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Abstract

Zonotopal algebra is the study of a family of pairs of dual vector spaces
of multivariate polynomials that can be associated with a list of vectors
X. It connects objects from combinatorics, geometry, and approximation
theory. The origin of zonotopal algebra is the pair (D(X),P(X)), where
D(X) denotes the Dahmen-Micchelli space that is spanned by the local pieces
of the box spline and P(X) is the Macaulay inverse system of a certain
power ideal. Further zonotopal spaces were recently studied by Holtz-Ron
and others. A common property of all these spaces is that their Hilbert series
is a matroid invariant.

The present dissertation has four chapters. The first chapter contains
an introduction to zonotopal algebra and some background material.

In Chapter II there are two main results. The first is the construction of
a canonical basis for D(X) that is dual to the canonical basis for P(X) that is
already known. The second is the construction of a new family of zonotopal
spaces that is far more general than the ones that were recently studied by
Ardila-Postnikov, Holtz-Ron, Holtz-Ron-Xu, Li-Ron, and others. We call
the underlying combinatorial structure of those spaces forward exchange
matroid. A forward exchange matroid is an ordered matroid together with
a subset of its set of bases that satisfies a weak version of the basis exchange
axiom.

In Chapter III we study hierarchical zonotopal power ideals and the
corresponding P-spaces. We generalise and unify results by Ardila-Postni-
kov on power ideals and by Holtz-Ron and Holtz-Ron-Xu on (hierarchical)
zonotopal spaces.

The last chapter deals with matroid theory and its connections with
zonotopal algebra. The main result is that f -vectors of matroid complexes
of realisable matroids are log-concave. This was conjectured by Mason in
1972.
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Zusammenfassung

Zonotopische Algebra befasst sich mit einer Familie von Paaren dualer
Vektorräume, die aus multivariaten Polynomen bestehen und die anhand ei-
ner Liste von Vektoren X konstruiert werden. Sie verbindet Objekte aus
der Kombinatorik, Geometrie und Approximationstheorie. Der Ursprung
der zonotopischen Algebra ist das Paar (D(X),P(X)). Hierbei bezeichnet
D(X) den Dahmen-Micchelli Raum, der von den lokalen Stücken des Box-
splines aufgespannt wird und P(X) das Macaulaysche inverse System ei-
nes bestimmten Potenzideales. Weitere zonotopische Räume wurden kürzlich
von Holtz-Ron und anderen untersucht. Eine gemeinsame Eigenschaft dieser
Räume ist, dass ihre Hilbertreihen Matroidinvarianten sind.

Die vorliegende Dissertation hat vier Kapitel. Das erste Kapitel enthält
eine Einführung in zonotopische Algebra und Hintergrundmaterial.

In Kapitel II gibt es zwei Hauptergebnisse. Das erste ist die Konstruk-
tion einer kanonischen Basis für D(X), die zur bereits bekannten Basis für
P(X) dual ist. Das zweite ist die Konstruktion einer neuen Familie zo-
notopischer Räume, die weitaus allgemeiner ist als die, die kürzlich von
Ardila-Postnikov, Holtz-Ron, Holtz-Ron-Xu, Li-Ron und anderen betrachtet
wurden. Wir nennen die diesen Räumen zugrundeliegende kombinatorische
Struktur Vorwärtsaustauschmatroid. Ein Vorwärtsaustauschmatroid ist ein
geordneter Matroid zusammen mit einer Teilmenge seiner Basen, die eine
abgeschwächte Version des Basisaustauschaxiomes erfüllt.

In Kapitel III untersuchen wir hierarchische zonotopische Potenzideale
und die zugehörigen P-Räume. Wir verallgemeinern und vereinheitlichen
Ergebnisse von Ardila-Postnikov über Potenzideale und von Holtz-Ron und
Holtz-Ron-Xu über (hierarchische) zonotopische Räume.

Das letzte Kapitel beschäftigt sich mit Matroidtheorie und den Verbin-
dungen zu zonotopischer Algebra. Das Hauptergbnis ist das f -Vektoren von
Matroidkomplexen realisierbarer Matroide logarithmisch konkav sind. Dies
wurde 1972 von Mason vermutet.
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Preface

Broadly speaking, this thesis is about finite and finite-dimensional struc-
tures and about surprising connections between some of these structures
that seem to be unrelated at first. This is what I like most in mathematics.
Objects that we will encounter include hyperplane arrangements, polytopes,
abstract simplicial complexes (matroids), graded vector spaces and ideals,
graph polynomials, and piecewise polynomial functions (splines).
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zonotopal algebra and some background material. The remaining chapters
each correspond to one of the three papers that I have written while working
towards my PhD. They are largely unchanged, but some modifications were
made where appropriate. For example, the introductions were shortened
because some of this material is already contained in Chapter I. Chapter II
is based on the preprint Zonotopal algebra and forward exchange matroids
[68]. Chapter III is based on the article Hierarchical zonotopal power ideals
[67] and Chapter IV relies on The f-vector of a realizable matroid complex is
log-concave [66]. In Chapters II and III, we assume that the reader is familiar
with the material that is presented in Chapter I while most of Chapter IV
can be read independently.
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and it also helped me to get a deeper understanding of some of the mathem-
atics in this thesis. Amos Ron visited Berlin twice and shared his insights
and some open problems on zonotopal algebra with me.

