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ABSTRACT

In [19] we introduced a new algorithm for computing planar triangulations of faceted surfaces for surface parameterization.
Our algorithm computes a mapping that minimizes the distortion of the surface metric structures (lengths, angles, etc.).
Compared with alternative approaches, the algorithm provides a significant improvement in robustness and applicability; it
can handle more complicated surfaces and it does not require a convex or predefined planar domain boundary. However, our
algorithm involves the solution of a constrained minimization problem. The potential high cost in solving the optimization
problem has given rise to concerns about the applicability of the method, especially for very large problems. This paper is
concerned with the efficient solution of the symmetric indefinite linear systems that arise when Newton’s method is applied
to the constrained minimization problem. In small to moderate size models the linear systems can be solved efficiently
with a sparse direct method. We give examples from computations with the SuperLU package [6]. For larger models we
have to use preconditioned iterative methods. We develop a new preconditioner that takes into account the structure of
our linear systems. Some preliminary experimental results are shown that indicate the effectiveness of this approach.

Keywords: surface parameterization, triangulation, flattening, linear systems, Krylov subspace meth-

ods, preconditioning, indefinite problems

1. INTRODUCTION

In [19] we introduced a new algorithm for computing
planar triangulations of faceted surfaces for surface pa-
rameterization. Our algorithm computes a mapping that
minimizes the distortion of the surface metric structures
(lengths, angles, etc.).

Compared with alternative approaches, the algorithm
provides a significant improvement in robustness and ap-
plicability; it can handle more complicated surfaces and
it does not require a convex or predefined boundary.
The qualities of our algorithm derive from two important
choices. The first is to formulate the mapping from the
three-dimensional tesselation to the planar one in terms
of angles instead of node locations. The second choice
is to formulate the problem in terms of a constrained
optimization problem.



We minimize the relative deformation of the angles in
the plane with respect to their counterparts in the three-
dimensional surface, while satisfying a set of constraints
on the angles that ensure the validity of the flat mesh.

The solution of a constrained minimization problem may
be expensive, and in our earlier papers we did not concen-
trate on this aspect. We did introduce iterative solvers in
[20]. which will be necessary for solving large sparse linear
systems in the optimization algorithm for large problems.
In this paper we focus on fast methods to solve the lin-
ear systems arising in the optimization algorithm. We
will discuss the algorithm in more detail later. It turns
out that only a small number of nonlinear iterations are
necessary to converge; see [19, 20]. In most of these
nonlinear steps the convergence of the iterative solver
is very rapid. However, for some problems in a few in-
termediate nonlinear steps the linear solver stagnates or
converges very slowly. Hence, these iterations dominate
the overall cost of the nonlinear iteration. We will ana-
lyze these problems in this paper and show how sparse
direct solvers (for small to moderate size problems) and
preconditioned iterative solvers can significantly improve
the efficiency of the algorithm.

In the remainder of this introduction we describe the
applications of our algorithm and alternative approaches,
and we give an overview of the algorithm.

Surface parameterization serves a number of important
applications, such as three-dimensional (surface) mesh
generation [1], anisotropic meshing [2, 11] in cases where
an analytic description of the surface does not exist, tex-
ture mapping [9, 23, 10], surface reconstruction, mul-
tiresolutional analysis [7], formation of ship hulls, gener-
ation of clothing patterns [13], and metal forming.

Many other approaches for the parameterization of tesse-
lated surfaces have been proposed [13, 7, 8, 12, 9, 23, 10].
These approaches are restricted in their use by the re-
quirement that the planar domain boundary has to be
predefined and/or has to be convex. Moreover, some of
these approaches either do not guarantee correctness of
the resulting mesh, or they do not preserve the surface
metric structures. For a brief overview of these alterna-
tive methods we refer to [20].

