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Abstract

We describe canonical forms for elements of a classical Lie group of matrices under
similarity transformations in the group. Matrices in the associated Lie algebra and
Jordan algebra of matrices inherit related forms under these similarity transforma-
tions. In general, one cannot achieve diagonal or Schur form, but the form that can
be achieved displays the eigenvalues of the matrix. We also discuss matrices in inter-
sections of these classes and their Schur-like forms. Such multistructured matrices
arise in applications from quantum physics and quantum chemistry.

1 Introduction

Many problems that arise in applications have structures that give rise to eigenvalue prob-
lems for matrices that are members of a classical Lie group, its Lie algebra, or an associated
Jordan algebra of matrices.

Any nonsingular matrix K ∈ Cm,m defines a nondegenerate sesquilinear form < ·, · >
on Cm by

< x, y >= xHKy for x, y ∈ Cm,
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where xH denotes the conjugate transpose of the column vector x. We restrict ourselves
to the case that

< x, y >= 0 if and only if < y, x >= 0.

This condition implies that K is either Hermitian or skew-Hermitian [2].
If K is Hermitian, we can perform a change of basis on Cm so that the sesquilinear

form is represented by the matrix

Σp,q =

[

−Ip 0
0 Iq

]

,

where p+ q = m, p ≥ 0, and q ≥ 0.
If K is skew-Hermitian, we analogously obtain that after a change of basis the sesquilin-

ear form is represented by the matrix iΣp,q, where p+ q = m, p ≥ 0, and q ≥ 0.
If K is real and skew-symmetric, then the nonsingularity of K implies that m is even,

and after a change of basis, the < ·, · > form is represented by the matrix

J =

[

0 In
−In 0

]

,

where m = 2n.
The classical Lie groups we consider here are the matrices that are unitary with respect

to J or Σp,q [15]. We will discuss only classes of complex matrices here, but analogous
results also exist for the real case.

Definition 1

1) The Lie group Op,q of Σp,q-unitary matrices is defined by Op,q = {G ∈ Cp+q,p+q :
GHΣp,qG = Σp,q}. An important special case is the unitary group On = O0,n.

2) The Lie group Sp2n of symplectic matrices is defined by Sp2n = {G ∈ C2n,2n : GHJG =
J}.

Developing structure-preserving numerical methods for solving eigenvalue problems for
matrices in these groups remains an active area of recent research [7, 9, 10, 23], motivated
by applications arising in signal processing [1] and optimal control for discrete-time or
continuous-time linear systems, see [23] and the references therein.

Of equal importance are the Lie algebras Ap,q and H2n corresponding to the Lie groups
Op,q and Sp2n.

Definition 2

1’) The Lie algebra of Σp,q-skew Hermitian matrices is defined by

Ap,q={A ∈ Cp+q,p+q : Σp,qA+ AHΣp,q = 0}

=

{[

F G

GH H

]

: F = −FH ∈ Cp,p, H = −HH ∈ Cq,q, G ∈ Cp,q

}

.

A special case is the Lie algebra of skew Hermitian matrices An = A0,n.
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2’) The Lie algebra of J-Hermitian matrices (also called Hamiltonian matrices or infinites-
imally symplectic matrices) is defined by

H2n={A ∈ C2n,2n : JA+ AHJ = 0}
=

{[

F G

H −FH

]

: F,G,H ∈ Cn,n, G = GH , H = HH

}

.

These Lie algebras also have great importance in practical applications, see [4, 5, 26] for
applications of Σp,q-skew symmetric matrices and [8, 23, 20] for applications of Hamiltonian
matrices.

The third class of matrices we consider plays a role similar to that of the Lie algebras.
These are the Jordan algebras [3, 16] associated with the two Lie groups.

Definition 3

1”) Cp,q={C ∈ Cp+q,p+q : Σp,qC − CHΣp,q = 0}
=

{[

F G

−GH H

]

: F = FH ∈ Cp,p, H = HH ∈ Cq,q, G ∈ Cp,q

}

,

is the Jordan algebra of Σp,q-Hermitian matrices. A special case is the Jordan algebra
of Hermitian matrices Cn = C0,n.

2”) SH2n={C ∈ C2n,2n : JC − CHJ = 0}
=

{[

F G

H FH

]

: F,G,H ∈ Cn,n, G = −GH , H = −HH

}

,

is the Jordan algebra of J-skew Hermitian matrices or skew Hamiltonian matrices.

For applications of these classes see, for example, [5, 27, 28].
In this paper we discuss structure-preserving similarity transformations to condensed

forms from which the eigenvalues of the matrices can be read off in a simple way. For
general matrices these are the Jordan canonical form (under similarity transformations
with nonsingular matrices), see e.g. [13], and the Schur form (under similarity with unitary
matrices), see e.g. [14]. While both the Jordan form and Schur form display all the
eigenvalues, the transformation to Jordan form gives the eigenvectors and principle vectors,
and the transformation to Schur form displays one eigenvector and a nested set of invariant
subspaces. However, the numerical computation of the Schur form is a well-conditioned
problem, while the reduction to Jordan canonical form is in general an ill-conditioned
problem, see e.g. [14]. See [29] for classifications of the structured Jordan forms for the
classes of matrices defined above.

The Jordan structure of a matrix can be computed, with considerably more effort than
computing the Schur form, by computing the Wyer characteristics, which are invariants
under unitary similarity transformations, see [17]. But if the matrix has an extra symmetry
structure, for example if it is Hermitian, skew Hermitian or unitary, then the matrix
is normal, and the Jordan form and the Schur form coincide. Consequently, complete
eigenstructure information can be obtained via a numerically stable procedure [14, 27, 30]
for matrices in these classes.
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We may expect that between the general case and these special cases there are more
refined condensed forms for matrices from the classes defined above. For the classes defined
via the skew-symmetric matrix J such forms have been discussed in detail in the context of
the solution of algebraic Riccati equations [8, 23]. We will review these results in Section 3.
In Section 4 we will then discuss analogous condensed forms for the classes defined by the
symmetric matrix Σp,q.

