may not be feasible for structured
eigenvalue backward errors. There are certain special situations when the backward
errors of approximate eigenvalues are equal with respect to structured and arbitrary
perturbations. For instance, this is the case for approximate real eigenvalues for
Hermitian and skew-Hermitian matrix polynomials, purely imaginary approximate
eigenvalues of ∗-alternating matrix polynomials and approximate eigenvalues on the
unit circle for ∗-palindromic matrix polynomials [1, 2, 3]. Apart from these cases, in
all other situations, the computation of the structured eigenvalue backward error is a
challenging and important problem.

This paper is organized as follows. In section 2, we formulate our problems,
provide definitions and give the preliminary results necessary for the computation of
the structured eigenvalue backward errors. In section 3, we reformulate the origi-
nal problem of computing the structured eigenvalue backward error as an equivalent
problem of maximizing the Rayleigh quotient of a Hermitian matrix with respect to
certain constraints. We derive formulas for the structured eigenvalue backward error
of λ ∈ C for ∗-palindromic polynomials in section 4 and the T -palindromic pencils and
quadratic polynomials in section 5. We also find formulas for the structured backward
error of λ ∈ R for real T -palindromic polynomials of any degree with respect to real
T -palindromic perturbations.

Notations: We use the notations Herm(n) and Sym(n) to denote the sets of
Hermitian and symmetric matrices of size n×n, respectively. The notations λmax(H)
and λ2(H) denote the largest and second largest eigenvalues of a Hermitian matrix
H. Also, σ2(S) denotes the second largest singular value of a matrix S. The symbol
⊗ denotes the Kronecker product of matrices (or vectors).

2. Preliminaries. We introduce a norm on (Cn×n)m+1 associated with a weight
vector w ∈ Rm+1 to be able to measure perturbations of matrix polynomials in a
flexible way.

Definition 2.1. Let ‖·‖ be the spectral norm and let w = (w0, . . . , wm) ∈ Rm+1,
where w0, . . . , wm > 0.

1) w is called a weight vector and its entries wj are called weights.
2) The reciprocal weight vector of w is defined as w−1 := (w−10 , . . . , w−1m ).
3) A weight vector w = (w0, . . . , wm) is said to be a palindromic weight vector

if wj = wm−j for j = 0, . . . ,m.
4) For a tuple of matrices ∆0, . . . ,∆m ∈ Cn×n, we define

‖(∆0, . . . ,∆m)‖w :=
√
w2

0‖∆0‖2 + · · ·+ w2
m‖∆m‖2. (2.1)

Definition 2.2. Let P (z) = zmAm + · · · + zA1 + A0 be a matrix polynomial,
where A0, . . . , Am ∈ Cn×n and let λ ∈ C. Furthermore, let w = (w0, . . . , wm) ∈ Rm+1

be a weight vector and let S ⊆ (Cn×n)m+1. Then we call

ηSw(P, λ) :=inf
{
‖(∆0, . . . ,∆m)‖w

∣∣∣ det
( m∑
j=0

λj(Aj −∆j)
)

= 0, (∆0, . . . ,∆m) ∈ S
}

the backward error of λ with respect to P (z), S and w.
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Thus, ηSw(P, λ) is the norm of the smallest perturbation from S so that λ becomes

an eigenvalue of the perturbed matrix polynomial P̃ (z) =
∑m
j=0 z

j(Aj−∆j). Clearly,

we have ηSw(P, λ) = 0 if the matrix P (λ) ∈ Cn×n is singular, i.e., if λ is already an
eigenvalue of P (z) (including the case that the matrix polynomial P (z) is singular).
Throughout this paper we assume that P (z) is regular and that P (λ) is nonsingular.
Also it is important to note that if (A0, . . . , Am) ∈ S then

ηSw(P, λ) ≤ ‖(A0, . . . , Am)‖w <∞,

because the perturbation with the tuple (A0, . . . , Am) results in the zero polynomial.
The case S = Cn×n in the definition of ηSw(P, λ) corresponds to the backward error
with respect to arbitrary perturbations and we denote this by ηw(P, λ). It is well
known (see for example [4, Proposition 4.6], or [6, Theorem 4.2]) that

ηw(P, λ) =
σmin

(
P (λ)

)
‖(1, λ, . . . , λm)‖w−1

,

where σmin(A) stands for the smallest singular value of a matrix A.

For the sake of brevity, whenever we make statements that are valid for both
∗-palindromic and T -palindromic structures, we use the term ?-palindromic where
? = ∗ or ? = T. Thus, denoting the ?-palindromic structure by pal?, we have

pal? =

{
{(A0, . . . , Am) ∈ (Cn×n)m+1 : A∗j = Am−j} if ? = ∗,
{(A0, . . . , Am) ∈ (Cn×n)m+1 : ATj = Am−j} if ? = T.

The flexibility to perturb a polynomial with coefficients in pal? in a structure pre-
serving way is restricted by the fact that equal weights must be given to coefficients
in position j and position m − j. Therefore unless otherwise stated, we assume that
the weight vector w is a palindromic weight vector as defined in Definition 2.1. Our
aim will be to solve the following problem.

Problem 2.3. Let P (z) =
∑m
i=0 z

jAj be ?-palindromic and λ ∈ C\{0}. Suppose
that P (λ) is nonsingular. Find the smallest structured perturbation from pal? that
makes λ an eigenvalue of the perturbed ?-palindromic polynomial. More precisely:
calculate

ηpal?w (P, λ) :=inf
{
‖(∆0, . . . ,∆m)‖w

∣∣∣ det
( m∑
j=0

λj(Aj −∆j)
)

= 0, (∆0, . . . ,∆m)∈ pal?

}
and construct the corresponding perturbation ∆P (z) =

∑m
j=0 λ

j∆j that attains the
infimum.

Note that the assumption λ ∈ C \ {0} is justified because

ηpal?w (P, 0) =
√

2w0σmin(A0),

where σmin(A0) is the minimum singular value of A0.

The problem of computing ηSw(P, λ) for the Hermitian and related structures was
reformulated in terms of structured mapping problems in [6]. The result [6, Lemma
2.4] was crucial to this reformulation. The result is restated below together with a
proof for the sake of completeness.
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Lemma 2.4. Let P (z) :=
∑m
j=0 z

jAj be a complex n × n matrix polynomial.

Also, let ∆0, . . . ,∆m ∈ Cn×n and λ ∈ C be such that P (λ) is nonsingular and define

M :=
(
P (λ)

)−1
. Then the following statements are equivalent:

(a) det
( m∑
j=0

λj(Aj −∆j)
)

= 0.

(b) There exist vectors v0, . . . , vm ∈ Cn satisfying
∑m
j=0 λ

jvj 6= 0 such that

vj = ∆jM
(
λmvm + · · ·+ λv1 + v0

)
, for j = 0, . . . ,m.

Proof. Denote P̃ (λ) =
∑m
j=0 λ

j(Aj −∆j).

(a) ⇒ (b): If (a) holds then there exists x 6= 0 such that P̃ (λ)x = 0. Let vj = ∆j x
for j = 0, . . . ,m. Then we have

P (λ)x = P (λ)x− P̃ (λ)x =

m∑
j=0

λj∆j x =

m∑
j=0

λjvj =: vλ. (2.2)

We have vλ 6= 0 because P (λ) = M−1 is nonsingular by assumption. On mul-
tiplying (2.2) from the left with ∆jM we obtain the identities vj = ∆jMvλ for
j = 0, . . . ,m.

(b) ⇒ (a): Suppose that (b) holds and set vλ :=
∑m
j=0 λ

jvj . Then

P̃ (λ)Mvλ =
(
P (λ)−

m∑
j=0

λj∆j

)
Mvλ = vλ −

m∑
j=0

λj∆jMvλ = 0,

because ∆jMvλ = vj for j = 0, . . . ,m. Since Mvλ 6= 0, this implies (a).
Lemma 2.4 yields the following alternative characterization of ηpal?w (P, λ) in terms

of mapping problems.
Corollary 2.5. Let P (z) =

∑m
j=0 z

jAj be ?-palindromic and λ ∈ C \ {0}. Also

let k := bm−12 c and vλ :=
∑m
j=0 λ

jvj where v0, . . . , vm ∈ Cn. Assume that P (λ) is

nonsingular and let M =
(
P (λ)

)−1
. If m is odd,

ηpal?w (P, λ) = inf
{
‖(∆0, . . . ,∆m)‖w

∣∣∣∃ v0, . . . , vm ∈ Cn, vλ 6= 0, (∆0, . . . ,∆m) ∈ pal?,

∆jMvλ = vj , ∆?
jMvλ = vm−j , j = 0, . . . , k

}
,

and if m is even,

ηpal?w (P, λ) = inf
{
‖(∆0, . . . ,∆m)‖w

∣∣∣∃ v0, . . . , vm ∈ Cn, vλ 6= 0, (∆0, . . . ,∆m) ∈ pal?,

∆m
2
Mvλ = vm

2
, ∆jMvλ = vj , ∆?

jMvλ = vm−j , j = 0, . . . , k
}
.