Our algorithm is based on the observation that for a tri-
angular mesh preserving the size of the angles on each
of the faces is sufficient to maintain the surface metric
structures up to a global scaling factor. Therefore, the
method defines the flattening problem in terms of angles.
The algorithm minimizes the relative deformation of the
angles in the plane with respect to their counterparts in
the three-dimensional surface, while satisfying a set of

constraints on the angles that ensure the validity of the
flat mesh. In order to account for the 'curvature’ at each
node in the three-dimensional surface (the angles around
an interior node do not sum to 27), we apply a scaling to
the angles in the three-dimensional surface, and we mea-
sure the deformation relative to these scaled angles. Our
minimization problem is entirely formulated in terms of
the angles; the locations of the mesh nodes do not play
a role. Note that after the angles have been computed,
the two-dimensional mesh is fully determined after fix-
ing the position of one interior node and the length and
direction of one edge connected to that node. This for-
mulation does not require the two-dimensional boundary
to be predefined and does not place any restrictions on
the boundary shape or the surface curvature. At the
same time the solution method based on the formulation
is provably correct as was shown in [19, 20]. The result
of the procedure is a valid two-dimensional mesh, which
maintains the original surface connectivity and minimizes
the distortion of the mesh angles resulting from the map-
ping to a plane.

The constrained minimization problem is transformed
into a nonlinear system of equations using the Lagrange
multiplier formulation. We solve this nonlinear system
using a robust implementation of Newton's method. Af-
ter the two-dimensional mesh is generated a spacing
function is defined to account for the (minimum) defor-
mation caused by the flattening. This spacing function
can then be used to map the generated two-dimensional
mesh back to the three-dimensional surface.

The main advantages of our method are that: (1) The
method provides a parameterization for any surface for
which a parameterization exists. (2) We proved that for
any such surface a solution to the optimization problem
exists and that the numerical algorithm converges to a
solution. (3) The method guarantees that the resulting
parameterization is valid. (4) We compute the bound-
ary of the two-dimensional domain as part of the projec-
tion procedure; we do not need to define the boundary
in advance. (5) The two-dimensional domain can have
any shape; specifically, it does not have to be convex.
(6) The robustness of the method is not affected by the
input mesh quality due to the use of angles in the for-
mulation. (7) The angle-based optimization avoids the
scale problems often associated with working on meshes
with different feature sizes, i.e. the tolerances and error
measurements do not need to be modified when different
mesh element sizes are used.



2. MINIMIZATION PROBLEM AND AL-
GORITHM

As mentioned in the Introduction, we formulate the mesh
flattening problem in terms of the flat mesh angles. The
constraints are the necessary and sufficient requirements
for a valid two-dimensional mesh, and we minimize the
(relative) deviation of the angles from their optimal two-
dimensional projections. Our procedure for surface pa-
rameterization for meshing has three stages.

1. Solve the constrained minimization problem (de-
fined below).

2. Check for intersections of the boundary. If a bound-
ary intersection is found, augment the constraints
and solve the augmented minimization problem
again (starting with the current solution).

3. Compute the mesh spacing function based on the
ratios between the areas of triangles in the three-
dimensional surface and their counterparts in the
flat surface.

Using the parameterization a surface mesh is generated
by first meshing the two-dimensional domain using the
spacing function and then mapping the resulting mesh to
the three-dimensional surface. The process is illustrated
in Figure 1. For the current paper only the constrained
minimization problem and its solution are relevant.

We use the following notation to define the objective
function to be minimized and the constraints. The in-
dex ¢ always indicates faces, the index j indicates angles
inside a face, and the index & indicates nodes.

e fi,i = 1...P, are the triangulation faces (either
in the flat mesh or in the original mesh, as will be
clear from the context).

. a{,i =1...P,j=1,2,3, are the flat mesh angles;
the angles in a face are numbered counterclockwise
in increasing order. The vector of all angles is de-
noted a.

° ﬂ{,i =1...Pj = 1,2,3, are the corresponding
original mesh angles.

® Ni,k =1...M, are the mesh nodes, where k =
1... M;n:(< M) indexes the interior nodes.

. ag(k) is the angle in face f; at node Ng.

° ,Bg(k) is the angle in the original mesh corresponding

J(k)
to a; .

In the following, we implicitly assume the obvious rela-
tions among the indices that derive from the connectivity

of the mesh. So when we write 3, BI™®) the index i runs
only over those faces that contain node Ni. The sum
is therefore over all angles adjacent to node Ni. The
objective function (to be minimized) is defined by

P 3
F(a)=) % (ol —¢])"w] (1)

i=1 j=1
where ¢! is the optimal angle for ol in the two-
dimensional mesh, and the w] > 0 are weights. Our
standard initial choice for the weights is w! = (¢]) 2.
We derive the optimal angles ¢/ from the angles 3! by

computing a scaling factor per node:

Ng is an interior node,

Nj is a boundary node,
(2)

where Nj, is the mesh node to which the face f; is at-

tached at the corner j. Since the input mesh is supposed

to be valid, we assume that

Bl > e1>0, 3)

2

where €1 is an arbitrarily small (input) parameter. The
following constraints are necessary and sufficient to en-
sure that the resulting mesh is valid.