In Section 5 we then discuss condensed forms for matrices which lie in the intersection
of two of the classes defined above. Our main motivation to work on this topic arose from
a class of matrices that occur in quantum chemistry [11, 12, 25]. In linear response theory
one needs to compute eigenvalues and eigenvectors of matrices of the form

[

A B

−B −A

]

, A,B ∈ Cn,n, A = AH , B = BH . (1)

Such matrices are clearly in H2n ∩ Cn,n. A difficulty in computing the eigenstructure of
such matrices was observed in [11, 12], where the structure-preserving methods sometimes
had convergence difficulties. As we will show, these difficulties arise from the fact that the
reduction to a structured Schur form is not always possible, essentially because nonzero
vectors may have zero “length” in the indefinite form defined by the matrix Σp,q. Moreover,
we will see that the eigenvalues and invariant subspaces of the matrix are already available
in this situation, even though the matrix has not yet been reduced to a triangular-like
structure.

2 Preliminaries

In this section we give some preliminary results.

Proposition 4

1. Let M ∈ Op,q and Mx = λx with x 6= 0. Then λ
−1

is also an eigenvalue of M , and
MH(Σp,qx) = λ−1(Σp,qx). If xHΣp,qx 6= 0 then |λ| = 1.

2. Let M ∈ Ap,q and Mx = λx with x 6= 0. Then −λ is also an eigenvalue of M , and
MH(Σp,qx) = −λ(Σp,qx). If xHΣp,qx 6= 0 then λ = −λ.

3. Let M ∈ Cp,q and Mx = λx with x 6= 0. Then λ is also an eigenvalue of M , and
MH(Σp,qx) = λ(Σp,qx). If xHΣp,qx 6= 0 then λ = λ.

Proof. The proof follows directly from the definitions of the Lie group, Lie algebra, and
Jordan algebra.

Similar results are also known for the Lie group of symplectic matrices and the corre-
sponding Lie algebra and Jordan algebra, see e.g. [23, 20].

There exist a vector space isomorphism between the Lie algebras and the associated
Jordan algebras:
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Proposition 5 The map A 7→ iA is a vector space isomorphism between the Lie algebra
Ap,q (or H2n) and the associated Jordan algebra Cp,q (or SH2n, respectively).

Proof. The proof follows directly from the definitions.
We will use similarity transformations that retain the structure to transform the ma-

trices from the Lie groups, Lie algebras and Jordan algebras to a condensed form from
which the eigenvalues can be read off in a simple way. These are symplectic similarity
transformations for Sp2n, H2n and SH2n and the Σp,q-unitary matrices for Op,q, Ap,q and
Cp,q. In order to use such transformations for numerical computation, we would prefer that
these transformation matrices also be unitary, since then the methods can be implemented
as numerically backwards stable procedures. These classes are characterized as follows.

Proposition 6

1. Unitary symplectic matrices, i.e., matrices in Sp2n ∩ O2n, are of the form
[

U1 U2

−U2 U1

]

,

with U1U
H
1 + U2U

H
2 = In and U1U

H
2 − U2U

H
1 = 0.

2. Matrices in Op,q ∩ On (n = p+ q) have the form

[

Q11 0
0 Q22

]

,

where Q11 ∈ Op and Q22 ∈ Oq.

Matrices in all the Lie groups and their intersections can be generated as products of
elementary matrices in these classes, see e.g. [2, 5, 23]. Unfortunately, the class of matrices
Op,q ∩ On is not big enough to perform the reduction to the condensed forms. As an
extra class of elementary Σp,q-unitary transformations, the hyperbolic rotations Hp(c, s)
are needed. These matrices are equal to the identity matrix except for the 2×2 submatrix

in rows and columns 1 and p+ 1, given by

[

c s

s c

]

, with |c|2 − |s|2 = 1.

3 J-Schur-like forms

In this section we recall some of the known results concerning Schur-like forms for matrices
in the classes defined by J . We will call these J-Schur-like forms.

Theorem 7

i) Let M ∈ H2n. Then there exists a symplectic matrix Q ∈ Sp2n such that

Q−1MQ =

[

T1

0

T2

−TH
1

]

, (2)
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where T1, T2 ∈ Cn,n, T1 is upper triangular and T2 is Hermitian, if and only if every
purely imaginary eigenvalue λ of M has even algebraic multiplicity, say 2k, and any basis
Xk ∈ C2n,2k of the maximal invariant subspace for M corresponding to λ satisfies

XH
k JXk ∼c

[

0

−Ik
Ik

0

]

. (3)

Here ’∼c’ denotes congruence.
ii) Let M ∈ SH2n. Then there exists a symplectic matrix Q ∈ Sp2n such that

Q−1MQ =

[

T1 T2

0 TH
1

]

, (4)

where T1, T2 ∈ Cn,n, T1 is upper triangular and T2 is skew Hermitian, if and only if every
real eigenvalue λ of M has even algebraic multiplicity, say 2k, and any basis Xk ∈ C2n,2k

of the maximal invariant subspace for M corresponding to λ satisfies (3).
iii) Let M ∈ Sp2n. Then there exists a symplectic matrix Q ∈ Sp2n such that

Q−1MQ =

[

T1 T2

0 T−H1

]

, (5)

where T1, T2 ∈ Cn,n, T1 is upper triangular and T2 is Hermitian, if and only if every
unimodular eigenvalue λ of M has even algebraic multiplicity, say 2k, and any basis Xk ∈
C2n,2k of the maximal invariant subspace for M corresponding to λ satisfies (3).

Proof. This result was first stated and proved in [22]. A simpler proof based on canonical
forms under symplectic similarity transformations has recently been given in [24].

Note that there are also more refined Jordan-like forms for matrices in H2n,SH2n and
Sp2n, which do not have a triangular structure, see [21].

It follows from a result in [6] that the symplectic matrices Q in each part of Theorem 7
can be chosen to be unitary symplectic. However, matrices in the J classes exist for which
the forms (2)–(5) can be achieved only via non-symplectic transformations or not at all.