Necessary and sufficient conditions for the mapping problems

∆jMvλ = vj , ∆?
jMvλ = vm−j

in Corollary 2.5 to be solvable as well as minimal norm solutions to such problems
have been obtained in [10] and [14, Theorem 2]. For convenience, we restate the result
and include a formula for the desired minimal norm solution and also give a proof.
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Theorem 2.6. Let x, y, z ∈ Cn with x 6= 0. Then there exists a matrix ∆ ∈ Cn×n
such that ∆x = y and ∆?x = z if and only if x?y = z?x. If the latter condition is
satisfied then

min
{
‖∆‖

∣∣∣∆ ∈ Cn×n, ∆x = y,∆?x = z
}

= max

{
‖y‖
‖x‖

,
‖z‖
‖x‖

}
. (2.3)

Furthermore, let x̂ = x when ? = ∗ and x̂ = x̄ when ? = T , and let y1 and z1 denote
the orthogonal projections of y and z, respectively, onto the orthogonal complement
of x̂. If ‖z1‖ ≤ ‖y1‖, then the minimum in (2.3) is attained for

∆̃ =
1

‖x‖

[
x̂
‖x‖

y1
‖y1‖

] [ x̂∗y
‖x‖ ‖z1‖
‖y1‖ −x̂∗y ‖z1‖

‖x‖ ‖y1‖

] [
x̂
‖x‖

z1
‖z1‖

]?
if z1 6= 0 and for ∆̃ = 1

‖x‖2 yx
∗ if z1 = 0. If ‖y1‖ ≤ ‖z1‖ then these formulas can be

used to construct ∆̃?.
Proof. Clearly, the identities ∆x = y and ∆?x = z imply x?y = z?x and

‖∆‖ ≥ max

{
‖y‖
‖x‖

,
‖z‖
‖x‖

}
.

Suppose now that x?y = z?x holds true. Denote x0 = x̂/‖x‖. Then

y = (x∗0y)x0 + y1, x
∗
0y1 = 0, ‖y‖2 = |x∗0y|2 + ‖y1‖2,

z = (x∗0z)x0 + z1, x
∗
0z1 = 0, ‖z‖2 = |x∗0z|2 + ‖z1‖2.

Notice that x∗0y = z∗x0 and hence ‖y‖2 − ‖z‖2 = ‖y1‖2 − ‖z1‖2. For every α ∈ C the
matrix

∆α = ‖x‖−1
(
(x∗0y)x0x

?
0 + y1x

?
0 + x0z

?
1 + α y1z

?
1

)
satisfies ∆αx = y and ∆?

αx = z. Hence,

‖∆α‖ ≥ max

{
‖y‖
‖x‖

,
‖z‖
‖x‖

}
. (2.4)

We show that equality holds in (2.4) for appropriate α. Without loss of generality we
may assume ‖z‖ ≤ ‖y‖, or, equivalently, ‖z1‖ ≤ ‖y1‖. Otherwise, we may interchange
the roles of z and y and ∆ and ∆?, respectively. We consider two cases.

Case 1: z1 6= 0. Let α = −x∗0y/‖y1‖2. Then ∆α = ∆̃ and ‖∆α‖ = ‖y‖/‖x‖. In
order to see that let y0 = y1/‖y1‖ and z0 = z1/‖z1‖. Then

∆α = ‖x‖−1
[
x0 y0

] [ x∗0y ‖z1‖
‖y1‖ α‖y1‖ ‖z1‖

] [
x0 z0

]?
=
‖y‖
‖x‖

[
x0 y0

] 1

‖y‖

[
x∗0y ‖y1‖
‖y1‖ −x∗0y

]
︸ ︷︷ ︸

=:C

[
1 0
0 ‖z1‖/‖y1‖

]
︸ ︷︷ ︸

=:D

[
x0 z0

]?
Since

[
x0 y0

]∗ [
x0 y0

]
=
[
x0 z0

]∗ [
x0 z0

]
= I we have

‖
[
x0 y0

]
‖ = ‖

[
x0 z0

]? ‖ = 1.

The matrix C is easily seen to be unitary. Moreover, ‖D‖ = max{1, ‖z1‖/‖y1‖} = 1.
Consequently, ‖∆α‖ ≤ ‖y‖/‖x‖. This inequality is actually an equality because of
(2.4).

Case 2: z1 = 0. Then for any α, ∆α = ‖x‖−1yx∗0, whence ‖∆α‖ = ‖y‖/‖x‖.
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3. Reformulation of the problem. We first reformulate the original Prob-
lem 2.3 of finding the backward error for ?-palindromic polynomial into an equivalent
problem of maximizing the Rayleigh quotient of a Hermitian matrix with respect
to some constraints. These constraints involve Hermitian matrices when ? = ∗,
and symmetric matrices when ? = T . Let λ ∈ C \ {0}, let P (z) =

∑m
j=0 z

jAj
be a ?-palindromic matrix polynomial such that M = P (λ)−1 exists and define
vλ =

∑m
j=0 λ

jvj where v0, . . . , vm ∈ Cn. Also let k = bm−12 c.
By Theorem 2.6 for any v0, . . . , vm ∈ Cn that satisfy vλ 6= 0, there exists a

∆ = (∆0, . . . ,∆m) ∈ pal? such that

∆jMvλ = vj and ∆?
jMvλ = vm−j , j = 0, . . . , k (3.1)

if and only if (Mvλ)?vj = v?m−j(Mvλ). For any ∆j ∈ Cn×n satisfying (3.1) which is

minimal with respect to the 2-norm, we have ‖∆j‖ = max
{
‖vj‖
‖Mvλ‖ ,

‖vm−j‖
‖Mvλ‖

}
.

If m is even, the matrix ∆m
2

of the tuple ∆ = (∆0, . . .∆m) is Hermitian when
? = ∗ and symmetric when ? = T. In the case ? = ∗, the Hermitian matrix ∆m

2
may

be chosen to satisfy

∆m
2
Mvλ = vm

2
,

if and only if (Mvλ)∗vm
2
∈ R, (for details, see [21] and [6, Theorem 2.6]). On the other

hand, when ? = T the symmetric matrix ∆m
2

may be chosen to satisfy ∆Mvλ = vm
2

without any restrictions on Mvλ and vm
2

and in either case, any minimal 2-norm

solution of this mapping problem satisfies ‖∆m
2
‖2 =

‖vm/2‖
‖Mvλ‖ , (see [21]). Therefore, if

all the constraints are fulfilled, the minimal norm of ∆ is given by

‖∆‖2w = f(v0, . . . , vm),

where

f(v0, . . . , vm) :=


k∑
j=0

2w2
j max

{
‖vj‖2

‖Mvλ‖2
,
‖vm−j‖2

‖Mvλ‖2

}
if m is odd,

k∑
j=0

2w2
j max

{
‖vj‖2

‖Mvλ‖2
,
‖vm−j‖2

‖Mvλ‖2

}
+ w2

m
2

‖vm
2
‖2

‖Mvλ‖2
if m is even.