1) g =al >e2>0,fori=1...Pj=1...3, for
some g2 > 0 ;

2 gi(2)5a}+af+af’—7r=0, fori=1...P;

() 9B =3,ad® —2x =0, for Ny: k=1... M
(interior nodes);
) g = mmelOT)

Hisin(aj-.(k)_l) 1= 0, for Nk: ko=
1...Mint, where j(k) +1 = 1 if j(k) = 3 and
j(k) —1 =3 if j(k) = 1. The symbol II indicates

the product of its arguments.

The first two constraints deal with the validity of individ-
ual faces. Constraint (1) maintains the orientation of a
face (up or down) with respect to the mesh, and (2) en-
sures that each face is valid. Constraints (3) and (4) are
necessary to ensure the topological validity of the mesh,
because the connectivity of the mesh is not an explicit
constraint. Again for more details we refer to [19].

We solve the constrained minimization problem as fol-
lows. As argued in [19], for any valid input to our algo-
rithm a valid planar mesh exists. Since the optimal angles
¢{-' are strictly positive and our objective function mea-
sures the relative distance between the angles o7 and the
optimal angles ¢, we may prevent the algorithm from
making angles too small by increasing the weight in the
objective function for those angles rather than explicitly
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Figure 1: Overview of the different stages in the generation of a new surface mesh for the Isis statue. (a) Original surface
mesh, (b) Generated flat mesh, (c) New two-dimensional mesh, (d) New surface mesh

preventing the algorithm from moving outside the feasi-
ble set. This corresponds to a change in the norm that
measures the distance to our optimal angles. Moreover,
because of their simple form, the inequality constraints
are very easy to check. Therefore, we formulate the opti-
mization problem without explicitly taking the inequality
constraints into account. If the optimization algorithm
makes a certain angle too small we reject the iterate, ad-
just the weight of that angle, and continue. The rationale
for this choice is that, in our experience, such cases are
extremely rare. So far in only one case, for a rather com-
plicated model, a violation of the inequality constraints
has occurred. Moreover, our algorithm converges very
quickly if we take the vector of optimal angles, ¢}, as
our initial guess in the Newton iteration. Note that this
defines an initial guess that is guaranteed to be inside
the feasible set. One alternative approach (followed in
many packages) is to first treat the inequality constraint
as an equality constraint and then (using possibly addi-
tional criteria) move from the boundary of the feasible
set to an extremum. In our case, this is always more
expensive. Furthermore, one important reason for such
an approach is that for some problems it is hard to find a
starting point inside the feasible set. Another alternative
is to use so-called (logarithmic) barrier methods. Our
approach is in fact close to this, but doesn’t change the
objective function until we actually get to the boundary.

We use a standard Lagrange multiplier formulation for
the optimization problem with the equality constraints.

The auxiliary objective function then becomes

P Min Miny
4
F(a)+2)\ig¢(2)(a)+ Z ukg,(f‘) () + Z ukg,(c ().
i=1 k=1 k=1

@
We use Newton’s method to solve for a stationary point
of the auxiliary function that satisfies the equality con-
straints. We modify Newton’s method as indicated above
to make sure we satisfy the inequality constraints. In
most of our examples Newton’s method converges in a
few iterations and we do not need to adapt the weights.

Each step of Newton's method requires solving a linear
system with the Jacobian. For small to moderate size
problems we use a sparse direct solver with ordering for
sparsity (SuperLU); see [5, 6]. We give some results for
problems that were also reported on in [19] to show that
using a well-tuned sparse direct solver makes the algo-
rithm very fast. For large problems, however, this will
be too expensive and we will have to use preconditioned
iterative solvers. We are exploring the application of our
algorithm to much larger problems, but in the present
paper we use smaller problems to gain experience. From
our experiments, see also [20], it turns out that the over-
all cost of the nonlinear solver is dominated by the cost
of the linear solver in a few intermediate nonlinear steps.
In these few nonlinear steps the iterative solver converges
very poorly, and therefore (see analysis below) a proper
choice of preconditioner is essential. In the next sec-
tion we will derive a very effective preconditioner. The
numerical results, which will focus on the problem Ja-



cobians from several models, will show that we can get
very good convergence.

