Tutorial on hyperbolic surfaces in polymake

February 20, 2018

A hyperbolic surface with cusps is a topological surface together with a hyperbolic structure of finite area. polymake can deal with hyperbolic surfaces in view of Penners coordinates of the decorated Teichmüller space (lambda lengths). These allow to pick a hyperbolic surface by choosing a triangulation of the surface along with one positive parameter for each edge.

The secondary fan of a hyperbolic surface stratifies the space of weight vectors (horocyclic decorations) according to which Delaunay triangulations are induced by the Epstein-Penner convex hull construction. For each point on the surface, there is a secondary polyhedron whose normal fan is the secondary fan.

This tutorial shows how to deal with secondary fans and secondary polyhedra of hyperbolic surfaces.

Construction of hyperbolic surfaces

To define a hyperbolic surface we need to specify (a) a triangulation and (b) Penner coordinates.

(a) The triangulation is obtained by specifying the DCEL_DATA as an Array<Array<Int>>. This constructs a doubly connected edge list as follows: Each row of DCEL_DATA reads \((2i).head, (2i+1).head, (2i).next, (2i+1).next\). In general, for each edge \(i\) of the triangulation there are two half edges \(2i\) and \(2i+1\), one for each orientation.

(b) The PENNER_COORDINATES assign a positive rational number to each edge of the triangulation, ordered in the same sense as prescribed by the DCEL_DATA.

Example 1: hyperbolic sphere with three cusps

In [1]: application 'fan'; application 'topaz';

Let us initialize the following triangulation of a sphere with three punctures. We use this triangulation to obtain a hyperbolic surface by setting all lambda lengths to 1.

```
In [2]: $S3 = new Array<Array<Int>>([[1,0,2,5],[2,1,4,1],[0,2,0,3]]);
$s = new HyperbolicSurface(DCEL_DATA=>$S3,PENNER_COORDINATES=>[1,1,1]);
```
The secondary fan

The secondary fan of the hyperbolic sphere from above can now be computed as follows.

In [3]: $f = s->SECONDARY_FAN;
 $f->properties;

Out[3]: type: PolyhedralFan<Rational>

 RAYS
 0 1 1
 1 0 1
 1 1 0
 0 0 1
 1 0 0
 0 1 0

 MAXIMAL_CONES
 {0 1 2}
 {0 1 3}
 {1 2 4}
 {0 2 5}

In [4]: $f->VISUAL;

In [5]: $s->properties;

Out[5]: name: s
 type: HyperbolicSurface

 DCEL_DATA
 1 0 2 5
 2 1 4 1
 0 2 0 3
The FLIP_WORDS indicate how to obtain the Delaunay triangulations. The k-th flip word is a list of integers (the indices of the edges) that describe which edge flips produce the k-th Delaunay triangulation. Note that the k-th Delaunay triangulation also corresponds to the k-th maximal cone of the SECONDARY_FAN.

GKZ vectors & secondary polyhedra

In order to compute GKZ_VECTORS or a secondary_polyhedron of a hyperbolic surface one needs to additionally specify a SPECIAL_POINT on the surface. This is done by choosing two rational numbers.

Continuing with the above example, let's look at the following.

```plaintext
In [6]: $s = new HyperbolicSurface(DCEL_DATA=>$S3,
   PENNER_COORDINATES=>[1,1,1],
   SPECIAL_POINT=>[1,0]);

Now we may compute an approximation of the GKZ_VECTORS of the surface. The approximation depends on a parameter depth that restricts the depth of the (covering) triangles that are summed over in the definition of the GKZ vectors.

In [7]: print $s->GKZ_VECTORS(3);
```

```
Out[7]:
1  33346854621/25672050625  33346854621/25672050625  19782163/27238250
1  2361/3250  3955357/5447650  33346854621/25672050625
1  10549213550005124385885122/6365327663846199230365625  11433978/13287625
30327974429709/105771923977850
1  11433978/13287625  10549213550005124385885122/6365327663846199230365625
30327974429709/105771923977850
```
The secondary polyhedron can be computed similarly using the function `secondary_polyhedron`.

```plaintext
In [8]: $p = secondary_polyhedron($s,10);
    $p->properties;
```

```plaintext
Out[8]: name: p
type: Polytope<Float>

    VERTICES
    1 1.315301353 1.315301353 0.7316378744
    1 0.7316489581 0.7316267908 1.315301353
    1 1.752046187 0.8750928112 0.2910011302
    1 0.8750928112 1.752046187 0.2910011302
    0 -1 0 0
    0 0 -1 0
    0 0 0 -1

    VERTICES_IN_FACETS
    {0 1 3 4}
    {0 1 2 5}
    {0 2 3 6}
    {1 4 5}
    {2 5 6}
    {3 4 6}

    CONE_AMBIENT_DIM
    4
```

```plaintext
In [9]: $p->VISUAL(FacetColor=>'255 180 80');
```
We may look at the GKZ domes of the individual Delaunay triangulations.