Thus, Corollary 2.5 yields

ηpal?w (P, λ)2 = inf
{
f(v0, . . . , vm)

∣∣∣(v0, . . . , vm) ∈ K
}
, (3.2)

where K ⊆ (Cn)m+1 is given by

K :=
{

(v0, . . . , vm)
∣∣∣ vλ 6= 0, (Mvλ)?vj = v?m−jMvλ, j = 0 . . . , k

}
(3.3)

if ? = T, or if m is odd and ? = ∗ and by

K :=
{

(v0, . . . , vm)
∣∣∣ vλ 6= 0, (Mvλ)∗vm

2
∈ R, (Mvλ)∗vj = v∗m−jMvλ, j = 0, . . . , k

}
(3.4)

otherwise (i.e., when ? = ∗ and m is even). Observe that (Mvλ)?vj = v?m−j(Mvλ) for
j = 0, . . . , k, if and only if

0 =
(
M(v0 + . . .+ λmvm)

)?
vj − v?m−j

(
M(v0 + . . .+ λmvm)

)
= v?C̃jv,
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where v := [vT0 , . . . , v
T
m]T and

C̃j := (Λ?me
?
j+1)⊗M? − (em−j+1Λm)⊗M, (3.5)

with Λm := [1, λ, . . . , λm] ∈ C1×(m+1). Similarly (Mvλ)∗vm
2
∈ R if and only if

0 = −2 Im
(

(Mvλ)∗vm
2

)
= i
(
v∗m

2
(Mvλ)− (Mvλ)∗vm

2

)
= v∗C̃m

2
v,

where

C̃m
2

:= i
(

(Λ∗me
∗
m
2 +1)⊗M∗ − (em

2 +1Λm)⊗M
)
. (3.6)

Note that C̃m
2

is a Hermitian matrix but the matrices C̃j , j = 0, . . . , k are not Her-
mitian. Thus, from (3.3) if ? = T , or if m is odd and ? = ∗

K =
{

(v0, . . . , vm)
∣∣∣ vλ 6= 0, v?C̃jv = 0, j = 0, . . . , k

}
, (3.7)

and from (3.4)

K =
{

(v0, . . . , vm)
∣∣∣ vλ 6= 0, v∗C̃m

2
v = 0, v∗C̃jv = 0, j = 0, . . . , k

}
, (3.8)

otherwise.
As already stated in the beginning of this section, our aim is to reformulate the

computation of the structured eigenvalue backward error as an equivalent problem of
maximizing the Rayleigh quotient of a Hermitian matrix subject to some constraints.
The same strategy was applied in [6] to find the structured eigenvalue backward error
ηSw(P, λ) for Hermitian and related structures. But the reformulation was aided by
the fact ηSw(P, λ) satisfied

ηSw(P, λ) =

(
sup

{
‖Mvλ‖2∑m
j=0 w

2
j‖vj‖2

∣∣∣ vλ 6= 0, v∗jMvλ ∈ R

})− 1
2

. (3.9)

for those structures, because the quotient in the right hand side of (3.9) could easily
be seen to be a Rayleigh quotient of a particular Hermitian matrix. (For details, we
refer to the proof of [6, Theorem 4.4].) However, as (3.2) suggests, this is not the
case for the structured eigenvalue backward error ηpal?w (P, λ) for the ?-palindromic
structures, because the function f in the right hand side of (3.2) involves taking a
maximum. The following lemma is a key step towards establishing a relationship
similar to (3.9) for ηpal?w (P, λ), because it shows that minimizers of the function f
in (3.2) also minimize a related function g that can in the following be interpreted as
a Rayleigh quotient of a certain Hermitian matrix.

Lemma 3.1. Let P (z) =
∑m
j=0 z

jAj be ?-palindromic and λ ∈ C \ {0}. Assume

further that M =
(
P (λ)

)−1
exists and k = bm−12 c. Then

ηpal?w (P, λ)2 = inf
{
g(v0, . . . , vm)

∣∣∣ (v0, . . . , vm) ∈ K
}
, (3.10)

where

g(v0, . . . , vm) :=


k∑
j=0

2w2
j (‖vj‖

2+|λ|m−2j‖vm−j‖2)
(1+|λ|m−2j) ‖Mvλ‖2

if m is odd,

k∑
j=0

2w2
j (‖vj‖

2+|λ|m−2j‖vm−j‖2)
(1+|λ|m−2j) ‖Mvλ‖2

+
w2
m
2
‖vm

2
‖2

‖Mvλ‖2
if m is even,

and K is as defined in (3.7) and (3.8), respectively.

8



Proof. Set ν := inf
{
g(v0, . . . , vm)

∣∣ (v0, . . . , vm) ∈ K
}

. It is easily verified that
g(v0, . . . , vm) ≤ f(v0, . . . , vm) for all (v0, . . . , vm) ∈ (Cn)m+1 with vλ 6= 0. This to-
gether with (3.2) implies ν ≤ ηpal?w (P, λ)2. The opposite inequality is an immediate
consequence of the following facts:

(a) The infimum of g in the definition of ν is attained for some (v̂0, . . . , v̂m) ∈ K.
(b) For every minimizer (v̂0, . . . , v̂m) ∈ K of g we have

g(v̂0, . . . , v̂m) = f(v̂0, . . . , v̂m).

Proof of (a): Since K is closed under scalar multiplication and since for all t ∈ R\{0}
and all (v0, . . . , vm) ∈ K we have g(v0, . . . , vm) = g(t v0, . . . , t vm), we obtain that
g(K) = g(K ∩ S), where S is defined as

S =

{
(v0, . . . , vm) ∈ (Cn)m+1

∣∣∣∣ k∑
j=0

‖vj‖2 = 1

}
.

Let (v
(`)
0 , . . . , v

(`)
m ), ` ∈ N, be a sequence in K ∩ S for which

lim
`→∞

g
(
v
(`)
0 , . . . , v(`)m

)
= ν.

Since S is compact we may assume without loss of generality that the sequence

(v
(`)
0 , . . . , v

(`)
m ) has a limit (v̂0, . . . , v̂m) ∈ S. Suppose that (v̂0, . . . , v̂m) 6∈ K. Then

we have v̂0 + λv1 + · · ·+ λm v̂m = 0, as (v̂0, . . . , v̂m) belongs to the closure of K. This
implies

lim
`→∞

∥∥∥M (
v
(`)
0 + λv

(`)
1 + · · ·+ λmv(`)m

)∥∥∥−1 =∞

and hence

lim
`→∞

g(v
(`)
0 , . . . , v(`)m ) =∞ 6= ν

which is a contradiction. Thus, (v̂0, . . . , v̂m) ∈ K and g(v̂0, . . . , v̂m) = ν.
Proof of (b): Let (v̂0, . . . , v̂m) ∈ K be such that g(v̂0, . . . , v̂m) = ν. Observe that,

to show that g(v̂0, . . . , v̂m) = f(v̂0, . . . , v̂m), it is sufficient to show that ‖v̂j‖ = ‖v̂m−j‖
for all j = 0, . . . , k. Let

x0 =

M(v̂λ)/‖M(v̂λ)‖ if ? = ∗,

M(v̂λ)/‖M(v̂λ)‖ if ? = T.

and yj , ym−j be the projections of v̂j and v̂m−j , respectively, onto the orthogonal
complement of x0, for 0 ≤ j ≤ k. Then

v̂j = yj + cjx0 and v̂m−j = ym−j + cm−jx0

for some cj , cm−j ∈ C. Since (v̂0, . . . , v̂m) ∈ K we have c̄j = cm−j when ? = ∗ and
cj = cm−j when ? = T. Hence

‖v̂j‖2 = ‖yj‖2 + |cj |2 and ‖v̂m−j‖2 = ‖ym−j‖2 + |cm−j |2. (3.11)
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Let y = λ̄m−2j yj + |λ|m−2j ym−j . Observe that

(v̂0, . . . , v̂j + t λm−2j y, . . . , v̂m−j − t y, . . . , v̂m) ∈ K

for all t ∈ R. Thus as (v̂0, . . . , v̂m) is a minimizer of g over K,, we have

0 =
d

dt
g
(
v̂0, . . . , v̂j + t λm−2j y, . . . , v̂m−j − t y, . . . , v̂m

)∣∣∣∣
t=0

=
d

dt

(
2w2

j (‖v̂j + t λm−2j y‖2 + |λ|m−2j‖v̂m−j − t y‖2)

(1 + |λ|m−2j) ‖Mv̂λ‖2

)∣∣∣∣
t=0

=
2w2

j<
(
v̂∗j (λm−2j y)− |λ|m−2j v̂∗m−jy

)
(1 + |λ|m−2j) ‖Mv̂λ‖2

(
since,

d

dt
‖v + ty‖2

∣∣∣∣
t=0

= 2<(v∗y)
)

=
2w2

j<
(
y∗j (λm−2j y)− |λ|m−2j y∗m−jy

)
(1 + |λ|m−2j) ‖Mv̂λ‖2

=
2w2

j |λ|m−2j <
(
|λ|m−2j ‖yj‖2 + λm−2j y∗j ym−j − λ̄m−2j y∗m−jyj − |λ|m−2j ‖ym−j‖2

)
(1 + |λ|m−2j) ‖Mv̂λ‖2

=
2w2

j |λ|2(m−2j)
(
‖yj‖2 − ‖ym−j‖2

)
(1 + |λ|m−2j) ‖Mv̂λ‖2

,

which implies ‖yj‖ = ‖ym−j‖. This together with (3.11) yields ‖v̂j‖ = ‖v̂m−j‖. Hence
‖v̂j‖ = ‖v̂m−j‖ for all j, and the latter implies g(v̂0, . . . , v̂m) = f(v̂0, . . . , v̂m). This
completes the proof.