3. STRUCTURE OF THE MATRICES

To solve the constrained minimization problem
min F(a) subject to
9(e) = [g(a), 9¥ (@), ¢ (@)]" =0, (5)
we search for a critical point of the Lagrangian
L(a,\) = F(a) + A" g(a) (6)

using Newton's method, where A is the vector that con-
tains the Lagrange multipliers, A;, ug, and vg.

Instepl =1,2,..., of the Newton iteration we have to
solve a linear system with coefficient matrix

ValF +ATg] Jg K
Ty (U

Ml =
where J, denotes the Jacobi matrix of g with respect to
a, and the functions in the right hand side of (7) are
evaluated at the current Newton iterate, [. It is easy to
see that

V2 F = 2diag(w!) = A. (8)

The (1,1)-block of M; also contains the term VZATg.
The constraints g® and g‘® are linear in @, so their sec-
ond derivatives with respect to « are zero. The only con-
tribution therefore is V2 ATg™) = §;, which changes
in every Newton step.

The (1,2)-block J; consists of three separate blocks,
each corresponding to one of the three constraints. Since
9@ and g are linear, their derivatives with respect to «
are constant, hence they do not change during the New-
ton iteration. The most efficient ordering in the matrix
M, is to consider the block corresponding to g(®) first.
When the a's are ordered by faces, i.e.
[a%, a%’ ailg’ aé? a%? ag’ - ']T’

the first block corresponding to the constraint g@ is
simply

T

BT = 11 1 .9

With the ordering of the a's fixed in this way, the second
and third block in JgT do not have a simple structure.
The reason is that these blocks have nonzero entries only
for the interior nodes. We group these blocks together

500 ." .
1000
1500
2000
2500

3000 feee;

0 500 1000 1500 2000 2500 3000
nz =38103

Figure 2: Structure of an example matrix M; derived
from the full cat model.

and denote them by C{. Again the subscript I is used
to indicate that the block corresponding to g‘*) changes
in every step.

In general, if our model has P faces, then the matrix we
have to solve for in each Newton step has the form

A+S BT of
M; = B 0 0 , (10)
C 0 0

where A+ S; € R*”**" BT € R*"*”, and O] of
size 3P times twice the number of interior nodes, which
is approximately equal to P. An example matrix for a
model with P = 671 faces is shown in Figure 2. The
(1,1)-block, i.e. the matrix A 4+ S;, is of order 2013,
and the matrix BT has size 2013-by-671. The block C
has size 2013-by-642. The complete example matrix is
of order 3326.

4. EFFICIENT SOLUTION OF SYSTEMS WITH
M,

One way to solve a system with M; is to use a sparse di-
rect solver. As demonstrated by our numerical examples
with the SuperLU package [5, 6], this is generally very
efficient for smaller models (see Section 5).

Larger models require the use of preconditioned iterative
methods. In [20] we reported on numerical results us-
ing the iterative solvers GMRES [18] and BiCGStab [21]
with ILUT as preconditioner [16]. While this approach
gave satisfactory results in most cases, for some prob-
lems the iterative solver stagnates in solving a few in-
termediate Jacobians. The reason for this stagnation is



that the matrices are indefinite and ill-conditioned, and
hence convergence is extremely slow. Here we are con-
cerned with exploiting the structure of the matrix M;
to construct preconditioners tailored to our needs. Al-
though the preconditioners we will derive do not remove
the indefiniteness, they tend to move all the eigenvalues
close to the values 1 and (1 % 1/5)/2. This removes the
ill-conditioning and since all eigenvalues of the precondi-
tioned matrix are close to these 3 values, convergence is
rapid (see the Numerical Results section).

4.1 The Murphy-Golub-Wathen precondi-
tioner

Several general purpose preconditioners for symmetric in-
definite matrices of the form

A

My 0 (11)

have been proposed in the literature. One of the most
promising approaches was developed by Murphy, Golub
and Wathen [14]: They show that multiplying the matrix
(11) from the left (or right) by

[ Md_l (MZM;(]lMg)fl ], (12)

results in a diagonalizable matrix with at most four dis-
tinct eigenvalues, namely 0,1, (1 + v/5)/2. The matrix
(12) will be called the exact MGW preconditioner for
matrix (11). Under the assumption that the precondi-
tioned matrix is nonsingular, i.e. that there is no zero
eigenvalue, this implies that any Krylov subspace method
with an optimality or Galerkin type property, for example
GMRES [18], will converge in at most three steps. Of
course, the efficiency of this preconditioning technique
crucially depends on an efficient solution of systems with
the matrix M;.