Consider for example the Hamiltonian (and symplectic) matrix J =
[

0
−In

In
0

]

. Since J is

invariant under symplectic similarity transformations, we cannot achieve a J-Schur-like
form under these transformations. But in the case that n = 2m is even, there exists a
J-Schur-like form under a unitary but non-symplectic similarity transformation via

P :=
1√
2









Im iIm 0 0
0 0 −iIm Im
iIm Im 0 0
0 0 Im −iIm









and

PH

[

0

−I2m
I2m

0

]

P =









iIm 0 0 0
0 −iIm 0 0
0 0 iIm 0
0 0 0 −iIm









.
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In the case that n is odd, no J-Schur-like form can be obtained for J , since the matrices
T1 and −TH

1 in (2) have the same purely imaginary eigenvalues (resp. the matrices T1 and
T−H1 in (5) have the same unimodular eigenvalues), but the algebraic multiplicities of the
eigenvalues i and −i of J are odd. See [24] for a detailed discussion.

4 Σp,q-Schur-like forms

In this section we present results analogous to Theorem 7 concerning Schur-like forms for
matrices in the classes defined by Σp,q under similarity transformations from the group
Op,q. We will call these forms Σp,q-Schur-like forms.

Of course, if p = 0 or q = 0, then the matrices in question (unitary, Skew-Hermitian,
and Hermitian matrices) are all normal, and their Schur forms under unitary similarity
transformations are diagonal. So, unless explicitly mentioned, we will assume that p and
q are both positive (and m = p+ q ≥ 2).

We describe the Σp,q-Schur-like forms in terms of a block 2× 2 matrix

Q−1MQ =

[

p q

p A C

q D B

]

, (6)

with the partitioning















































p1 p2 p3 p4 . . . ps q1 q2 q3 q4 . . . qs

p1 A11 0 0 0 . . . 0 0 0 0 0 . . . 0
p2 0 A22 A23 A24 . . . A2s 0 C22 C23 C24 . . . C2s

p3 0 A32 A33 0 . . . 0 0 C32 0 0 . . . 0
p4 0 A42 0 A44 . . . A4s 0 C42 0 C44 . . . C4s
...

...
...

...
...

. . .
...

...
...

...
...

. . .
...

ps 0 As2 0 As4 . . . Ass 0 Cs2 0 Cs4 . . . Css

q1 0 0 0 0 . . . 0 B11 0 0 0 . . . 0
q2 0 D22 D23 D24 . . . D2s 0 B22 B23 B24 . . . B2s

q3 0 D32 0 0 . . . 0 0 B32 B33 0 . . . 0
q4 0 D42 0 D44 . . . D4s 0 B42 0 B44 . . . B4s
...

...
...

...
...

. . .
...

...
...

...
...

. . .
...

qs 0 Ds2 0 Ds4 . . . Dss 0 Bs2 0 Bs4 . . . Bss















































, (7)

where
∑s

j=1 pj = p,
∑s

k=1 qk = q, and such that

1. For odd i, pi ≥ 0, qi ≥ 0, and the blocks Aii and Bii are each either diagonal or void;

2. for even i, pi = qi = 1, provided that s > 1.
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Theorem 8

i) Let M ∈ Op,q, then there exists Q ∈ Op,q such that

Q−1MQ =

[

p q

p A C

q D B

]

is in the form (7). For odd indicies i, the blocks Aii ∈ Opi
and Bii ∈ Oqi

are either void
or diagonal (with eigenvalues of modulus 1). For the even indicies i, provided that s > 1,
the blocks Aii, Bii are both 1× 1. Furthermore

A2i,2i + C2i,2i = D2i,2i +B2i,2i = λ,

A2i,2i −D2i,2i = B2i,2i − C2i,2i = λ
−1
,

(8)

and






A2i+1,2i
...

As,2i






= −







C2i+1,2i
...

Cs,2i






,







B2i+1,2i
...

Bl,2i






= −







D2i+1,2i
...

Dl,2i






,

[

A2i,2i+1 · · · A2i,s

]

=
[

D2i,2i+1 · · · D2i,s

]

,

[

B2i,2i+1 · · · B2i,l

]

=
[

C2i,2i+1 · · · C2i,l

]

.

(9)

Moreover the eigenvalues of M are the eigenvalues of the matrix obtained by deleting
all the off-diagonal blocks in A,B,C,D.

ii) Let M ∈ Ap,q. Then there exists Q ∈ Op,q such that

Q−1MQ =

[

A C

CH B

]

, (10)

with B = −BH , A = −AH , and A,B,C structured as in (7), where for the blocks with
odd numbered indices, Aii ∈ Api

and Bii ∈ Aqi
are diagonal with purely imaginary eigen-

values or void and, provided that s > 1, the even numbered blocks Aii, Bii are both 1 × 1.
Furthermore

A2i,2i + C2i,2i = C2i,2i +B2i,2i = λ. (11)

Again the eigenvalues of M are the eigenvalues of the matrix obtained by deleting all the
off-diagonal blocks in A, B, and C.

iii) Let M ∈ Cp,q. Then there exists Q ∈ Op,q such that

Q−1MQ =

[

A C

−CH B

]

, (12)

with B = BH , A = AH , and A,B,C structured as in (7), where for the blocks with
odd numbered indices, Aii ∈ Cpi

, Bii ∈ Cqi
are diagonal with real eigenvalues or void and,

provided that s > 1, the even numbered blocks Aii, Bii are both 1× 1. Furthermore

A2i,2i + C2i,2i = −C2i,2i +B2i,2i = λ. (13)

8



Again the eigenvalues of M are the eigenvalues of the matrix obtained by deleting all the
off-diagonal blocks in A, B and C.

Proof. i) The proof proceeds via induction on the dimension m = p + q. The case
m = 1 is trivial, since in this case p = 0 or q = 0. Assume that p and q are both positive.

Let λ be an eigenvalue of M , and let x =

[

x1

x2

]

6= 0 be an associated eigenvector, with

x1 ∈ Cp and x2 ∈ Cq, and let Q11 ∈ Op, Q22 ∈ Oq be such that

QH
11x1 = α1e1, Q

H
22x2 = α2ep+1,

where α1 = ‖x1‖, α2 = ‖x2‖ are real and nonnegative and ei denotes the i-th unit vector,
e.g. [14].