Recalling that k = bm−12 c, define γj1 = wj
√

2
1+|λ|m−2j , γj2 = wj

√
2|λ|m−2j

1+|λ|m−2j ,

j = 0, . . . , k and

Γ :=

{
diag(γ01, . . . , γk1, γk2 . . . , γ02)⊗ In, if m is odd,
diag(γ01, . . . , γk1, wm

2
, γk2 . . . , γ02)⊗ In if m is even.

Also recall that Λm = [1, λ, . . . , λm] ∈ C1×(m+1). Then we have

g(v0, . . . , vm) =
v∗Γ2v

v∗G̃v
, where G̃ := (Λ∗mΛm)⊗(M∗M), v = [vT0 , . . . , vTm]T (3.12)

and where v∗G̃v = ‖Mvλ‖ 6= 0, or, equivalently, vλ 6= 0. It follows that

ηpal?w (P, λ) =
(

inf
{
f(v0, . . . , vm)

∣∣∣ (v0, . . . , vm) ∈ K
})1/2

=
(

inf
{
g(v0, . . . , vm)

∣∣∣ (v0, . . . , vm) ∈ K
})1/2

(by Lemma 3.1)

=
(

sup
{
g(v0, . . . , vm)−1

∣∣∣ (v0, . . . , vm) ∈ K
})−1/2

.

Set u := Γv and

G := Γ−1G̃Γ−1, (3.13)

Cj := Γ−1C̃jΓ
−1, (3.14)

Cm
2

:= Γ−1C̃m
2

Γ−1, (3.15)
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where G̃, C̃j and C̃m
2

are as defined in (3.12), (3.5) and (3.6) respectively.

By Lemma 3.1 and (3.12), for k = bm−12 c, we have

(
ηpal?w (P, λ)

)−2
= sup

{ v∗G̃v

v∗Γ2v

∣∣∣v ∈ Cn(m+1) \ {0}, v?C̃jv = 0, j = 0, . . . , k
}

= sup
{u∗Gu
u∗u

∣∣∣u ∈ Cn(m+1) \ {0}, u?Cju = 0, j = 0, . . . , k
}
,

if ? = T, or if m is odd and ? = ∗, and(
ηpal∗w (P, λ)

)−2
= sup

{u∗Gu
u∗u

∣∣∣u ∈ Cn(m+1)\{0}, u∗Cm
2
u=0, u∗Cju=0, j = 0, . . . , k

}
otherwise. Note that the condition vλ 6= 0 from the definition of K in (3.7) or (3.8),

respectively, or, equivalently, the conditions v∗G̃v 6= 0 and u∗Gu 6= 0 can be dropped

in the two expressions for
(
ηpal∗w (P, λ)

)−2
, because G̃ and G are semidefinite. This

implies u∗Gu
u∗u ≥ 0 and hence the supremum of this Rayley quotient over all nonzero

vectors u satisfying some constraints will be the same with or without the additional
condition u∗Gu 6= 0.

In order to state the main result of this section, for each j = 0, . . . , k we define

Hj := Cj + C∗j , (3.16)

Hm−j := i(Cj − C∗j ), (3.17)

Hm
2

:= Cm
2
, (3.18)

Sj := Cj + CTj . (3.19)

Observe that for j = 0, . . . , k,

v∗C̃jv = 0 ⇐⇒ u∗Hju = 0 and u∗Hm−ju = 0,

vT C̃jv = 0 ⇐⇒ uTSju = 0,

v∗C̃m
2
v = 0 ⇐⇒ u∗Hm

2
u = 0.

Therefore we have proved the following theorem which gives the desired reformu-
lation.

Theorem 3.2. Let P (z) =
∑m
j=0 z

jAj be ?-palindromic and λ ∈ C\{0}. Suppose

that P (λ) is nonsingular and M = (P (λ))−1. Furthermore, let k = bm−12 c, G be
defined in (3.13), Hj , j = 0, . . . ,m be defined by (3.16)–(3.18) and Sj , j = 0, . . . , k be
defined by (3.19). Then

ηpalTw (P, λ) =

(
sup

{ u∗Gu
u∗u

∣∣∣ u ∈ Cn(m+1)\{0}, uTSju = 0, j = 0, . . . , k
})− 1

2

(3.20)

and

ηpal∗w (P, λ) =

(
sup

{ u∗Gu
u∗u

∣∣∣ u ∈ Cn(m+1)\{0}, u∗Hju = 0, j = 0, . . . ,m
})− 1

2

. (3.21)
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4. Backward errors for approximate eigenvalues of ∗-palindromic ma-
trix polynomials. In this section, we obtain structured eigenvalue backward errors
ηpal∗w (λ, P ) for matrix polynomials P (z) with ∗-palindromic structure. As already
mentioned in section 1, if λ ∈ C \ {0} is such that |λ| = 1, then there is no difference
between the eigenvalue backward errors with respect to structure preserving and ar-
bitrary perturbations. This fact was shown in [1] for the weight vector w = (1, . . . , 1)
and easily generalizes to arbitrary choices of palindromic weight vectors. The situa-
tion is completely different if |λ| 6= 1. In this case, we obtain the structured backward
error via minimization of the maximal eigenvalue of a parameter-depending Hermit-
ian matrix. The following theorem which is a combination of [6, Theorem 3.2 and
Theorem 3.5] is crucial to this process.

Theorem 4.1. Let G,H0, . . . ,Hp ∈ Cn×n be Hermitian. Assume that any
nonzero linear combination α0H0+ · · ·+αpHp, (α0, . . . , αp) ∈ Rp+1\{0} is indefinite.
(Here, “indefinite” is used in the sense “strictly not semi-definite” as opposed to “not
necessarily definite” as it is used in [7].) Then the following statements hold:

(1) The function L : Rp+1 → R, (t0, . . . , tp) 7→ λmax(G + t0H0 + · · · + tpHp) is
convex and has a global minimum

λ∗max = min
t0,...,tp∈R

L(t0, . . . , tp).

(2) If either p = 1, or the minimum λ∗max of L is attained at (t∗0, . . . , t
∗
p) ∈ Rp+1

and is a simple eigenvalue of H∗ := G+ t∗0H0 + · · ·+ t∗pHp, then there exists
an eigenvector u ∈ Cn \ {0} of H∗ associated with λ∗max satisfying

u∗Hju = 0 for j = 0, . . . , p. (4.1)

(3) Under the assumptions of (2) we have

sup

{
u∗Gu

u∗u

∣∣∣∣u 6= 0, u∗Hju = 0, j = 0, . . . , p

}
= λ∗max. (4.2)

In particular, the supremum of the left hand side of (4.2) is a maximum and attained
for the eigenvector u from (4.1).

As seen in [6, Theorem 3.5], the assumption that λ∗max is simple is not necessary
when p = 1. This is due to the fact that the joint numerical range

W0(F0, F1) :=
{

(x∗F0x, x
∗F1x) ∈ R2

∣∣x ∈ C`, ‖x‖ = 1
}

of two Hermitian matrices F0, F1 ∈ C`×` is a convex set [11]. But as [6, Example 3.8]
shows, the joint numerical range of three or more complex Hermitian matrices need
not be convex. Hence the assumption of simplicity of λ∗max is essential when p > 1.
We have the following result which gives a formula for ηpal∗w (P, λ) when |λ| 6= 1.

Theorem 4.2. Let P (z) =
∑m
j=0 z

jAj be ∗-palindromic and λ ∈ C \ {0} such

that |λ| 6= 1. Suppose that P (λ) is nonsingular and M = (P (λ))−1. Then for G as
defined in (3.13) and Hj , j = 0, . . . ,m as defined in (3.16)–(3.18), we have that

λ∗max := min
t0,...,tm∈R

λmax(G+ t0H0 + · · ·+ tmHm)

is attained for some (t∗0, . . . , t
∗
m) ∈ Rm+1. If m = 1 or λ∗max is a simple eigenvalue of

G+ t∗0H0 + · · ·+ t∗mHm, then

ηpal∗w (P, λ) =
1√
λ∗max

=

(
min

t0,...,tm∈R
λmax(G+ t0H0 + · · ·+ tmHm)

)−1/2
.
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Proof. Setting k = bm−12 c let H̃j = C̃j+C̃∗j and H̃m−j = i
(
C̃j−C̃∗j

)
, where C̃j for

j = 0, . . . , k are as defined in (3.5) and (3.6). In view of Theorem 3.2, we aim to apply
Theorem 4.1 in the proof. Thus we check whether each nontrivial linear combination
of H0, . . . ,Hm, or, equivalently, of H̃0, . . . , H̃m is indefinite. Let H :=

∑m
j=0 αjH̃j .