In case of our matrix M, the role of M; in this approach
could be played either by A + S;, or by
A+ S BT ]

(13)

AZE[ B 0

Let us first consider the case that M; = A;. Each mul-
tiplication of the preconditioner (12) requires solving for
A; twice. Since GMRES will take three iterations and
we need to precondition the right hand side, we need to
solve for A; eight times. In addition, we need four solves
for the (2,2)-block of (12), which may be expensive as
well. In our case A; accounts for about 80% of the sys-
tem matrix M, so this approach will only be useful if
A is of very special form.

Since the matrix 4; also is of the form (11), we actu-
ally can use the same preconditioning idea twice. The
resulting method would use the preconditioner

1) _ (A-l-S)_l 0
Pl( ) = [ 0 ! (B(A+Sl)_1BT)_1 ] ) (14)

for the system with 4;, and the preconditioner

@ _ [ A 0
P =[ 0 ([O,O]A;I[CzO]T)‘I]' (19)

for the system with M;.

Solving with GMRES the preconditioned system with
the matrix Pl(2)Ml requires four multiplications by 73,(2)
(again, one to precondition the right hand side, and
three for the GMRES steps). Each of these multipli-
cations requires solving a system with the 4P-by-4P
matrix 4; and with the (approximately) P-by-P matrix
[C; 0] A7 [C1 0]". The latter solve depends on the un-
known matrix Al_l, and can therefore only be performed
iteratively. Next note that each multiplication with the
preconditioner (14) requires one solve for a 3P-by-3P
system with A+ S; and one solve for an P-by-P system
with B(A + S;)"'B”. Again, the latter solves can only
be performed iteratively since (A+S;) ™" is unknown. Al-
together, solving for P>’ M; with GMRES this approach
requires solving 64 systems with the matrix A+ S;. Since
this matrix is of order 3P, which is about 60% of the
order of M;, we cannot expect dramatic savings when
using this preconditioner either.

The approach we propose in the following section con-
sists of computing an approximation of the precondi-
tioner (15) only. Specifically, we will use an approxi-
mation to the crucial block A + S;.

4.2 The approximate Murphy-Golub-
Wathen preconditioner

To explain our approximation of the preconditioner (15),
we denote

A cf

MIE[CI 0

] , CL=[C; 0], (16)

and additively split A; into

A BT S0
Al:[B 0 ]—l—[ol O]EA-}-&. (17)

Then the inverse of A can be computed explicitly, and is
given by

_ -1 1 T
A_l = [ (I3P%ng:’4 _(Bizc—)lBBT)—l ] ) (18)



where Q = A~'BT(BA™'BT)™'B is a projection, and
we have used that BBT = 3Ip. Note that

ATl = %diag(l/w{),and

BA'BT = %diag(l/w,—1 +1/w} +1/w}).

Thus, the (2,2)-block of A~! is diagonal, and the
(1,2)- and (2,1)-blocks have the same structure as BT
and B, respectively. In the (1,1)-block, the matrix
BT (BA~'BT)~! B is block-diagonal with 3-by-3 blocks,
and hence the whole block has this structure. Altogether,
A™! has approximately 7P more nonzero entries than A.

We now define the preconditioner

P = [AO_I (CJA_?CIT)_I]
_ [A(Il (cl(Igp_gg)A—lclT)_l ],(19)

which for left preconditioning yields the system matrix

[ Lp+A7'S AT
Pl Ml - [ (ClA—lclT)flcl 0 . (20)
Note that
M P = (PrM)" (21)

since M; and P; are both symmetric. Since A~! is
known explicitly, the main work in applying the precon-
ditioner (19) lies in solving a system with the (approxi-
mately) P-by-P matrix C;A~CY. Thusthe computation
of the preconditioner (19) itself is considerably cheaper
than the computation of the exact MGW preconditioner
(cf. Section 4.1). In particular, the (1,1)-block A™" in
(19). which is of order 4P, only has to be computed
once and then stays constant during the entire Newton
iteration. Moreover, in contrast to (14)—(15), the (2,2)-
block C;A™'CI is known explicitly, and hence can be
solved by a direct or by an iterative method. We will
refer to the preconditioner P; (19) while explicitly com-
puting or multiplying by (C;A™'C{)™! as the direct ap-
proximate MGW (DAMGW) preconditioner, and to the
same preconditioner using an iterative method to multi-
ply by (CtA™*CF) ™! as the iterative approximate MGW
(IAMGW) preconditioner.