If α1 and α2 are both nonzero, then we cannot eliminate another element using a matrix
in Op,q ∩Om. So if we wish to retain that the matrix remains in the group, we have to use
hyperbolic rotations.

If α1 6= α2, then a hyperbolic transformation can be applied to further reduce the
transformed vector. We then have to consider the three cases α1 > α2, α1 = α2 6= 0 and
α1 < α2. The case that both parameters are 0 cannot happen, since x 6= 0.

If α1 > α2, then there exists a hyperbolic rotation

[

c s

s c

]

∈ O1,1 such that

[

c s

s c

] [

α1

α2

]

=

[

β1

0

]

,

with β1 = (α2
1 − α2

2)
1/2 > 0.

If α1 < α2, then there exists a hyperbolic rotation such that

[

c s

s c

] [

α1

α2

]

=

[

0
β2

]

,

with β2 = (α2
2 − α2

1)
1/2 > 0.

In the third case, α1 = α2, no hyperbolic rotation exists that eliminates either of the
two elements. Then we set c = 1, s = 0.

Having chosen c and s, set

Q−1
1 := Hp(c, s)

[

QH
11 0
0 QH

22

]

∈ Op,q.

It follows that

Q−1
1 x =











[

β1 0 . . . 0 0 0 . . . 0
]T

; α1 > α2,
[

0 0 . . . 0 β2 0 . . . 0
]T

; α1 < α2,
[

α1 0 . . . 0 α2 0 . . . 0
]T

; α1 = α2 6= 0.
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In the first case, we see that
Q−1

1 MQ1e1 = λe1,

so that

M̃ := Q−1
1 MQ1 =

[

λ wH

0 M ′

]

(14)

and since M̃ ∈ Op,q, we obtain |λ| = 1, w = 0 and M ′ ∈ Op−1,q.
In the second case, we have

Q−1
1 MQ1ep+1 = λep+1,

so the transformed matrix takes the form

M̃ = Q−1
1 MQ1 =





M11 0 M13

wH
1 λ wH

3

M31 0 M33



 , (15)

and since M̃ ∈ Op,q, we obtain |λ| = 1, w1 = 0, w3 = 0 and M ′ =

[

M11 M13

M31 M33

]

∈ Op,q−1.

In the third case no further reduction of the vector Q−1
1 x = α1e1 + α2ep+1 is possible

with a hyperbolic rotation. In this case we have

M̃ = Q−1
1 MQ1 =









m11 wH
12 m1,p+1 wH

14

y21 M22 y23 M24

mp+1,1 wH
32 mp+1,p+1 wH

34

y41 M42 y43 M44









(16)

and M̃(α1e1 + α2ep+1) = (α1e1 + α2ep+1)λ. From α1 = α2 we obtain that

m11 +m1,p+1 = λ, mp+1,1 +mp+1,p+1 = λ (17)

and
y41 + y43 = 0, y21 + y23 = 0. (18)

By Proposition 4 we have that Σp,q(e1 + ep+1) = e1 − ep+1 is a left eigenvector associated

with the eigenvalue λ
−1
. Hence we obtain

m11 −mp+1,1 = λ
−1
, −m1,p+1 +mp+1,p+1 = λ

−1
(19)

and
w12 − w32 = 0, w14 − w34 = 0. (20)

We immediately obtain that the submatrix

[

m11 m1,p+1

mp+1,1 mp+1,p+1

]

has the eigenvalues λ, λ
−1
.
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If we consider the unitary matrix

U =





























√
2
−1 √

2
−1

1
. . .

1

−
√
2
−1 √

2
−1

1
. . .

1





























, (21)

then we obtain from the identities (17) through (20) that

UM̃UH =









λ ∗ ∗ ∗
0 M22 ∗ M24

0 0 λ
−1

0
0 M42 ∗ M44









. (22)

As a consequence we obtain that the spectrum of M is equal to the union of the spectra

of

[

m11 m1,p+1

mp+1,1 mp+1,p+1

]

and M ′ =

[

M22 M24

M42 M44

]

. Furthermore, from (18) and (20) it is

easy to see that M ′ ∈ Op−1,q−1.
The proof now follows by induction. In each of the above three cases, we perform

a similarity transformation based on the given eigenvector, and produce a matrix in a
smaller group whose eigenvalues are the remaining eigenvalues of the original matrix. By
induction, there is a Σp′,q′-unitary matrix V such that V −1M ′V is in the form of (7)–(9).
Partitioning V compatibly with (14), (15) or (16), and embedding the partitioned matrix
into a Σp,q-unitary matrix Q2 in the obvious fashion, we see that Q−1MQ has the desired
form, where Q = Q1Q2.

The proof for ii) is analogous while iii) follows from ii) using Proposition 5.

Remark 9 The class of transformation matrices Op,q is too small to bring every matrix
in Op,q, (in Ap,q or Cp,q) to upper triangular form via similarity. Consider for example the
matrix

M :=
1

4

[

5

3

3

5

]

∈ O1,1

with the eigenvalues 0.5 and 2. There exists no upper triangular matrix in O1,1 that is
similar to M , since in this case all the eigenvalues have to be unimodular. On the other
hand, the form (7) displays all the eigenvalue information. The columns of the part of the
matrix that cannot be eliminated have length 0 in the indefinite scalar product defined as
< u, v >p,q= uHΣp,qv.

We also see that, in contrast with the symplectic case, we cannot obtain the condensed
form using transformations in Op,q ∩Om, again since this class is too small to perform the
necessary reductions.
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Remark 10 In some cases we can reduce the form (7) further if subparts in the off-
diagonal blocks of the top and bottom part do not have equal length. But since we can
never eliminate in these blocks completely and since the eigenvalues are displayed, we may
as well avoid further reduction.

Remark 11 Since we want the proof of Theorem 8 to be constructive, we start every step
of the induction by choosing an arbitrary eigenvector. Therefore, the parameters pi and qi
in (7) are not uniquely determined.