Recalling that Λm := [1, λ, . . . , λm] ∈ C1×(m+1), we have

H =

k∑
j=0

(
αj

((
Λ∗m(e∗j+1 − e∗m+1−j)

)
⊗M∗ +

(
(ej+1 − em+1−j)Λm

)
⊗M

)
+ i αm−j

((
Λ∗m(e∗j+1 + e∗m+1−j)

)
⊗M∗ −

(
(ej+1 + em+1−j)Λm

)
⊗M

))
when m is odd and

H =
k∑
j=0

(
αj

((
Λ∗m(e∗j+1 − e∗m+1−j)

)
⊗M∗ +

(
(ej+1 − em+1−j)Λm

)
⊗M

)
+ i αm−j

((
Λ∗m(e∗j+1 + e∗m+1−j)

)
⊗M∗ −

(
(ej+1 + em+1−j)Λm

)
⊗M

))
+ i αm

2

(
(Λ∗me

∗
m
2 +1)⊗M∗ − (em

2 +1Λm)⊗M
)

when m is even. Thus we have,

H = (Λ∗mα
∗)⊗M∗ + (αΛm)⊗M,

where α := [α0 − iαm, . . . , αk − iαm−k, −(αk + iαm−k), . . . ,−(α0 + iαm)]
T

if m is
odd and

α =
[
α0 − iαm, . . . , αk − iαm−k, −iαm

2
, −(αk + iαm−k), . . . ,−(α0 + iαm)

]T
if m is even. To complete the proof, we show that if H is semidefinite then α = 0 and
hence α0 = · · · = αm = 0. Let

Q :=



1 −λ 0 . . . 0

0 1 −λ
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . −λ

0 . . . . . . 0 1


∈ C(m+1)×(m+1) (4.3)

and a = [a0 . . . , am]T := Q∗α. Since ΛmQ = e∗1 we have

(Q⊗ In)∗H(Q⊗ In) = (Q∗Λ∗mα
∗Q)⊗M∗ + (Q∗αΛmQ)⊗M

= (e1a
∗)⊗M∗ + (ae∗1)⊗M

=


a0M + ā0M

∗ ā1M
∗ · · · āmM

∗

a1M 0 . . . 0
...

...
...

amM 0 . . . 0


13



If H is semidefinite, then a1 = · · · = am = 0 and hence Q∗α = a = a0e1. When
m ≥ 3, observing that

a1 = 0⇒ α1 − iαm−1 = λ̄(α0 − iαm),

ām = 0⇒ α0 − iαm = λ(α1 − iαm−1),

we have a0 = α0 − iαm = λ(α1 − iαm−1) = λλ̄(α0 − iαm) = λλ̄a0.
Similarly, when m = 1,

a1 = 0⇒ α0 + iα1 = −λ̄(α0 − iα1) and α0 − iα1 = −λ(α0 + iα1)

so that a0 = α0 − iα1 = −λ(α0 + iα1) = λλ̄(α0 − iα1) = λλ̄a0.
Finally when m = 2,

a1 = 0⇒ iα1 = −λ̄(α0 − iα2)

ā2 = 0⇒ α0 − iα2 = −iλα1

so that a0 = α0 − iα2 = −iλα1 = λλ̄(α0 − iα2) = λλ̄a0.
In all cases we have a0 = λλ̄a0 and hence a0 = 0 as λλ̄ 6= 1. Therefore, α =

(Q∗)−1a = 0 which implies that α0 = · · · = αm = 0.
Remark 4.3. Although it cannot be established that λ∗max is always simple

for the particular matrices G,H0, . . . ,Hm in Theorem 4.2, numerical experiments
suggests that this holds generically.

Remark 4.4. There may be situations when it would be necessary to find the
backward error ηpal∗w (P, λ) under the restriction that T -palindromic perturbations can
affect only some of the coefficient matrices. This is equivalent to setting some of the
entries in the palindromic weight vector w to zero. Let I := {j0, j1, . . . , j`} be a
subset of {0, 1, . . . , bm − 1c/2} if m is odd and of {0, 1, . . . ,m/2} if m is even and
assume that j0 < j1 < · · · < j`. Suppose that I is the set of indices such that only
the coefficients Aj and Am−j , j ∈ I of P (z) are affected by perturbations. Let ŵ be
a palindromic weight vector extracted from w by retaining only its nonzero entries.
Then ŵ belongs to R2`+3 if m is even and j` = m

2 and to R2`+2 otherwise. For any
(∆0, . . . ,∆m) ∈ pal∗ with ∆j = ∆m−j = 0 if j /∈ I, we then have

‖(∆0, . . . ,∆m)‖2w
= ‖(∆j0 ,∆j1 , . . . ,∆m−j1 ,∆m−j0)‖2ŵ

=


∑
j∈I

(
w2
j‖∆j‖2 + w2

m−j‖∆m−j‖2
)

+ w2
m
2
‖∆m

2
‖2 if m is even and jl = m

2 ,∑
j∈I

(
w2
j‖∆j‖2 + w2

m−j‖∆m−j‖2
)

otherwise.

Then ‖ · ‖ŵ defines a norm on (Cn×n)2`+3 in the first case and on (Cn×n)2`+2 in the
second case. By using this, and the weight vector ŵ, the strategy of reformulation pro-
posed in section 3 may be used to compute the structured backward error ηpal∗w (P, λ)
with fewer constraints and smaller Hermitian matrices involved in each constraint.
The details of this process are similar to those in [6, Section 6] for Hermitian matrix
polynomials and are therefore omitted.

Remark 4.5. To obtain an optimal ∗-palindromic perturbation to P (z) with
norm equal to the structured backward error ηpal∗w (P, λ) such that the perturbed
polynomial has an eigenvalue at λ, we first compute the eigenvector u corresponding to
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the eigenvalue λ∗max of G+t∗0H0+ · · ·+t∗mHm that satisfies the constraints u∗Hju = 0.
Setting, v := Γu, the coefficient matrices ∆j of the ∗-palindromic perturbation may
be obtained from Theorem 2.6 and [6, Theorem 2.6], the second result being necessary
only to construct ∆m

2
when m is even.

To highlight the fact that the assumption of simplicity of λ∗max is not required
when m = 1, we state the result for the case of the ∗-palindromic pencils separately.

Theorem 4.6. Let A ∈ Cn×n and λ ∈ C \ {0} with |λ| 6= 1. Suppose that the
pencil P (λ) = A+λA∗ is nonsingular and let M := (A+λA∗)−1. Furthermore define

γ1 :=
√

2
1+|λ| , γ2 :=

√
2|λ|
1+|λ| ,

G̃ :=

[
M∗M λM∗M
λ̄M∗M |λ|2M∗M

]
, C :=

[
M∗ 0

λ̄M∗ −M −λM

]
, Γ :=

[
w0γ1In 0

0 w0γ2In

]
,

G := Γ−1G̃Γ−1, H0 = Γ−1(C + C∗)Γ−1, and H1 := iΓ−1(C − C∗)Γ−1.

Then

ηpal∗w (P, λ) =

(
min
t0,t1∈R

λmax(G+ t0H0 + t1H1)

)−1/2
.

5. Structured eigenvalue backward errors for T -palindromic matrix
polynomials. In this section, we obtain the structured eigenvalue backward er-
ror ηpalTw (P, λ) for a matrix pencil or quadratic matrix polynomial P (z) with T -
palindromic structure. We also obtain the structured backward error for approximate
real eigenvalues of real T -palindromic polynomials without restrictions on the degree
of such polynomials.

Due to the results in [1], if λ = ±1 then there is no difference between the
eigenvalue backward errors with respect to arbitrary perturbations and with respect to
complex T -palindromic perturbations (when P (z) is complex) and real T -palindromic
perturbations (when P (z) is real). This is proved for the weight vector w = (1, . . . , 1),
but it may be easily generalized to arbitrary choices of palindromic weight vectors.

However, the situation is different, if λ 6= ±1. Due to Theorem 3.2 the original
Problem 2.3 of finding the structured backward error ηpalTw (P, λ) for T -palindromic
polynomials is equivalent to an optimization problem which requires maximizing the
Rayleigh quotient of a Hermitian matrix subject to a number of constraints involving
symmetric matrices. In these cases, the structured backward error may be obtained
by using a theorem from [15]. To state this theorem and other results that follow from
it, we recall that λ2(B) denotes the second largest eigenvalue of a Hermitian matrix
B and σ2(S) denotes the second largest singular value of a matrix S.