For the DAMGW preconditioner we compute the LU-
factorization of C; A7'C] once for each Newton step .
We then solve either the left or the right preconditioned
system with GMRES. Each step of this method requires
one matrix-vector multiplication with the preconditioner
(19). and thus one solve for (the L and the U factor of)
aA™'cl.

Even though using a direct solver to compute C; A~ 1CF
in the preconditioner is significantly cheaper than the

MGW preconditioner, it will still become too expensive
for really large problems. However, there is another pos-
sibility. Multiplication of a vector by (C;A™'Cf )" is the
same as solving a linear system for C;A~1CE with that
vector as the right hand side. We can do this approx-
imately using an iterative solver. In the IAMGW pre-
conditioner we use (restarted) GMRES to approximate
the multiplication by (C;A™'CF)™'. If we solve to a
very high tolerance the effect is the same as multiplying
with the inverse; however, we also have the possibility
to solve to low accuracy. This will reduce the cost of
applying the preconditioner, but the convergence may be
slower. Solving to low accuracy leads to so-called vari-
able preconditioning; since the projection on the Krylov
space in different iterations involves a different operator
the preconditioner is different in every iteration. This
means that the generated vectors generally do not span
a Krylov space. However, if we precondition from the
right we nevertheless get the image of some (approxi-
mate Krylov) subspace under multiplication by the linear
operator, and we can minimize the residual over this sub-
space [22, 3, 15]. We use the Flexible GMRES (FGM-
RES) implementation outlined in [17]

Note that we have approximated .A; " in (15) by A™".
Hence the result of [14] does not guarantee convergence
of GMRES for P,M; or M;P; in three steps; we no
longer have exactly three distinct eigenvalues. A com-
plete analysis of the properties of the preconditioned sys-
tem is beyond the scope of this paper, but will be pub-
lished elsewhere. However, for effective preconditioners
one would expect the eigenvalues to be very close to the
eigenvalues of the matrix M, preconditioned by the exact
MGW preconditioner. This should improve convergence
significantly. We give the eigenvalues of one unprecondi-
tioned Jacobian, M, (from half rabbit) in Figure 3; the
eigenvalues of the same Jacobian with preconditioner,
PiM;, are given in Figure 4. Note left and right pre-
conditioning yield the same eigenvalues. We see that the
eigenvalues are indeed clustered around 1 and (1++/5)/2,
the three eigenvalues of the matrix M; preconditioned
by the exact MGW preconditioner. The effect of this
change in the spectrum on the convergence can be seen
in Figures 3-4.

5. NUMERICAL RESULTS

We first show a few results using the sparse direct solver
(SuperLU) with ordering for sparsity. For comparison we
also show the timings of a straightforward direct solution
(from previous paper [19]). First, we note that the total
runtime is drastically reduced by using a special reorder-
ing for sparsity. Second, we note that the time spent in



Model Nr. of | Nr. Newton | Runtime (s) Runtime (s)
faces iterations standard reordered sparse
Cat head 257 4 36 7(1.9)
Half rabbit 380 10 362 29 (1.87)
Isis statue 879 5 1355 222 (16.87)

Table 1: Comparison of total solution time for sparse direct solver without and with reordering for sparsity.
The numbers in brackets in the reordered sparse column give the cumulative time for factorization of the
Jacobian and the actual linear solve over all nonlinear iterations. The relatively large number of Newton
iterations for half rabbit is caused by 4 additional iterations after the first solution had a nonlocal boundary

intersection.

1 —

0.8 | comm——mo w00 o o o

0.6

0.4

0.2

0 =D o0 0 O

-0.2]

0.4

-0.6

-0.8

4
200 0 200 400 600 800 1000 1200

Figure 3: Eigenvalues of the unpreconditioned Jaco-
bian, M;, from half rabbit. The upper right zoomed in
box gives the eigenvalues near the origin.

the linear solver is now a small fraction of the overall so-
lution time, especially for the larger two problems. The
reason is the inefficient, but straightforward, computa-
tion of the Jacobian in the current implementation. In
the old version this was not a bottleneck because of the
high cost of the (standard) direct linear solver. Removing
this overhead will be an obvious future improvement.