Federico Ardila, Zhiqiang Xu, Andrew Berget, and June Huh made help-
ful comments on my papers. Bernd Sturmfels, Nan Li and several other
people discussed research problems with me. Lars Kastner and Martin Götze
were always ready to answer seemingly stupid questions. Benjamin Lorenz
provided help with the mathematical software package polymake. Kaie Kub-
jas’s comments greatly improved my thesis defence talk.

Choosing the right advisor is a non-trivial problem. I would like to
thank Christian Haase for suggesting me to work with Olga and for advice
and support.

Heather Heintzel proofread this thesis and made sure that the English is
correct.

I am also grateful to the people who made thesis writing a less solitary
experience: the other members of our research group, Alex, Galina, Ipek,
Maxim, Mikhail, Olga K., and Sadegh, as well as Irene who shared an office
with me and was a friendly and agreeable colleague.
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CHAPTER I

Preliminaries

1. Introduction

A finite list of vectors X gives rise to a large number of objects in various
mathematical fields. Examples include combinatorics (matroids, matroid
polynomials, generalised parking functions and chip firing games if X is
graphic [42, 43, 53, 73, 78]), discrete geometry (hyperplane arrangements,
zonotopes, and tilings of zonotopes), approximation theory (box splines [30],
least interpolation space) and algebraic geometry (Cox rings, fat point ideals
[3, 49, 86]). Zonotopal algebra is the study of a family of pairs of dual
vector spaces of multivariate polynomials that can be associated with a list
of vectors. It connects all of the objects mentioned above.

In the 1980s, various authors in the approximation theory community
started studying algebraic structures that capture information about splines
(e. g. [1, 29, 45]). One important example is the Dahmen-Micchelli space
D(X), that is spanned by the local pieces of the box spline and their par-
tial derivatives. See [54, Section 1.2] for a historic survey and the book
[30] for a treatment of polynomial spaces appearing in the theory of box
splines. Related results were obtained independently by authors interested
in hyperplane arrangements (e. g. [76]).

The space P(X) that is dual to D(X) was introduced in [1, 45]. It is
spanned by products of linear forms and it can be written as the Macaulay
inverse system (or kernel) of an ideal generated by powers of linear forms
[28]. Ideals of this type and their inverse systems are also studied in the
literature on fat point ideals (e. g. [48, 49]).

In addition to the aforementioned pair of spaces (D(X),P(X)), Olga
Holtz and Amos Ron introduced two more pairs of spaces with interest-
ing combinatorial properties [54]. They named the theory of those spaces
Zonotopal Algebra. This name reflects the fact that there are various con-
nections between zonotopal spaces and the lattice points in the zonotope
defined by X. Subsequently, those results were further generalised by Olga
Holtz, Amos Ron, and Zhiqiang Xu [55] as well as Nan Li and Amos Ron
[69]. Federico Ardila and Alex Postnikov studied generalised P-spaces and
connections with power ideals [3]. Bernd Sturmfels and Zhiqiang Xu estab-
lished a connection with Cox rings [86]. Further work on spaces of P-type
includes [7, 14, 88].

Zonotopal algebra is closely related to matroid theory: the Hilbert series
of zonotopal spaces only depend on the matroid structure of the list X.
One can show that the following statement is equivalent to the four colour
theorem: for all connected planar graphs G, the evaluation of the Hilbert
series Hilb(P−(XG∗), q) at q = −1/3 is negative. Here, XG∗ denotes the
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10 I. PRELIMINARIES

reduced incidence matrix of the graph dual to G and P−(XG∗) denotes the
associated internal P-space that we will define in Subsection 4.2.

All objects mentioned so far are part of what we call the continuous
theory. If the list X lies in a lattice (e. g. Zd), an even wider spectrum of
mathematical objects appears. We call this the discrete theory. Every object
in the continuous theory has a discrete analogue: vector partition functions
correspond to box splines and toric arrangements correspond to hyperplane
arrangements. The local pieces of the vector partition function are quasi-
polynomials that span the discrete Dahmen-Micchelli space DM(X). Both
theories are nicely explained in the recent book by Corrado De Concini and
Claudio Procesi [36] and in [35].

The combinatorics of the discrete case is captured by arithmetic matroids
which were very recently introduced by Luca Moci and Michele D’Adderio
[22, 74].

Vector partition functions and the related problem of counting integer
points in polytopes are an active field of research (see e. g. [4, 6, 13, 40]).
Vector partition functions arise for example in representation theory as
Kostant partition function, when the list X is chosen to be the set of positive
roots of a simple Lie algebra (e. g. [21]). There are also applications to the
equivariant index theory of elliptic operators [37, 38, 39].