Theorem 5.1. [15] Let H ∈ Herm(n) and S ∈ Sym(n) with rank(S) ≥ 2.Then

sup
{
v∗Hv

∣∣∣ v ∈ Cn, vTSv = 0, ‖v‖ = 1
}

= min
0≤t≤t1

λ2

([
H tS̄
tS H̄

])
,

where t1 = 2‖H0‖
σ2(S)

.

The following theorem gives a formula for the structured eigenvalue backward
error ηpalTw (P, λ) when P (z) is a T -palindromic pencil and λ ∈ C \ {0, 1,−1}.
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Theorem 5.2. Let A ∈ Cn×n and suppose that P (λ) := A+ λAT is nonsingular

for λ ∈ C\{0, 1,−1}. Let M := (A+λAT )−1 and define γ1 :=
√

2
1+|λ| , γ2 :=

√
2|λ|
1+|λ| ,

G̃ :=

[
M∗M λM∗M
λ̄M∗M |λ|2M∗M

]
, C :=

[
MT 0

λMT −M −λM

]
, Γ :=

[
w0γ1In 0

0 w0γ2In

]
,

G := Γ−1G̃Γ−1 and S := Γ−1(C + CT )Γ−1.

Then

ηpalTw (P, λ) =

(
min

0≤t≤t1
λ2

( [
G tS̄
tS Ḡ

] ))−1/2
,

where t1 = 2‖G‖
σ2(S)

.

Proof. Since P (z) = A+ zAT , (3.20) implies that

ηpalTw (P, λ) =

(
sup

{ u∗Gu
u∗u

∣∣∣ u ∈ C2n\{0}, uTS0u = 0,
})− 1

2

where S0 = S. The proof then follows by applying Theorem 5.1.
Similarly, the following theorem gives ηpalTw (P, λ) when P (z) is a T -palindromic

quadratic matrix polynomial and λ ∈ C \ {0, 1,−1}.
Theorem 5.3. Let P (z) = A0 + zA1 + z2AT0 be a T -palindromic quadratic poly-

nomial and λ ∈ C \ {0, 1,−1}. Suppose that det(P (λ)) 6= 0, and let M := (P (λ))−1.

Furthermore, let γ1 :=
√

2
1+|λ|2 and γ2 :=

√
2|λ|2
1+|λ|2 , and define

G̃ :=

 1 λ λ2

λ̄ |λ|2 λ|λ|2

λ̄2 λ̄|λ|2 |λ|4

⊗M∗M, C :=

 MT 0 0
λMT 0 0

λ2MT −M −λM −λ2M

 ,
Γ := diag(w0γ1, w1, w0γ2)⊗ In, G := Γ−1G̃Γ−1 and S = Γ−1(C + CT )Γ−1.

Then

ηpalTw (P, λ) =

(
min

0≤t≤t1
λ2

( [G tS̄
tS Ḡ

] ))−1/2
,

where t1 = 2‖G‖
σ2(S)

.

Proof. Since P (z) = A0 + zA1 + z2AT0 , from (3.20) we have,

ηpalTw (P, λ) =

(
sup

{ u∗Gu
u∗u

∣∣∣ w ∈ C3n\{0}, uTS0u = 0
})− 1

2

where S0 = S. The proof then follows by applying Theorem 5.1.
Remark 5.4. Due to (3.20), computing ηpalTw (P, λ) for polynomials of degree

greater than 2 involves maximizing the Rayleigh quotient v∗Gv
v∗v with respect non zero

vectors v that satisfies more than one constraint each involving a symmetric matrix.
Generalizing our approach to compute ηpalTw (P, λ) in these cases may involve obtaining

16



appropriate extensions of Theorem 5.1. This does not seem to be straightforward and
will be the subject of future research.

Remark 5.5. A strategy similar to the one outlined in Remark 4.4 may be used
to compute ηpalTw (P, λ) for the case that the T -palindromic perturbations affect only
some of the coefficients of P (z).

It may be noted that if P (z) is a T -palindromic polynomials of even degree and
only the coefficient Am

2
is affected by perturbation, then there are no constraints in

the computation of ηpalTw (P, λ) and therefore it is equal to the backward error ηw(P, λ)
with respect to arbitrary perturbations. Moreover, ηpalTw (P, λ) may be computed for
any degree if the restrictions are such that the computation of the backward error
involves only one constraint.

Remark 5.6. Note that in Theorem 3.2 if λ ∈ R \ {0, 1,−1} and P (z) is a real
T -palindromic polynomial, then G and Si are real Hermitian matrices. Therefore,
denoting the real ?-palindromic structure by pal?,R, that is,

pal?,R :=
{

(∆0, . . . ,∆m) ∈ (Rn×n)m+1
∣∣∆?

j = ∆m−j , j = 0, . . . ,m
}

(5.1)

we have,

η
palT,R
w (P, λ) = η

pal∗,R
w (P, λ) (5.2)

in such cases.
The final result of this section gives the structured backward error η

palT,R
w (P, λ)

when λ ∈ R \ {0, 1,−1} and P (z) is a real T -palindromic polynomial of any degree.
It may be noted that despite the equality (5.2), this result is not a corollary of Theo-
rem 4.2. However the proof is based on similar arguments that make use of the real
version of Theorem 4.1 with C replaced by R as given below.

Theorem 5.7. Let G,H0, . . . ,Hp ∈ Rn×n be Hermitian matrices. Assume that
any nonzero linear combination α0H0 + · · · + αpHp, (α0, . . . , αp) ∈ Rp+1 \ {0} is
indefinite. (Here, “indefinite” is used in the same sense as in Theorem 4.1.) Then
the following statements hold:

(1) The function L : Rp+1 → R, (t0, . . . , tp) 7→ λmax(G + t0H0 + · · · + tpHp) is
convex and has a global minimum

λ∗max = min
t0,...,tp∈R

L(t0, . . . , tp).

(2) If p = 0 or the minimum λ∗max of L is attained at (t∗0, . . . , t
∗
p) ∈ Rp+1 and

is a simple eigenvalue of H∗ := G + t∗0H0 + · · · + t∗pHp, then there exists an
eigenvector u ∈ Rn \ {0} of H∗ associated with λ∗max satisfying

uTHju = 0 for j = 0, . . . , p. (5.3)

(3) Under the assumptions of (2) we have

sup

{
uTGu

uTu

∣∣∣∣u 6= 0, uTHju = 0, j = 0, . . . , p

}
= λ∗max. (5.4)

In particular, the supremum of the left hand side of (5.4) is a maximum and attained
for the eigenvector u from (5.3).

Proof. The proofs of (1) and (3) follow from the proofs of the corresponding parts
of [6, Theorem 3.2].
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If p = 0, then the proof of part (2) follows by arguing as in the proof of [6,
Theorem 3.5] due to the fact that the set

{xTH0x
∣∣∣x ∈ Rn, xTx = 1}

is convex. If p > 0 and λ∗max is a simple eigenvalue of H∗ then, part (2) of Theorem 4.1
implies that there exists a non zero (possibly complex) eigenvector u corresponding
to λ∗max of H∗ that satisfies (5.3). However as H∗ is real and λ∗max is real and simple,
the eigenvector u can be chosen to be real. This proves part (2) and completes the
proof of the theorem.

It is important to note that the assumption of simplicity of λ∗max made in the
hypothesis of Theorem 5.7 is necessary even when p = 1. This is evident from the
following example which is a slight modification of [6, Example 3.8].

Example 5.8. Let G = diag(α, α, β) where α > β ≥ 0. Also let

H0 =

 1 0 0
0 −1 0
0 0 0

 and H1 =

 0 1 0
1 0 0
0 0 0

 .
Then any non zero real linear combination of H0 and H1 is indefinite and for t0, t1 ∈ R,
the matrix

H(t0, t1) = G+ t0H0 + t1H1 =

 α+ t0 t1 0
t1 α− t0 0
0 0 β


has eigenvalues α ±

√
t20 + t21 and β. Clearly L : R2 → R defined by L(t0, t1) =

λmax(H(t0, t1)) = α +
√
t20 + t21 has its minimum λ∗max at (t0, t1) = (0, 0), i.e., when

H(0, 0) = G. But the maximal eigenvalue α of G is a double eigenvalue with corre-
sponding eigenvectors e1 and e2 which are the first two basis vectors of R3. Therefore,
the matrix whose columns form an orthonormal basis of the eigenspace of G corre-
sponding to α is U = [ e1 e2 ] ∈ R3×2. There exists a real non zero vector x in the
eigenspace of G corresponding to α satisfying x∗H0x = x∗H1x = 0 if and only if the
real joint numerical range of the matrices

U1 := UTH0U =

[
1 0
0 −1

]
and U2 := UTH1U =

[
0 1
1 0

]
defined by

{(xTU1x, x
TU2x)