Analogous results can also be obtained in the case of real matrices in all three classes.
To obtain these results, we always combine complex conjugate pairs of eigenvalues and the
associated eigenvectors.

We have presented structured condensed forms from which the eigenvalues can be read
off in a simple way. These results simplify considerably in the case that the matrices have
multiple structures. We will discuss Schur forms for such matrices in the next section.

5 Schur-like forms for multi-structured matrices.

In some applications one needs the computation of eigenvalues of matrices that have more
than one structure. In this section we present Schur-like forms for matrices from intersec-
tions of two of the classes introduced in Section 1.

5.1 Intersections of two Σp,q classes.

Let us first consider the intersections of classes defined by Σp,q and Σp̃,q̃, where p + q =
p̃ + q̃ = m and, w.l.o.g., p > p̃. Directly from the definitions we obtain the following
structures.

Proposition 12

i) Matrices in Ap,q ∩ Ap̃,q̃ have the form








A1 A2 0 C1

−AH
2 A3 0 C2

0 0 B1 0
CH

1 CH
2 0 B2









(23)

with





A1 A2 C1

−AH
2 A3 C2

CH
1 CH

2 B2



 ∈ Ap̃,q and B1 ∈ Aq̃−q.

ii) Matrices in Cp,q ∩ Cp̃,q̃ have the form








A1 A2 0 C1

AH
2 A3 0 C2

0 0 B1 0
−CH

1 −CH
2 0 B2









(24)
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with





A1 A2 C1

AH
2 A3 C2

−CH
1 −CH

2 B2



 ∈ Cp̃,q and B1 ∈ Cq̃−q.

iii) Matrices in Op,q ∩ Op̃,q̃ have the form









A11 A12 0 C1

A21 A22 0 C2

0 0 B1 0
D1 D2 0 B2









(25)

with





A11 A12 C1

A21 A22 C2

D1 D2 B2



 ∈ Op̃,q and B1 ∈ Oq̃−q.

iv) Matrices in Ap,q ∩ Cp̃,q̃ have the form









0 0 C1 0
0 0 C2 0
CH

1 CH
2 0 B

0 0 −BH 0









. (26)

The intersection of a group with one of the algebras does not show any obvious structure.
In cases i)–iii), the problem reduces to two smaller problems, each having a single structure
for which the results of Section 4 apply. For case iv) the computation of the eigenvalues
reduces to the computation of the singular values of the matrix

[

CH
1 CH

2 B
]

. An
important special case that arises in particle physics [18, 19], is the case p = q and p̃ = 0.
In this case the matrices have the form

[

0 C

−CH 0

]

, (27)

where C ∈ Cp×p. Again, the eigenvalues can be determined via the singular values of C.

5.2 Intersections of a J class and a Σp,q class, p 6= n.

In this subsection we consider matrices with a multiple structure related to both J and
Σp,q, with p+ q = 2n and w.l.o.g. p > n. We obtain the following obvious structures which
follow directly from the definitions.

Proposition 13

i) Matrices in H2n ∩ Ap,q have the form









A1 0 C1 0
0 A2 0 C2

−C1 0 A1 0
0 C2 0 A2









, (28)
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with

[

A1 C1

−C1 A1

]

∈ H2(n−q) ∩ A2(n−q) and

[

A2 C2

C2 A2

]

∈ H2q ∩ Aq,q.

ii) Matrices in H2n ∩ Cp,q have the form









A1 0 C1 0
0 A2 0 C2

C1 0 −A1 0
0 −C2 0 −A2









, (29)

with

[

A1 C1

C1 −A1

]

∈ H2(n−q) ∩ C2(n−q) and

[

A2 C2

−C2 −A2

]

∈ H2q ∩ Cq,q.
iii) Matrices in SH2n ∩ Ap,q have the form









A1 0 C1 0
0 A2 0 C2

C1 0 −A1 0
0 −C2 0 −A2









, (30)

with

[

A1 C1

C1 −A1

]

∈ SH2(n−q) ∩ A2(n−q) and

[

A2 C2

−C2 −A2

]

∈ SH2q ∩ Aq,q.

iv) Matrices in SH2n ∩ Cp,q have the form









A1 0 C1 0
0 A2 0 C2

−C1 0 A1 0
0 C2 0 A2









, (31)

with

[

A1 C1

−C1 A1

]

∈ SH2(n−q) ∩ C2(n−q) and

[

A2 C2

C2 A2

]

∈ SH2q ∩ Cq,q.

No obvious simplified structure occurs in intersections of Ap,q or Cp,q with Sp2n or of
H2n or SH2n with Op,q. In all four cases of Proposition 13 the treatment of the smaller
matrices is relatively easy. The first submatrices in each of the cases are discussed in detail
in [8] while the second submatrices will be discussed in the next section.

5.3 Intersections of a J class and a Σp,q class, p = q = n.

In this section we discuss the most important multi-structured case in applications, p =
q = n.

Theorem 14

i) Let

M ∈ On,n ∩ Sp2n =

{[

U V

V U

]

: UUH − V V H = In, UV
H = V UH

}

14



Then there exists a unitary matris Q̂ ∈ On,n ∩ Sp2n, such that the eigenvalues of

Q̂−1MQ̂ =

[

Û V̂

V̂ Û

]

. (32)

are given by uii ± vii, where uii and vii denote the i-th diagonal element of Û and V̂ ,
respectively. Furthermore we have (uii + vii)(uii − vii) = 1.

ii) Let

M ∈ An,n ∩H2n =

{[

A B

B A

]

: A = −AH , B = BH

}

.

Then there exists a unitary matrix Q ∈ On,n ∩ Sp2n, such that the eigenvalues of

Q−1MQ =

[

A B

B A

]

. (33)

are given by aii ± bii, where aii and bii denote the i-th diagonal element of A and B,
respectively, Furthermore bii is real and aii is purely imaginary.

iii) Let

M ∈ Cn,n ∩ SH2n =

{[

A B

B A

]

: A = AH , B = −BH

}

.

Then there exists a unitary matrix Q ∈ On,n ∩ Sp2n, such that the eigenvalues of

Q−1MQ =

[

A B

B A

]

. (34)

are given by aii ± bii, where aii and bii denote the i-th diagonal element of A and B,
respectively. Furthermore aii is real and bii is purely imaginary.