This thesis deals only with the continuous theory except for the very last
section. However, the two theories overlap if the list of vectors X is totally
unimodular. The author hopes that some of his results can be transferred to
the discrete case in the future.

1.1. Outline of this chapter. This is an introductory chapter. We
will define the objects that we study in the following chapters and give some
background information.

In Section 2 we will explain our notation. In Section 3 we will introduce
matroids and several objects from discrete geometry and commutative al-
gebra. Section 4 contains a brief introduction to zonotopal algebra and least
map interpolation. In Section 5 we will talk about distributions and splines.
Section 6 contains some information on arithmetic matroids and in Section 7
we will discuss the level of abstraction and the ground field that should be
used when studying zonotopal algebra.

2. Notation

We use the convention that N = {0, 1, 2, 3, . . .}. For n ∈ N, let [n] :=
{1, . . . , n}. We denote the field we are working over by K. Sometimes, we
assume that K has characteristic zero or even K = R. Our basic object of
study is a list of vectors X = (x1, . . . , xN ) that span an r-dimensional space
U ∼= Kr. The dual space U∗ is denoted by V . The subspace spanned by a
set S ⊆ U is denoted by span(S). We slightly abuse notation by using the
symbol ⊆ for sublists. For Y ⊆ X, X \ Y denotes the deletion of a sublist,
i. e. (x1, x2) \ (x1) = (x2) even if x1 = x2. The list X comes with a natural
ordering: we say that xi < xj if and only if i < j.

Note that X can be identified with a linear map KN → U and after the
choice of a basis with an (r ×N)-matrix with entries in K.
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We will consider families of pairs of dual spaces (D(X, ·),P(X, ·)). The
space D(X, ·) is contained in Sym(V ), the symmetric algebra over V and
P(X, ·) is contained in Sym(U). The symmetric algebra is a base-free ver-
sion of the ring of polynomials over a vector space. We fix a basis (s1, . . . , sr)
for U and (t1, . . . , tr) denotes the dual basis for V , i. e. ti(sj) = δij , where
δij denotes the Kronecker delta. The choice of the basis determines iso-
morphisms Sym(U) ∼= K[s1, . . . , sr] and Sym(V ) ∼= K[t1, . . . , tr]. For x ∈ U ,
x◦ ⊆ V denotes the annihilator of x, i. e. xo := {f ∈ V : f(x) = 0}. For
more background on algebra, see [36] or [46].

As usual, χJ : J → {0, 1} denotes the indicator function of a set J .

3. Combinatorics and algebra

3.1. Matroids. An ordered matroid on N elements is a pair M =
(A,B) where A is an (ordered) list with N elements and B is a non-empty
set of sublists of A that satisfies the following axiom:

let B,B′ ∈ B and b ∈ B \B′.
Then, there exists b′ ∈ B′ \B s. t. (B \ b) ∪ b′ ∈ B.

(I.1)

A is called the ground set and B is called the set of bases of the matroid
M = (A,B). One can easily show that all elements of B have the same
cardinality. This number r is called the rank of the matroid (A,B). A set
I ⊆ A is called independent if it is a subset of a basis. The rank of Y ⊆ A
is defined as the cardinality of a maximal independent set contained in Y .
It is denoted rk(Y ).

In this thesis we mainly consider matroids that are realisable over some
field K. Let X = (x1, . . . , xN ) be a list of vectors spanning some K-vector
space W and let B(X) denote the set of bases of W (in the sense of linear
algebra) that can be selected from X. One can easily see that M(X) :=
(X,B(X)) is a matroid. The list X is called a realisation of this matroid
and a matroid (A,B) is called realisable if there is a list of vectors X and a
bijection between A and X that induces a bijection between B and B(X).

The closure of Y is defined as cl(Y ) := {x ∈ A : rk(Y ∪ x) = rk(Y )}. A
set C ⊆ A is called a flat if C = cl(C). The set of flats of a given matroid
M ordered by inclusion forms a lattice (i. e. a poset with joins and meets)
called the lattice of flats L(M). An upper set J ⊆ L(M) is an upward closed
set, i. e. C ⊆ C ′, C ∈ J implies C ′ ∈ J .

A hyperplane is a flat of rank r − 1. Note that if we are given a real-
isation X of a matroid, a hyperplane in the matroid theoretic sense spans a
(linear) hyperplane in the vector space spanned by X. We will use the word
hyperplane to denote both, the geometric and the combinatorial object.

The set of independent sets ∆ forms an abstract simplicial complex that
is called the matroid complex of M.

Subsets of A that are not independent are called dependent. A dependent
set C for which every strict subset is independent is called a circuit. A set
C ⊆ A is called a cocircuit if C ∩ B 6= ∅ for all bases B ∈ B and C is
minimal with this property. Cocircuits of cardinality one are called coloops.
and circuits of cardinality one are called loops. Note that a set {a} ⊆ A is
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a coloop if a is contained in every basis and a loop if a is contained in no
basis.