In [10]: $d0 = $s->gkz_dome(0,5);
 $d0->VISUAL(FacetColor=>'80 180 255');

In [11]: $d1 = $s->gkz_dome(1,5);
 $d1->VISUAL(FacetColor=>'80 180 255');
Example 2: a hyperbolic torus with three cusps

$T3 = new \text{Array}(<\text{Int}>)[[[1,0,2,17],[2,1,4,14],[0,2,0,6],[1,2,8,16],
[0,1,5,10],[2,1,12,1],[0,2,9,3],[0,1,13,7],[0,2,15,11]]);$

$s = new \text{HyperbolicSurface}(\text{DCEL_DATA}=>$T3,
 PENNER_COORDINATES=>[2,1,1,1,1,1,1,1,1],
 SPECIAL_POINT=>[1,0]);$

In [14]: $f = s->\text{SECONDARY_FAN};$
$s->\text{properties};$

Out[14]:

name: s

type: HyperbolicSurface

DCEL_DATA
1 0 2 17
2 1 4 14
0 2 0 6
1 2 8 16
0 1 5 10
2 1 12 1
0 2 9 3
0 1 13 7
0 2 15 11

PENNER_COORDINATES
2 1 1 1 1 1 1 1 1

SPECIAL_POINT
1 0

SECONDARY_FAN
type: PolyhedralFan<Rational>

FLIP_WORDS
\{0\}
In [13]: $f->VISUAL;

In [15]: $p = secondary_polyhedron($s,7);
$p->VISUAL(FacetColor=>'255 180 80');

In [16]: $d0 = $s->gkz_dome(0,5);
$d0->VISUAL(FacetColor=>'80 180 255');
In [17]: $s = \text{new HyperbolicSurface}(\text{DCEL_DATA}\Rightarrow\text{T3}, \text{PENNER_COORDINATES}\Rightarrow[2,1,1,1,1,1,1,1,1], \\
SPECIAL_POINT\Rightarrow[\text{new Rational}(1.5196714),\text{new Rational}(-0.5773503)]);$ \\
$p = \text{secondary_polyhedron}(s,7);$ \\
$p\Rightarrow\text{VISUAL}(\text{FacetColor}\Rightarrow'255 180 80');$

In [18]: $d0 = s\Rightarrow\text{gkz_dome}(0,5);$ \\
$d0\Rightarrow\text{VISUAL}(\text{FacetColor}\Rightarrow'80 180 255');$
More examples can be studied via the following:

In [19]: # a torus with two cusps (6 edges)
$T2 = new Array<Array<Int>>([[0,0,6,5],[0,0,1,10],[0,0,8,2],[1,0,11,4],
[1,0,7,3],[1,0,9,0]]);

a sphere with four cusps (6 edges)
$S4 = new Array<Array<Int>>([[1,0,2,6],[2,1,4,9],[0,2,0,11],[3,0,8,5],
[1,3,1,10],[2,3,3,7]]);

a double torus with two cusps (12 edges)
$DT2 = new Array<Array<Int>>([[0,0,8,10],[0,0,12,14],[0,0,16,18],[0,0,20,22],
[1,0,23,2],[1,0,13,3],[1,0,9,1],[1,0,11,4],[1,0,15,6],[1,0,21,7],[1,0,17,5],
[1,0,19,0]]);

To study 4-dim. secondary fans the following method is useful. It intersects the secondary fan with the 3-dim. standard simplex.

In [20]: sub norm($){
 my $B = new Matrix(shift);
 for (my $i = 0; $i < $B->rows(); ++$i) {
 my $sum = 0;
 for (my $j = 1; $j < $B->cols(); ++$j) {
 $sum = $sum + $B->elem($i,$j);
 }
 $x = 1/$sum;
 $B->row($i) = $x * $B->row($i);
 }
 return $B;
}

In [25]: $s = new HyperbolicSurface(DCEL_DATA=>$S4,PENNER_COORDINATES=>[1,1,1,1,1,1],
SPECIAL_POINT=>[1,0]);

$f = $s->SECONDARY_FAN;
$v = ones_vector | $f->RAYS;
$a = norm($v);
$b = $a->minor(All,~[0]);
$c = ones_vector | $b;

In [24]: $q = new fan::PolyhedralComplex(POINTS=>$c,INPUT_POLYTOPES=>rows($f->MAXIMAL_CONES));
$pro = fan::project_full($q);
$pro->VISUAL(FacetColor=>'255 180 80');