Proof. i) LetM =

[

U V

V U

]

∈ On,n∩Sp2n, and let

[

x1

x2

]

6= 0, with x1, x2 ∈ Cn, be an

eigenvector associated with the eigenvalue λ of M . If x2 6= x1, then it follows immediately
that

[

x1 + x2

x1 + x2

]

is also an eigenvector of M associated with the eigenvalue λ. Thus, we may assume w.l.o.g.
that x2 = x1. (In the case x2 = −x1 the proof follows analogously by changing some signs.)

Let Q ∈ On be such that QH(x1) = αe
(n)
1 , where α 6= 0. If we form

M̃ =

[

QH 0
0 QH

]

M

[

Q 0
0 Q

]

=









u11 zHu v11 zHv
yu Mu yv Mv

v11 zHv u11 zHu
yv Mv yu Mu









,
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where u11, v11 ∈ C andMu,Mv ∈ C(n−1)×(n−1), then we see that e
(2n)
1 +e

(2n)
n+1 is an eigenvector

of M̃ associated with the eigenvalue λ, i.e., we have

[

u11 v11

v11 u11

] [

1
1

]

= λ

[

1
1

]

.

The eigenvalues of

[

u11 v11

v11 u11

]

are u11±v11. Furthermore we have yu+yv = 0. Similarly, by

Proposition 4 the vector e
(2n)
1 −e(2n)

n+1 is a left eigenvector of M̃ associated with the eigenvalue

λ
−1
, so that zHu − zHv = 0 as well. Hence we obtain

[

Mu Mv

Mv Mu

]

∈ On−1,n−1∩Sp2(n−1) and
[

u11 v11

v11 u11

]

∈ O1,1 ∩ Sp2. Since the latter matrix is symplectic, we have

(uii + vii)(uii − vii) = 1.

If we consider

S :=









1 0 0 0
0 In−1 0 0
1 0 1 0
0 0 0 In−1









,

then we obtain

S−1M̃S =









u11 + v11 zHu v11 zHv
0 Mu yv Mv

0 0 u11 − v11 0
0 Mv yu Mu









,

i.e., the spectrum of M̃ is equal to the union of the spectra of

[

u11 v11

v11 u11

]

and
[

Mu Mv

Mv Mv

]

. The rest of the proof follows by induction.

The proof of ii) is analogous to the proof of i) noting that A is skew-Hermitian and
that B is Hermitian. The proof of iii) follows from ii) and Proposition 5.

The intersections of algebras with groups again does not give any particular structure,
so it remains to discuss the final class which motivated our interest in analyzing multi-
structured matrices. Matrices from the set

H2n ∩ Cn,n =

{[

A B

−B −A

]

: A = AH , B = BH

}

(35)

arise in linear response theory in quantum chemistry [11, 12, 25]. By definition, similarity
transformations with matrices from On,n ∩ Sp2n will preserve the structure. The elements
of H2n have the eigenvalue-symmetry ’λ,−λ’ while we find the eigenvalue-symmetry ’λ, λ’
for the matrices from Cn,n. Therefore the eigenvalues of M ∈ H2n ∩ Cn,n will occur in

16



quadruples ’λ,−λ, λ,−λ’ unless λ is real or purely imaginary. So we expect 4 × 4-blocks
to occur in Schur-like forms for these matrices. Before we formulate the main result let us
state some properties of the matrices under consideration.

Proposition 15 Let M =

[

A B

−B −A

]

∈ H2n ∩ Cn,n, let x =

[

x1

x2

]

6= 0, with x1, x2 ∈

Cn, be an eigenvector of M associated with the eigenvalue λ of M and let y :=

[

x2

x1

]

.

Then

1. y is an eigenvector of M associated with the eigenvalue −λ.

2.
[

xH2 −xH1
]

is a left eigenvector of M associated with the eigenvalue −λ.

3. If λ is not purely imaginary, then xH2 x1 − xH1 x2 = 0.

4. M(x+ y) = λ(x− y) and M(x− y) = λ(x+ y).

5.

[

ix1 + x2

ix2 + x1

]

is an eigenvector of the matrix M̂ :=

[

B A

−A −B

]

associated with the

eigenvalue iλ.

Proof. 1., 2., 4. and 5. are easy to verify. Furthermore we have by 2. that

λ(xH2 x1 − xH1 x2) = λ
[

xH2 −xH1
]

[

x1

x2

]

=
[

xH2 −xH1
]

[

A B

−B −A

] [

x1

x2

]

= −λ
[

xH2 −xH1
]

[

x1

x2

]

= −λ(xH2 x1 − xH1 x2),

i.e., (λ+ λ)(xH2 x1 − xH1 x2) = 0.

Theorem 16

i) For each M ∈ H2n ∩ Cn,n, there exists Q̂ ∈ Sp2n ∩ On,n such that the matrix

Q̂−1MQ̂ =



























A11 A12 · · · A1k B11 B12 · · · B1k

A21 A22 · · · A2k B21 B22 · · · B2k
...

...
. . .

...
...

...
. . .

...
Ak1 Ak2 · · · Akk Bk1 Bk2 · · · Bkk

−B11 −B12 · · · −B1k −A11 −A12 · · · −A1k

−B21 −B22 · · · −B2k −A21 −A22 · · · −A2k
...

...
. . .

...
...

...
. . .

...
−Bk1 −Bk2 · · · −Bkk −Ak1 −Ak2 · · · −Akk



























,

with Aij, Bij ∈ Cni×nj and ni, nj ∈ {1, 2}, has the following properties:
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1. The eigenvalues of M are the eigenvalues of the matrix obtained by deleting all the
off-diagonal blocks in A = [Aij] and B = [Bij].

2. If ni = 1, then the eigenvalues of

[

Aii Bii

−Bii −Aii

]

are ±
√

A2
ii −B2

ii. In particular

these eigenvalues are both real or both purely imaginary.