Now fix a basis B ∈ B. An element b ∈ B is called internally active in
B if b = max(A \ cl(B \ b)), i. e. b is the maximal element of the unique
cocircuit contained in (A \ B) ∪ b. The set of internally active elements
in B is denoted I(B). An element x ∈ A \ B is called externally active if
x ∈ cl{b ∈ B : b ≤ x}, i. e. x is the maximal element of the unique circuit
contained in B ∪ x. The set of externally active elements with respect to B
is denoted E(B).1 The Tutte polynomial

TM(x, y) :=
∑
B⊆B

x|I(B)|y|E(B)| =
∑
S⊆A

(x− 1)r−rk(S)(y − 1)|S|−rk(S) (I.2)

captures a lot of information about the matroid M. The equality of the two
expressions for TM(x, y) is non-trivial but not hard to prove. In particular,
it implies that the first expression is independent of the order of the elements
of the ground set. This is not obvious.

A standard reference for matroid theory is Oxley’s book [77]. Survey
papers on the Tutte polynomial are [18, 47].

Throughout this dissertation, we will use a running example, which we
will now introduce.

Example 3.1.

Let X :=

(
1 0 1
0 1 1

)
= (x1, x2, x3). (I.3)

The set of bases that can be selected from X is B(X) = {(x1, x2), (x1, x3),
(x2, x3)}. The Tutte polynomial of the matroid M(X) = (X,B(X)) is

TM(X)(x, y) = x2 + x+ y. (I.4)

3.2. Discrete geometry. In this subsection we will introduce zono-
topes, cones, and hyperplane arrangements. See Ziegler’s book [93] for more
details.

Definition 3.2. Let X = (x1, . . . , xN ) ⊆ U ∼= Rr be a list of vectors.
Then, we define the zonotope Z(X) and the cone cone(X) by

Z(X) :=

{
N∑
i=1

λixi : 0 ≤ λi ≤ 1

}
and cone(X) :=

{
N∑
i=1

λixi : λi ≥ 0

}
.

Let x ∈ U and cx ∈ R. This defines a hyperplane

Hx,cx := {v ∈ V : v(x) = cx}. (I.5)

If we fix a vector c ∈ RX , we obtain a hyperplane arrangement H(X, c) =
{Hx,cx : x ∈ X}.

Every basis B ⊆ X determines a unique vertex θB ∈ V of the hyperplane
arrangement H(X, c) that satisfies θB(x) = cx for all x ∈ B. In matrix
notation, θB = B−1cB, where cB denotes the restriction of c to RB. If the
vector c is sufficiently generic, then θB 6= θB′ for distinct bases B and B′.

1Usually, combinatorialists use min instead of max in the definition of the activities.
In the zonotopal algebra literature max is used. This has some notational advantages.
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In this case, the hyperplane arrangement H(X, c) is said to be in general
position. For more information on hyperplane arrangements, see [75, 85].

3.3. Commutative algebra. In this subsection we will define some
commutative algebra terminology that is used in this thesis.

A derivation on Sym(V ) is a K-linear map D satisfying Leibniz’s law,
i. e. D(fg) = D(f)g + fD(g) for f, g ∈ Sym(V ). For v ∈ V = U∗, we
define the directional derivative in direction v, Dv : Sym(U) → Sym(U)
as the unique derivation which satisfies Dv(u) = v(u) for all u ∈ U . For
K = R and K = C, this definition agrees with the analytic definition of the
directional derivative. Sym(V ) can be identified with the ring of differential
operators on Sym(U). Namely, v1 · · · vk ∈ Sym(V ) acts on Sym(U) by
mapping f ∈ Sym(U) to Dv1(. . . (Dvk−1

(Dvkf)) . . .).

Definition 3.3 (A pairing between symmetric algebras). We define the
following pairing:

〈·, ·〉 : K[s1, . . . , sr]×K[t1, . . . , tr]→ K

〈p, f〉 :=

(
p

(
∂

∂t1
, . . . ,

∂

∂tr

)
f

)
(0),

(I.6)

i. e. we let p act on f as a differential operator and take the degree zero part
of the result.

Remark 3.4. One can easily show that the definition of the pairing 〈·, ·〉
is independent of the choice of the bases for the symmetric algebras Sym(U)
and Sym(V ) as long as the bases are dual to each other.

Definition 3.5. Let I ⊆ K[s1, . . . , sr] be a homogeneous ideal. Its
kernel or Macaulay inverse system [50, 51, 70] is defined as

ker I := {f ∈ K[t1, . . . , tr] : 〈q, f〉 = 0 for all q ∈ I}. (I.7)

Remark 3.6. ker I can also be written as

ker I := {f ∈ K[t1, . . . , tr] : p

(
∂

∂t1
, . . . ,

∂

∂tr

)
f = 0} (I.8)

where p runs over a set of generators for the ideal I.