∣∣∣x ∈ R2, ‖x‖2 = 1}

contains 0. Clearly this is not true in this case as this set represents the unit circle.
Note that this example does not contradict Theorem 4.1 as the eigenvector of G

with respect to α that satisfies u∗H0u = u∗H1u = 0 is the complex vector u = [1 i]T .
The following theorem gives formulae for the structured eigenvalue backward error

ηpalTw (P, λ) when P (z) is a real T -palindromic polynomial and λ ∈ R \ {0,±1}.
Theorem 5.9. Let P (z) =

∑m
j=0 z

jAj be a real T -palindromic polynomial and

λ ∈ R \ {0,±1}. Suppose that det(P (λ)) 6= 0 so that M = (P (λ))−1 exists and set
k = bm−12 c. Then

λ∗max := min
t0,...,tk∈R

λmax(G+ t0 S0 + · · ·+ tk Sk)
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is attained for some (t∗0, . . . , t
∗
k) ∈ Rk+1 where G is defined by (3.13) and Sj , j =

0, . . . , k are defined by (3.19), respectively. If m = 1 or m = 2, or if λ∗max is a simple
eigenvalue of G+ t∗0 S0 + · · ·+ t∗k Sk, then

η
palT,R
w (P, λ) =

1√
λ∗max

=

(
min

t0,...,tk∈R
λmax(G+ t0 S0 + · · ·+ tk Sk)

)−1/2
.

Proof. Consider the Hermitian matrices S̃j := C̃j+C̃Tj , j = 0, . . . , k, where C̃j are
as defined in (3.5). Observe that k = 0 whenever m = 1 or m = 2. Therefore, the proof
follows from Theorem 5.7 if it is established that each nontrivial linear combination of
S0, . . . , Sk given by (3.19), or equivalently, of S̃0, . . . , S̃k is indefinite. Suppose there

exists
[
α0, . . . , αk

]T ∈ Rk+1 such that S :=
∑k
j=0 αjS̃j is semidefinite. Then

recalling that Λm = [1, λ, . . . , λm] ∈ C1×(m+1), we have

S =

k∑
j=0

αj

((
ΛTm
(
eTj+1 − eTm+1−j

))
⊗MT +

((
ej+1 − em+1−j

)
Λm

)
⊗M

)
= (ΛTmα

T )⊗MT + (αΛm)⊗M

where the vector α is given by α := [α0, . . . , αk, −αk, . . . ,−α0]
T

when m is odd and

by α := [α0, . . . , αk, 0,−αk, . . . ,−α0]
T

when m is even.
Setting Q as in (4.3) and a = [a0, . . . , am] := QTα, since ΛmQ = eT1 , we have

(Q⊗ In)TS(Q⊗ In) = (QTΛTmα
TQ)⊗MT + (QTαΛmQm)⊗M

= (e1a
T )⊗MT + (aeT1 )⊗M

=


a0(M +MT ) a1M

T · · · amM
T

a1M 0 · · · 0
...

...
...

amM 0 · · · 0

 .
If S is semidefinite, then a1 = · · · = am = 0 which implies that QTα = a = a0e1.
Therefore, a0 = α0 and

−λαj−1 + αj = 0, j = 1, . . . , k. (5.5)

Also,

(λ+ 1)αk = 0 when m is odd and (5.6)

λαk = 0 when m is even. (5.7)

The identities (5.5) imply that

αk = λkα0. (5.8)

When m is odd, we have αk = 0 from (5.6) since λ 6= −1. Similarly when m is even,
(5.7) gives αk = 0 as λ 6= 0. In either case, (5.8) implies that a0 = α0 = 0 as λ 6= 0
and completes the proof.

Remark 5.10. A strategy identical to the one suggested in Remark 4.5 gives
an optimal T -palindromic perturbation to P (z) corresponding to ηpalTw (P, λ) in Theo-
rems 5.2 and 5.3 and an optimal real T -palindromic perturbation to P (z) correspond-

ing to η
palT,R
w (P, λ) in Theorem 5.9.
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6. Numerical Experiments. In this section we present some numerical exam-
ples to illustrate the proposed method for computing the structured backward error
ηSw(P, λ) of some λ ∈ C \ {0} for the structures S = pal? and for w = (1, 1, . . . , 1).
In all cases we have used the software package CVX [8, 9] in MATLAB to solve the
associated optimization problems.

Example 6.1. L(z) = A + zA∗ is a ∗-palindromic pencil of size 4 with eigen-
values 0.4624− 0.8867i,−0.5697 + 1.7298i,−0.1718 + 0.5215i,−0.9765 + 0.2155i. For
λ = 0.4853 − 0.5955i the backward error with respect to arbitrary perturbations is
ηw(L, λ) = 0.0912 while the structured backward error satisfies ηpal∗w (L, λ) = 0.3320.
The plot on the left of Figure 6.1 illustrates the movement of the eigenvalues of the
pencil L(z) under the homotopic perturbations L(z) + t∆L(z) as t varies from 0 to 1
and ∆L(z) is an optimal ∗-palindromic perturbation corresponding to ηpal∗w (L, λ) that
induces eigenvalues at (λ, 1/λ̄). The eigenvalue curves starting from 0.4624− 0.8867i
and −0.9765 + 0.2155i (each marked by a star surrounded by a circle) come together
on the unit circle and split out to form the pair of eigenvalues (λ, 1/λ̄) (where λ is
marked by a star surrounded by a diamond) of the pencil L(z) + ∆L(z).

On the other hand on the plot on the right hand side of Figure 6.1 gives the
movement of the eigenvalues under the homotopic perturbations L(z) + t∆̃L(z) when

t moves from 0 to 1 and ∆̃L(z) is an optimal perturbation corresponding to ηw(L, λ)
that induces an eigenvalue at λ without preserving ∗-palindromic structure. In this
case the perturbations move the nearest eigenvalue of the pencil to λ.
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Fig. 6.1. Eigenvalue perturbation curves for the ∗-palindromic pencil L(z) of Example 6.1
with respect ∗-palindromic perturbations (left) and arbitrary perturbations (right).

Example 6.2. Q(z) = A + zB∗ + z2A∗ is a ∗-palindromic polynomial of size 3
with eigenvalues −3.2746 − 0.4165i,−0.3597 + 1.82221i, 0.9896 − 0.1437i,−0.0961 −
0.9954i,−0.3005 − 0.0382i,−0.1043 + 0.5282i. For λ = 0.88 + 0.15i, the eigenvalue
backward error with respect to arbitrary perturbations is 0.609 while with respect to
∗-palindromic perturbations this is 1.7059. The plot on the left of Figure 6.2 illustrates
the effect of perturbations Q(z) + t∆Q(z) on the eigenvalues of Q(z) as t varies from
0 to 1, ∆Q(z) being an optimal ∗-palindromic perturbation to Q(z) corresponding to
ηpal∗w (Q,λ) that induces eigenvalues at (λ, 1/λ̄). It shows eigenvalue curves starting
from the eigenvalues −0.1043 + 0.528i and −0.3597 + 1.82221i (each marked by a
star surrounded by circle) of Q(z) coalescing on the unit circle and moving along the
circle till they next coalesce with the eigenvalue curve starting from the eigenvalue
0.9896 − 0.1437i on the unit circle. After the second coalescence, the eigenvalues
curves split out of the unit circle to form the pair of eigenvalues (λ, 1/λ̄) (where λ is
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marked by a star surrounded by a diamond) of Q(z) + ∆Q(z).
The plot on the right of Figure 6.2 shows the movement of the eigenvalues of Q(z)

under perturbations Q(z) + t∆̃Q(z) where ∆̃Q(z) is an optimal perturbation to Q(z)
corresponding to ηw(Q,λ) that induces an eigenvalue at λ and is not ∗-palindromic. In
this case the nearest eigenvalue of Q(z) on the unit circle moves to form the eigenvalue

λ of Q(z) + ∆̃Q(z).
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Fig. 6.2. Eigenvalue perturbation curves for the ∗-palindromic polynomial Q(z) of Ex-
ample 6.2 with respect to ∗-palindromic perturbations (left) and arbitrary perturbations
(right).

Example 6.3. L(z) = A + zAT is a real T -palindromic pencil of size 3 with
eigenvalues −1 and −0.5954 ± 0.8034i all on the unit circle. For λ = −1.6656, the
eigenvalue backward error is 0.6563 with respect to real T -palindromic perturbations
and 0.5614 with respect to complex T -palindromic perturbations. With respect to
arbitrary perturbations, the eigenvalue backward error is 0.3177. Figure 6.3 illustrates
the effect of real T -palindromic, complex T -palindromic and arbitrary perturbations
on the eigenvalues of L(z) so that they move to form an eigenvalue at λ for the
respective perturbed pencils.
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Fig. 6.3. Eigenvalue perturbation curves for the real T -palindromic pencil L(z) of Ex-
ample 6.3 with respect to real and complex T -palindromic perturbations (left) and arbitrary
perturbations (right).