3. If ni = 2, let ma2 denote the (1, 2) element of Aii and mb2 denote the (1, 2) element

of Bii. Then the eigenvalues of

[

Aii Bii

−Bii −Aii

]

are λ,−λ, λ and −λ, where

λ =
√

(ma2 +mb2)(ma2 −mb2).

ii) Let M ∈ SH2n∩An,n =

{[

A B

−B −A

]

: A = −AH , B = −BH

}

. Then there exists

Q̂ ∈ Sp2n ∩ On,n, such that the matrix

Q̂−1MQ̂ =



























A11 A12 · · · A1k B11 B12 · · · B1k

A21 A22 · · · A2k B21 B22 · · · B2k
...

...
. . .

...
...

...
. . .

...
Ak1 Ak2 · · · Akk Bk1 Bk2 · · · Bkk

−B11 −B12 · · · −B1k −A11 −A12 · · · −A1k

−B21 −B22 · · · −B2k −A21 −A22 · · · −A2k
...

...
. . .

...
...

...
. . .

...
−Bk1 −Bk2 · · · −Bkk −Ak1 −Ak2 · · · −Akk



























,

with Aij, Bij ∈ Cni×nj and ni, nj ∈ {1, 2}, has the following properties:

1. The eigenvalues of M are the eigenvalues of the matrix obtained by deleting all the
off-diagonal blocks in A = [Aij] and B = [Bij].

2. If ni = 1, then the eigenvalues of

[

Aii Bii

−Bii −Aii

]

are ±
√

A2
ii −B2

ii. In particular

these eigenvalues are both purely imaginary or both real.

3. If ni = 2, let ma2 and mb2 denote the (1, 2)-element of Aii and Bii, respectively. Then

the eigenvalues of

[

Aii Bii

−Bii −Aii

]

are λ,−λ, λ and −λ, where

λ =
√

(ma2 +mb2)(ma2 −mb2).

Proof. i) Let M =

[

A B

−B −A

]

with AH = A,BH = B ∈ Cn×n and let

[

x1

x2

]

6= 0,

with x1, x2 ∈ Cn, be an eigenvector of M associated with the eigenvalue λ. We will use
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transformation matrices that are either of the form

[

Q 0
0 Q

]

with Q ∈ On or hyperbolic

rotations Hn(c, s) with c, s ∈ R. We have to distinguish two cases:
1. x1 and x2 are linearly dependent. If we assume w.l.o.g. that x1 6= 0, then there exists

γ ∈ C such that x2 = γx1. (In the case x1 = 0 we consider

[

x2

x1

]

and −λ, according to

Proposition 15.1.)

Let e
(n)
i denote the i-th unit vector in Cn, and choose a unitary matrix Q ∈ On such that

QHx1 = αe
(n)
1 , where α 6= 0. Then we obtain

QHx2 = γαe
(n)
1 ,

and hence we have

M̃ =

[

Q 0
0 Q

]H

M

[

Q 0
0 Q

]

=









ma yHa mb yHb
ya Ma yb Mb

−mb −yHb −ma −yHa
−yb −Mb −ya −Ma









where ma,mb ∈ C and Ma,Mb ∈ C(n−1)×(n−1). Since e
(2n)
1 + γe

(2n)
n+1 is an eigenvector of M̃

associated with the eigenvalue λ, we have

ma(1− γ2) = (1 + γ2)λ and (1− γ2)ya = 0.

(a) If γ2 = 1, i.e., γ = ±1, then λ = 0 and

ma + γmb = 0 and ya + γyb = 0.

Hence, using

S :=









1 0 0 0
0 In−1 0 0
γ 0 1 0
0 0 0 In−1









we obtain

S−1M̃S =









0 yHa mb yHb
0 Ma yb Mb

0 0 0 0
0 −Mb −ya −Ma









,

i.e., the spectrum of M̃ is the union of the spectra of

[

ma mb

−mb −ma

]

and

[

Ma Mb

−Mb −Ma

]

.
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(b) If γ2 6= 1, then

[

1
γ

]

and

[

γ

1

]

are linearly independent and by Proposition 15.1 they

are eigenvectors of

[

ma mb

−mb −ma

]

associated with the eigenvalues λ and −λ. Forming

S :=









1 0 γ 0
0 In−1 0 0
γ 0 1 0
0 0 0 In−1









,

we obtain

S−1M̃S =









λ ∗ 0 ∗
0 Ma 0 Mb

0 ∗ −λ ∗
0 −Mb 0 −Ma









,

i.e., the spectrum of M̃ is the union of the spectra of

[

ma mb

−mb −ma

]

and

[

Ma Mb

−Mb −Ma

]

.

Since

[

ma mb

−mb −ma

]

∈ H2 ∩ C1,1, we find by symmetry that λ must be real or purely

imaginary.
2. If x1 and x2 are linearly independent, (i.e., in particular n ≥ 2), then this also holds for
x1 + βx2 and x1 − βx2, where β 6= 0.
(a) If λ is not purely imaginary then we have by Proposition 15.3. that xH2 x1 − xH1 x2 = 0.

Therefore, β =
√

xH
1
x1

xH
2
x2

∈ R yields

(x1 + βx2)
H(x1 − βx2) = xH1 x1 − β2xH2 x2 + β(xH2 x1 − xH1 x2) = 0.

We may assume w.l.o.g. that β ≥ 1. Otherwise we exchange x1 and x2 and consider

the eigenvector
[

x2

x1

]

associated with the eigenvalue −λ, according to Lemma 15.1. There

exists Q ∈ On such that

QH(x1 + βx2) = α1e
(n)
1 and QH(x1 − βx2) = α2e

(n)
2 ,

where α1 and α2 are real and positive. Considering

M̃ =

[

Q 0
0 Q

]H

M

[

Q 0
0 Q

]

=









ma ∗ mb ∗
∗ Ma ∗ Mb

−mb ∗ −ma ∗
∗ −Mb ∗ −Ma









,

with ma,mb ∈ C2×2 and Ma,Mb ∈ C(n−2)×(n−2), we see that α1e1 +α2e2 +
α1

β
en+1− α2

β
en+2

is an eigenvector of M̃ associated with the eigenvalue λ:

M̃(α1e1 + α2e2 +
α1

β
en+1 −

α2

β
en+2)
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=

[

Q 0
0 Q

]H

M

[

x1 + βx2 + x1 − βx2
1
β
x1 + x2 − 1

β
x1 + x2

]

=

[

Q 0
0 Q

]H

M

[

2x1

2x2

]

= λ

[

Q 0
0 Q

]H [
2x1

2x2

]

= λ(α1e1 + α2e2 +
α1

β
en+1 −

α2

β
en+2).

i. If β 6= 1, that is β > 1, then there are hyperbolic rotations

[

ci si
si ci

]

, i = 1, 2, such that

[

c1 s1

s1 c1

] [

α1
α1

β

]

=

[

α̃1

0

]

and

[

c2 s2

s2 c2

] [

α2

−α2

β

]

=

[

α̃2

0

]

.