Remark 3.7. For a homogeneous ideal I ⊆ K[s1, . . . , sr] of finite codi-
mension the Hilbert series of ker I and K[s1, . . . , sr]/I are equal. For in-
stance, this follows from [36, Theorem 5.4].2

A graded vector space is a vector space W that decomposes into a direct
sum W =

⊕
i≥0Wi. A graded linear map f : W → W ′ preserves the grade,

i. e. f(Wi) is contained in W ′i . For a graded vector space W, we define its
Hilbert series as the formal power series Hilb(W, q) :=

∑
i≥0 dim(Wi)q

i. A
graded algebra A =

⊕
i≥0Ai has the additional property AiAj ⊆ Ai+j . We

use the symmetric algebra Sym(U) with its natural grading. This grading is

2ker I is sometimes defined slightly differently in the literature: first note that Sym(U)
(≈ polynomials) is a subspace of Sym(V )∗ (≈ formal power series). The pairing 〈•, •〉 is
defined on Sym(V )∗ × Sym(V ) and ker I is the subset of Sym(V )∗ that is annihilated by
I. It is then proven that if I has finite codimension, then ker I is contained in Sym(U),
i. e. in this case both definitions yield the same space.
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characterised by the property that the degree one elements are exactly the
ones that are contained in U \ {0}. Note that a linear map f : V → W
induces an algebra homomorphism Sym(f) : Sym(V )→ Sym(W ).

For more background on algebra, see [36] or [46].

4. Zonotopal algebra

In this Section we will give a brief introduction to zonotopal algebra.
In Subsection 4.1 we will introduce the central spaces D(X) and P(X). In
Subsection 4.2 we will define the internal and external zonotopal spaces that
were introduced in [54]. More general zonotopal spaces are discussed in
Chapters II and III. Quite surprisingly, these spaces can also be obtained
as the least space of certain sets of lattice points. This is explained in
Subsection 4.3.

4.1. Central zonotopal spaces. In this subsection we will define the
Dahmen-Micchelli space D(X) and its dual P(X). The pair (D(X),P(X)),
which is called the central pair of zonotopal spaces in [54], is the origin of
zonotopal algebra.

A vector u ∈ U naturally defines a polynomial pu ∈ K[s1, . . . , sr] as
follows: if u can be expressed in the basis (s1, . . . , sr) as u =

∑r
i=1 λisi,

then we define pu :=
∑r

i=1 λisi ∈ K[s1, . . . , sr]. For Y ⊆ X, we define
pY :=

∏
x∈Y px. For the list X in Example 3.1 we obtain pX = s1s2(s1 +s2).

Definition 4.1. Let K be a field of characteristic zero and let X ⊆ U ∼=
Kr be a finite list of vectors that spans U. Then, we define

J (X) := ideal{pT : T ⊆ X cocircuit} ⊆ K[s1, . . . , sr] (I.9)
and D(X) := kerJ (X) ⊆ K[t1, . . . , tr]. (I.10)

D(X) is called the central D-space or Dahmen-Micchelli space.

It can be shown that D(X) is the space spanned by the local pieces of
the box spline and their partial derivatives. The box spline is defined in
Subsection 5.2. The space D(X) was introduced in [29] and in [26] it was
shown that its dimension is |B(X)|.

Definition 4.2. Let K be a field of characteristic zero and let X ⊆
U ∼= Kr be a finite list of vectors that spans U. Then, we define the central
P-space

P(X) := span{pY : Y ⊆ X, X \ Y has full rank} ⊆ K[s1, . . . , sr]. (I.11)

Proposition 4.3 ([45]). Let K be a field of characteristic zero and let
X ⊆ U ∼= Kr be a finite list of vectors that spans U. A basis for P(X) is
given by

B(X) := {QB : B ∈ B(X)}, (I.12)

where QB := pX\(B∪E(B)).

The space P(X) can also be written as the kernel of an ideal. The
following proposition appeared in [28].
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Proposition 4.4. Let K be a field of characteristic zero and let X ⊆
U ∼= Kr be a finite list of vectors that spans U. Then,

P(X) = ker I(X) = ker I ′(X), (I.13)

where I(X) := ideal
{
pm(η)
η : η ∈ V \ {0}

}
⊆ K[t1, . . . , tr], (I.14)

I ′(X) := ideal
{
pm(η)
η : η ∈ V \ {0}, rk(X ∩ ηo) = r − 1

}
, (I.15)

and m : V → N assigns to η ∈ V the number of vectors in X that are not
perpendicular to η.

Ideals like I(X) that are generated by products of linear forms are called
power ideals.

Example 4.5. Let X be the list of vectors we defined in Example 3.1.
Then,

D(X) = ker ideal{s1s2, s1(s1 + s2), s2(s1 + s2)} = span{1, t1, t2},
I(X) = ideal{t21, t22, (t1 − t2)2}+ R[t1, t2]≥3 = ideal{t21, t22, t1t2},

and P(X) = ker I(X) = span{1, s1, s2}.