For the iterative solver we will show convergence results
for each problem for one of the intermediate Jacobians,
M;, for which convergence without a special precondi-
tioner is problematic. We give results for three problems,
full cat, half rabbit, and Isis statue. The three models
are given in Figure 5. For comparison we will give the
following convergence curves

e unpreconditioned GMRES,
e GMRES with the DAMGW preconditioner as left
preconditioner,

e GMRES with the IAMGW preconditioner as right
preconditioner solving to high accuracy (similar to
DAMGW as right preconditioner),

05 (1-sqrt(5))/2 1 (1+sqrt(5))2
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Figure 4: Eigenvalues of the preconditioned Jacobian,
P M, from half rabbit.

e GMRES with the IAMGW preconditioner as right
preconditioner solving to low accuracy (much
cheaper),

We do not give the convergence for the DAMGW precon-
ditioner as right preconditioner, because the convergence
is virtually the same as for accurate IAMGW as right pre-
conditioner. To keep the analysis simple we only use full
GMRES to solve for the matrix M; with some precon-
ditioner. Note that in the low accuracy version of the
IAMGW preconditioner we use restarted GMRES to solve
for the (2,2) block of the preconditioner, C;A™'CF. In
practice, for large problems we will not use full GMRES
because of its high cost in memory and CPU time. Most
likely we will use a restarted or truncated version [4].
The high accuracy IAMGW right preconditioner uses full
GMRES to solve the linear system with C;A7'C, and
we iterate till method reduces the (initial) residual by a
factor of approximately 10712, The the low accuracy
IAMGW right preconditioner uses restarted GMRES(50)
(at most 5 cycles) and we iterate till the method reduces
the (initial) residual norm by 1072

In Figure 6 we give the convergence curves for the full
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Figure 5: Our three model problems.
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Figure 6: GMRES convergence curves for one Ja-
cobian derived from the full cat model.

cat, opened at the base; see Figure 5. In Figure 7 we give
the convergence curves for the half rabbit; see Figure 5.
Finally, in Figure 8 we give the convergence curves for
the Isis statue, opened at the back (seam); see Figure 5.

The results show that the preconditioned versions are
much better than unpreconditioned versions. We also
see that left preconditioning (for this problem) is more
efficient than right preconditioning, especially at the start
and (hence) for a large (inaccurate) convergence toler-
ance. For a small (accurate) tolerance the differences
in numbers of iterations between left and right precon-
ditioning are not very large. We also note that for two

o no preconditioning
o
g
4
right IAMGW (low)
-6|
left DA
-8
right IAMGW Chigh)
50 700 750 200 250
GM RES with M,

Figure 7: GMRES convergence curves for one Ja-
cobian derived from the half rabbit model.

no preconditioning

right IAMGW (low)

lest DAMGW) right IAMGW (high)

100 200 300 400 500 600 700
GMRES/FGMRES iterations with preconditioned M,

Figure 8: GMRES convergence curves for one Ja-
cobian derived from the Isis statue model.



problems the convergence curves using a very large tol-
erance in the iterative preconditioner stay very close to
the ones with very small tolerance. This is less the case
for the convergence of the problems derived from the
Isis statue. Nevertheless, even there the large tolerance
preconditioner is much cheaper in time (not given); the
same obviously holds for the other two problems.

6. CONCLUSIONS

We have derived a preconditioner that approximates the
exact MGW preconditioner but is much cheaper to com-
pute and use. There are two ways to use the exact MGW
preconditioner. As argued at the end of Section 4.1, for
our problems these are not cost effective. Therefore, we
have derived two alternative approximate MGW precon-
ditioners. We showed that the eigenvalues of the pre-
conditioned matrix, using our preconditioner, form tight
clusters around the eigenvalues of the matrix precondi-
tioned by the exact MGW. This has a significant impact
on the convergence rate, as could be seen in the nu-
merical examples. We realize that a full evaluation of
the usefulness of our preconditioners for this application
requires run times in addition to convergence curves. Un-
fortunately, at the deadline for this paper those timings
were not yet available. However, the convergence results
suggest that with these preconditioners the method pro-
posed by Sheffer and de Sturler [19] is viable for large
problems.

In addition, our timings demonstrate that a sparse di-
rect solver is very effective for small to moderately sized
problems.
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