The plot on the left of Figure 6.3 shows the effect of perturbations L(z) + t∆L(z)
on the eigenvalues of L(z) (in thick curves) as t moves from 0 to 1, ∆L(z) being

the minimal real T -palindromic perturbation to L(z) corresponding to η
palT,R
w (L, λ)
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that induces eigenvalues at (λ, 1/λ). In this case eigenvalue curves starting from the
eigenvalues −0.5954± 0.8034i (each marked by a star surrounded by a circle) on the
unit circle coalesce on the unit circle and split out with one of the branches moving
over ∞ to form the eigenvalue λ (marked by a star surrounded by a diamond) and
the other moving out to form the eigenvalue 1/λ (inside the unit circle) as t moves
from 0 to 1.

The movement of the perturbed eigenvalues under the given real T -palindromic
perturbations may partly be attributed to two facts. The first is that −1 is always an
eigenvalue of a T -palindromic polynomial of odd degree and odd size (since P (−1) is
then a skew symmetric matrix of odd size and thus singular) of which the given pencil
L(z) is a particular case. The second fact is that eigenvalues of real T -palindromic
polynomials occur in quadruples (µ, µ̄, 1/µ, 1/µ̄). This symmetry breaks down only
on the unit circle and on the real line where it reduces to the pairing (µ, 1/µ). Since
the only eigenvalues of L(z) other than −1 are also on the unit circle, in order to
maintain the eigenvalue symmetry, they have to pass through the intersection of the
unit circle and the real line to form the eigenvalues at λ and 1/λ.

The plot on the left of Figure 6.3 also shows the effect of perturbations L(z) +

t∆̂L(z) on the eigenvalues of L(z) (in thin curves) as t moves from 0 to 1, ∆̂L(z)
being the minimal complex T -palindromic perturbation to L(z) corresponding to

η
palT,C
w (L, λ) that induces eigenvalues at (λ, 1/λ). Also in this case −1 cannot be

moved to λ under T -palindromic perturbations. Instead, an eigenvalue curve starting
from −0.5954 + 0.8034i moves to λ while another starting from −0.5954 − 0.8034i
moves to 1/λ (inside the unit circle) as t moves from 0 to 1.

Finally, the plot on the right of Figure 6.3 shows the effect of perturbations
L(z) + t∆̃L(z) on the eigenvalues of L(z) as t moves from 0 to 1, ∆̃L(z) being an
optimal perturbation corresponding to ηw(L, λ) that induces an eigenvalue at λ and
is not T -palindromic. In this case, the nearest eigenvalue −1 of L(z) moves to form

the eigenvalue λ of L(z) + ∆̃L(z).
We also compare ηw(P, λ) with ηpal?w (P, λ) for the cases that the values of λ

converge to an eigenvalue of P (z) as well as for arbitrary values of λ.
Table 6.1 illustrates these comparisons for the ∗-palindromic pencil L(z) of Ex-

ample 6.1 as λ values converge to the eigenvalue 0.4624 − 0.8867i on the unit circle.
Observe that while ηw(L, λ) decreases to 0, this is not the case for ηpal∗w (L, λ) leading
to large differences in the values of the two backward errors.

Table 6.2 does the same comparison for values of λ that converge to the eigenvalue
−0.5697 + 1.7298i not on the unit circle as well as for arbitrary values of λ. In the
first case, both ηw(L, λ) and ηpal∗w (L, λ) decrease to 0. However in the second case,
there is significant difference between the two backward errors even when the values
of λ are away from the unit circle.

Table 6.3 compares the backward errors ηw(L, λ), η
palT,R
w (L, λ) and ηpalTw (L, λ) for

the T -palindromic pencil L(z) in Example 6.3 as λ converges to −1 along the real line.

Observe that while both ηw(L, λ), and η
palT,C
w (L, λ) decrease, η

palT,R
w (L, λ) increases as

λ approaches −1. This leads to large differences between η
palT,R
w (L, λ) and the other

backward errors at values of λ close to −1.
Conclusions. We have obtained formulas for the backward error of approxi-

mate eigenvalues of ∗-palindromic matrix polynomials and T -palindromic pencils and
quadratic polynomials with respect to structure preserving perturbations. When the
T -palindromic polynomial is real, we have also obtained the backward error of a real
number considered as an approximate eigenvalue of the matrix polynomial with re-
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Table 6.1
Values of ηw(L, λ) and ηpal∗w (L, λ) for the ∗−palindromic pencil L(z) in Example 6.1 where

λ→ 0.4624− 0.8867i.

λ ηw(L, λ) ηpal∗w (L, λ)
0.600 - 1.200i 0.0710 0.2755
0.550 - 1.100i 0.0510 0.2772
0.520 - 1.000i 0.0300 0.2824
0.500 - 0.980i 0.0240 0.2807
0.480 - 0.950i 0.0159 0.2799
0.475 - 0.930i 0.0111 0.2811
0.470 - 0.900i 0.0038 0.2835
0.465 - 0.895i 0.0022 0.2830

Table 6.2
Values of ηw(L, λ) and ηpal∗w (L, λ) for the ∗−palindromic pencil L(z) in Example 6.1 where

λ→ −0.5697 + 1.7298i (left) and for arbitrary λ (right).

λ ηw(L, λ) ηpal∗w (L, λ) λ ηw(L, λ) ηpal∗w (L, λ)
−2.50 + 0.50i 0.1134 0.1605 1.1890 + 0.0376i 0.4726 0.5937
−2.00 + 1.00i 0.1006 0.1344 0.2940− 1.3362i 0.0850 0.2190
−1.50 + 1.40i 0.0882 0.1012 1.1910− 1.2025i 0.1571 0.3415
−0.90 + 1.50i 0.0569 0.0593 0.9410− 0.9921i 0.1173 0.3494
−0.60 + 1.62i 0.0196 0.0203 0.4850− 0.5955i 0.0912 0.3320
−0.58 + 1.70i 0.0053 0.0055 0.6680− 0.0783i 0.3688 0.5149

Table 6.3
Values of ηw(L, λ), η

palT
w (L, λ) and η

palT,R
w (L, λ) for the T -palindromic pencil L(z) in Exam-

ple 6.3 as λ→ −1.

λ ηw(P, λ) ηpalTw (P, λ) η
palT,R
w (P, λ)

−1.6656 0.1692 0.3177 0.5614
−1.5500 0.1501 0.3076 0.5623
−1.4500 0.1308 0.2992 0.5631
−1.3500 0.1086 0.2912 0.5638
−1.2500 0.0827 0.2842 0.5644
−1.1500 0.0528 0.2788 0.5649

spect to real T -palindromic perturbations. For each case, a procedure for constructing
an optimal perturbation that corresponds to the structured backward error is pro-
vided. Numerical experiments suggest that there is significant difference between the
backward errors with respect to structure preserving and arbitrary perturbations in
many cases.

REFERENCES

[1] B. Adhikari. Backward perturbation and sensitivity analysis of structured polynomial eigen-
value problems. PhD thesis, Department of Mathematics, Indian Institute of Technology
Guwahati, December, 2008.

23



[2] B. Adhikari and R. Alam. Structured backward errors and pseudospectra of structured matrix
pencils. SIAM J. Matrix Anal. Appl., 31:331–359, 2009.

[3] B. Adhikari and R. Alam. On backward errors of structured polynomial eigenproblems solved
by structure preserving linearizations. Linear Algebra Appl., 434:1989–2017, 2011.

[4] Sk.S. Ahmad and R. Alam. Pseudospectra, critical points and multiple eigenvalues of matrix
polynomials. Linear Algebra Appl., 430:1171–1195, 2009.

[5] R. Alam, S. Bora, M Karow, V. Mehrmann, and J. Moro. Perturbation theory for Hamiltonian
matrices and the distance to bounded-realness. SIAM J. Matrix Anal. Appl. 32: 484–514,
2011.

[6] S. Bora, M. Karow, C. Mehl, and P. Sharma. Structured Eigenvalue Backward Errors of Matrix
Pencils and Polynomials with Hermitian and Related Structures. SIAM J. Matrix Anal.
Appl., 35:2, 453-475,2014.

[7] I. Gohberg, P. Lancaster, and L. Rodman. Indefinite Linear Algebra. Birkhäuser, Basel, 2005.
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