Proposition 4.6 ([45, 59]). Let K be a field of characteristic zero and
let X ⊆ U ∼= Kr be a finite list of vectors that spans U. Then, the spaces
P(X) and D(X) are dual under the pairing 〈·, ·〉, i. e.

D(X)→ P(X)∗

f 7→ 〈·, f〉
(I.16)

is an isomorphism.

The preceding proposition implies that the Hilbert series of P(X) and
D(X) are equal. By Proposition 4.3, this Hilbert series is a matroid invariant
and a specialisation of the Tutte polynomial. These facts are summarised in
the following proposition.

Proposition 4.7. Let K be a field of characteristic zero and let X ⊆
U ∼= Kr be a list of N vectors that spans U. Then,

Hilb(D(X), q) = Hilb(P(X), q) = qN−rTM(X)(1,
1

q
) =

∑
B∈B(X)

qN−r−|E(B)|.

4.2. Internal and external zonotopal spaces. In this subsection we
will define two more pairs of zonotopal spaces that were introduced by Holtz
and Ron in [54]. The internal pair (D−(X),P−(X)) and the external pair
(D+(X),P+(X)) have many nice properties in common with the central
pair.

First, we will define internal and external bases that are used in the
definition of the internal and external D-space.

Definition 4.8 (Internal and external bases). Let X ⊆ U ∼= Kr be a
list of vectors that spans U and let B0 = (b1, . . . , br) ⊆ Kr be an arbitrary
basis for Kr that is not necessarily contained in B(X). Let X ′ = (X,B0)
and let

ex : {I ⊆ X : I linearly independent} → B(X ′) (I.17)



16 I. PRELIMINARIES

be the function that maps an independent set in X to its greedy extension in
X ′. This means that given an independent set I ⊆ X, the vectors b1, . . . , br
are added successively to I unless the resulting set would be linearly depend-
ent.

Then, we define the set of external bases B+(X,B0) and the set of in-
ternal bases B−(X) by

B+(X,B0) := {B ∈ B(X,B0) : B = ex(I) for some I ⊆ X independent}
and B−(X) := {B ∈ B(X) : B contains no internally active elements}.

Definition 4.9. Let K be a field of characteristic zero and let X ⊆ U ∼=
Kr be a finite list of vectors that spans U. Then, we define

J+(X) := ideal{pT : T ⊆ X B+(X)-cocircuit} ⊆ K[s1, . . . , sr], (I.18)
D+(X) := kerJ+(X) ⊆ K[t1, . . . , tr], (I.19)
J−(X) := ideal{pT : T ⊆ X B−(X)-cocircuit} ⊆ K[s1, . . . , sr], (I.20)

and D−(X) := kerJ−(X) ⊆ K[t1, . . . , tr], (I.21)

where a B−(X)-cocircuit (resp. a B+(X)-cocircuit) is a subset of X that
intersects all bases in B−(X) (resp. in B+(X)) and that is inclusion-minimal
with this property. D+(X) is called the external D-space and D−(X) is
called the internal D-space.

Definition 4.10. Let K be some field and let X ⊆ U ∼= Kr be a finite
list of vectors that spans U. Then we define

P+(X) := span{pY : Y ⊆ X} and P−(X) :=
⋂
x∈X
P(X \ x). (I.22)

P+(X) is called the external P-space and P−(X) is called the internal P-
space.

Proposition 4.11. Let K be a field of characteristic zero and let X ⊆
U ∼= Kr be a finite list of vectors that spans U. Then

P+(X) = ker I+(X) and P−(X) = ker I−(X), (I.23)

where I+(X) := ideal
{
pm(η)+1
η : η ∈ V \ {0}

}
⊆ R[t1, . . . , tr] (I.24)

and I−(X) := ideal
{
pm(η)−1
η : η ∈ V \ {0}

}
⊆ R[t1, . . . , tr] (I.25)

and m : V → N is defined as in Proposition 4.4.

Proposition 4.12. Let K be a field of characteristic zero and let X ⊆
U ∼= Kr be a finite list of vectors that spans U. A basis for P+(X) is given
by

B(X,B0) := {QB : B ∈ B+(X,B0)}, (I.26)

where QB := pX′\(B∪E(B)) and E(B) ⊆ X ′.

Remark 4.13. The internal space P−(X) does not have a description as
a product of linear forms. See Chapter III and in particular Remark III.3.21
for more details.
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Proposition 4.14 ([54]). Let K be a field of characteristic zero and let
X ⊆ U ∼= Kr be a finite list of vectors that spans U. Then, the internal
spaces P−(X) and D−(X) as well as the external spaces P+(X) and D+(X)
are dual under the pairing 〈·, ·〉.