Since α1, α2, β ∈ R, we can choose ci and si to be real. Transforming M̃ and the eigenvector
associated with λ analogously, we have reduced the problem to the case 1.(b). In particular
it follows that λ is real or purely imaginary.

ii. If β = 1, there exist no hyperbolic rotation as before. Then let ma :=

[

ma1 ma2

ma2 ma3

]

and mb :=

[

mb1 mb2

mb2 mb3

]

. The relevant eigenvector is α1e1+α2e2+α1en+1−α2en+2. Thus,

using Proposition 15.4 we obtain:









ma1 ma2 mb1 mb2

ma2 ma3 mb2 mb3

−mb1 −mb2 −ma1 −ma2

−mb2 −mb3 −ma2 −ma3

















α1

0
α1

0









= λ









0
α2

0
−α2









and








ma1 ma2 mb1 mb2

ma2 ma3 mb2 mb3

−mb1 −mb2 −ma1 −ma2

−mb2 −mb3 −ma2 −ma3

















0
α2

0
−α2









= λ









α1

0
α1

0









.

In particular we have

ma2 +mb2 =
α2

α1

λ and ma2 −mb2 =
α1

α2

λ.

This implies
λ =

√

(ma2 +mb2)(ma −mb).
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If we form the matrix

S := [s1 · · · s2n
] =

















α1 α2 0 α1 −α2 0
α2 α1 0 −α2 α1 0
0 0 In−2 0 0 0
α1 −α2 0 α1 α2 0
−α2 α1 0 α2 α1 0
0 0 0 0 0 In−2

















,

then we obtain

S−1 := [t1 · · · t2n
]H =

1

4α1α2

















α2 α1 0 α2 −α1 0
α1 α2 0 −α1 α2 0
0 0 In−2 0 0 0
α2 −α1 0 α2 α1 0
−α1 α2 0 α1 α2 0
0 0 0 0 0 In−2

















,

and noting that according to Proposition 15 1. the columns s1 and sn+1 are right eigenvec-
tors of M̃ associated with the eigenvalues λ resp. −λ and according to Proposition 15 2.
the rows tH2 and tHn+2 are left eigenvectors of M̃ associated with the eigenvalues −λ and λ,
we obtain

S−1M̃S =

























λ ∗ ∗ ∗ 0 ∗ ∗ ∗
0 −λ 0 0 0 0 0 0
0
0

∗
∗ Ma

0
0

∗
∗ Mb

0 ∗ ∗ ∗ −λ ∗ ∗ ∗
0 0 0 0 0 λ 0 0
0
0

∗
∗ −Mb

0
0

∗
∗ −Ma

























,

i.e., the spectrum of M̃ is the union of the spectra of the 4× 4 matrix

[

ma mb

−mb ma

]

and
[

Ma Mb

−Ma −Mb

]

and the eigenvalues of

[

ma mb

−mb ma

]

are λ,−λ, λ and −λ.

(b) If λ = −iµ is purely imaginary, then it follows from Proposition 15.5. that

[

ix1 + x2

ix2 + x1

]

is an eigenvector of

[

B A

−A −B

]

associated with the eigenvalue µ. Transforming this ma-

trix as in the case 2.(a), yields analogous results forM , since we have for all transformations
[

U V

V U

]

∈ On,n ∩ Sp2n that

[

U V

V U

] [

A B

−B −A

] [

UH −V H

−V H UH

]

=

[

S −T
T S

]

⇔
[

U V

V U

] [

B A

−A −B

] [

UH −V H

−V H UH

]

=

[

T −S
S T

]

.
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Note that in the case 2.(a)ii. we obtain the formula

λ = iµ = i
√

(mb2 +ma2)(mb −ma) =
√

(ma2 +mb2)(ma −mb).

In all cases we have

[

Ma Mb

−Mb −Ma

]

∈ H2k ∩ Ck,k with k = n − 1 or k = n − 2. So the

proof follows by induction.
The proof for ii) follows directly from Proposition 5.

Remark 17 In general the remaining 4×4-blocks in Theorem 16 cannot be divided further
into two 2× 2-blocks. This is possible only if the eigenvalues are real or purely imaginary.

Remark 18 As we see from the proof of Theorem 16, the only time we need hyperbolic
rotations is when we want to split certain 4× 4-blocks into two 2× 2-blocks. That means
that we are able to achieve a Schur-like form whose eigenvalues are displayed by at most
4 × 4-blocks by using only unitary transformations. This result does not hold in the real
case.

Remark 19 Not every matrix M =
[

A
−B

B
−A

]

∈ H2n ∩ Cn,n has the property that the
eigenvalues of M can be obtained by deleting all the off-diagonal blocks in A and B.
This is a special property of the Schur-like form for these matrices. Consider for example
A =

[

0
1

1
0

]

and B =
[

0
2

2
0

]

. In this case M is nonsingular, but the matrix obtained by
deleting all the off-diagonal blocks in A and B is zero.

6 Conclusions

We have discussed Schur-like forms for matrices with one or more algebraic structures
arising from a classical Lie group, Lie algebra or Jordan algebra. In all cases we obtain a
structured Schur-like form that displays all the eigenvalues. In particular, we have obtained
such Schur-like forms for multi-structured matrices which arise in quantum chemistry.
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