Proposition 4.15 ([3, 54]). Let K be a field of characteristic zero and
let X ⊆ U ∼= Kr be a list of N vectors that spans U. Then,

Hilb(D+(X), q) = Hilb(P+(X), q) = qN−rTM(X)(1 + q,
1

q
)

=
∑

B∈B+(X,B0)

qN−r−|E(B)| (I.27)

and Hilb(D−(X), q) = Hilb(P−(X), q) = qN−rTM(X)(0,
1

q
)

=
∑

B∈B−(X)

qN−r−|E(B)|.
(I.28)

Remark 4.16. More zonotopal spaces that were previously studied by
other authors are described in Section II.7. In Chapter II we will define far
more general pairs of zonotopal spaces. That chapter focuses on D-spaces.
In Chapter III we will study various P-spaces and the power ideals defining
them.

4.3. Least map interpolation. Carl de Boor and Amos Ron intro-
duced the so-called least map interpolation [31, 33]. Given a finite set
S ⊆ V , they construct a space of polynomials Π(S) ⊆ Sym(V ) of dimen-
sion |S|. The space Π(S) has several nice properties related to interpolation
problems.

Let K be a field of characteristic zero. Recall that U ∼= Kr, V denotes
the dual space and a vector v ∈ V defines a linear form pv ∈ K[t1, . . . , tr] ∼=
Sym(V ). We define the exponential function as usual by

ev :=
∑
j≥0

pjv
j!
∈ K[[t1, . . . , tr]] ∼= Sym(U)∗. (I.29)

The least map ↓ maps a non-zero element of the ring of formal power series
K[[t1, . . . , tr]] to its homogeneous component of lowest degree that is non-
zero. The least space of a finite set S ⊆ V is defined as

Π(S) := span{f↓ : f ∈ span{ev : v ∈ S}} ⊆ K[t1, . . . , tr]. (I.30)

The following surprising theorem makes a connection between hyper-
plane arrangements and the space D(X). It generalises to other D-spaces
(see [54, 55, 69]).

Theorem 4.17 ([31]). Let K be a field of characteristic zero and let
X ⊆ U ∼= Kr be a finite list of vectors that spans U. Let c ∈ KX be a vector
s. t. the hyperplane arrangement H(X, c) is in general position and let S be
the set of vertices of H(X, c). Then,

D(X) = Π(S). (I.31)



18 I. PRELIMINARIES

Example 4.18. Let X = (e1, e2, e1 + e2) be the list of vectors we intro-
duced in Example 3.1.
Let c1 = c2 = 0 and c3 = 1. The set of vertices of
H(X, c) is S = {(0, 0), (1, 0), (0, 1)}. Then,

Π(S) = span{f↓ : f ∈ span{1, et1 , et2}}
= span{1, t1, t2}, since 1 = 1↓,

t1 = (et1 − 1)↓, and t2 = (et2 − 1)↓.

(0, 0)

(0, 1)

(1, 0)

Now we will describe a connection between zonotopes and P-spaces.
Since zonotopes can only be defined in Euclidian space, we now require
K = R. Let Λ ⊆ U ∼= R be a lattice of covolume one, i. e. Λ has a lattice
basis with determinant 1 or −1 (a typical example is Λ = Zr). Recall that
a list of vectors X ⊆ Λ is called totally unimodular if every (vector space)
basis B ⊆ X has determinant 1 or −1.

Theorem 4.19 ([54]). Let X be a list of vectors that is contained in a
lattice Λ ⊆ U ∼= Rr of covolume one. Suppose that X is totally unimodular.
Let τ ∈ U be a vector that is not contained in any strict subspace of U that
is spanned by a sublist of X. Then,

Π(Z(X) ∩ Λ) = P+(X), (I.32)

Π(Z̊(X) ∩ Λ) = P−(X), (I.33)
and Π((Z(X)− τ) ∩ Λ) = P(X) (I.34)

holds, where Z̊(X) denotes the interior of the zonotope Z(X).

Remark 4.20. Under the assumptions of Theorem 4.19,

|(Z(X)− τ) ∩ Λ)| =
∑

B∈B(X)

det(B) = vol(Z(X)) (I.35)

holds (see e. g. [36, Proposition 2.50]).

Example 4.21. Let X = (e1, e2, e1 + e2) be the list of vectors we intro-
duced in Example 3.1.
The zonotope Z(X) has volume three, seven lattice
points and one interior lattice point.

P+(X) = span{1, s1, s2, s
2
1, s1s2, s

2
2}

P(X) = span{1, s1, s2}
P−(X) = span{1}

5. Analysis

In this section we will discuss distributions and splines.

5.1. Distributions. The algebraic objects we are mainly interested in
are multivariate polynomials. However, in the construction in Section II.2
more general objects appear as intermediate products. In this construction
we need ”generalised polynomials“ whose support is contained in a subspace.
Furthermore, we use convolutions and the fact that convolutions and partial
derivatives commute. Distributions have all of the desired properties. In
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this subsection we will summarise important facts about distributions that
we will need later on. For a detailed introduction to the subject, we refer
the reader to Laurent Schwartz’s book [80].

A distribution on a vector space U ∼= Rr (or an open subset of U) is a
continuous linear functional that maps a test function to a real number. Test
functions are compactly supported smooth functions U → R. An important
example is the delta distribution δx given by δx(ϕ) := ϕ(x). A locally
integrable function f : U → R defines a distribution Tf in the following
way:

Tf (ϕ) :=

∫
U
f(u)ϕ(u) du. (I.36)

Recall that for two functions f, g : U → R, the convolution is defined as

f ∗ g :=

∫
U
f(u)g(· − u) du. (I.37)

This is well-defined only if f and g decay sufficiently rapidly at infinity in
order for the integral to exist. The convolution of two distributions can also
be defined under certain conditions.

A distribution T vanishes on a set Γ ⊆ U if T (ϕ) = 0 for all test func-
tions whose support is contained in Γ. The support supp(T ) of T is the
complement of the maximal open set on which T vanishes.

Let Sξ and Tη be two distributions for which supp(Sξ)∩ (K − supp(Tη))
is compact for any compact set K. Let ϕ : U → R be a test function with
support K. Then, we define the convolution

(Sξ ∗ Tη)(ϕ) := Sξ(Tη(α(ξ)ϕ(ξ + η))), (I.38)

where α is a test function that is equal to one on a neighbourhood of
supp(Sξ)∩ (K − supp(Tη)). When evaluating Tη(α(ξ)ϕ(ξ + η)), we think of
ϕ(ξ+η) as a function in η and of ξ as a fixed parameter. Then, Tη(α(ξ)ϕ(ξ+
η)) is a function in ξ with compact support that is contained inK−supp(Tη).
Note that the definition of (Sξ ∗ Tη)(ϕ) is independent of the choice of the
function α. The multiplication by α is necessary to ensure that Tη(α(ξ)ϕ(ξ+
η)) as a function in ξ has compact support.

Note that the convolution of two distributions is a commutative opera-
tion and T ∗ δ0 = T . Let u ∈ U . The partial derivative of a distribution T
in direction u is defined by (DuT )(ϕ) := −T (Duϕ). Convolutions of distri-
butions have the same nice property with respect to partial derivatives as
convolutions of functions. Namely, if T1 and T2 are distributions on U and
u ∈ U , then

Du(T1 ∗ T2) = (DuT1) ∗ T2 = T1 ∗ (DuT2). (I.39)

5.2. Splines. In this subsection we will introduce multivariate splines
and box splines as in [36, Chapter 7]. Another good reference is [30].
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Definition 5.1. Let X ⊆ U ∼= Rr be a finite list of vectors. The
multivariate spline (or truncated power) TX and the box spline BX are dis-
tributions that are characterised by the formulae∫

U
f(u)BX(u) du =

∫ 1

0
· · ·
∫ 1

0
f

(
N∑
i=1

λixi

)
dλ1 · · · dλN (I.40)

and
∫
U
f(u)TX(u) du =

∫ ∞
0
· · ·
∫ ∞

0
f

(
N∑
i=1

λixi

)
dλ1 · · · dλN . (I.41)

The multivariate spline is well-defined only if the convex hull of the
vectors in X does not contain 0 or equivalently, if there is a functional
ϕ ∈ V s. t. ϕ(x) > 0 for all x ∈ X. If all vectors are non-zero, it is of
course always possible to multiply certain entries of the list X by −1 s. t.
this condition is satisfied. Note that in Definition 5.1, we do not require that
X spans U in contrast to most of the rest of this thesis.

BX and TX can be identified with the functions

BX(u) =
1√

det(XXT )
volN−dim(span(X)){z ∈ [0; 1]N : Xz = u} (I.42)

and TX(u) =
1√

det(XXT )
volN−dim(span(X)){z ∈ RN≥0 : Xz = u}. (I.43)

It follows immediately from (I.42) and (I.43) that BX is supported in the
zonotope Z(X) and TX is supported in the cone cone(X). For a basis C ⊆ U ,

BC =
χZ(C)

|det(C)|
and TC =

χcone(C)

|det(C)|
. (I.44)

Remark 5.2. The box spline can easily be obtained from the multivari-
ate spline. Namely,

BX(x) =
∑
S⊆X

(−1)|S|TX (x− aS) , (I.45)

where aS :=
∑

a∈S a.
The multivariate spline plays an important role in Chapter II. We in-

troduced the box spline only because of its importance in approximation
theory.

Theorem 5.3. Let X ⊆ U ∼= Rr be a finite list of vectors that spans
U and whose convex hull does not contain 0. The cone cone(X) can be
decomposed into finitely many cones Ci s. t. TX restricted to each Ci is a
homogeneous polynomial of degree N − r.

Theorem 5.4. The space spanned by the local pieces of the multivariate
spline TX and their partial derivatives is equal to the Dahmen-Micchelli space
D(X) that was defined in Definition 4.1.

The multivariate spline can also be defined inductively by the convolu-
tion formula

T(X,x) = TX ∗ T(x) =

∫ ∞
0

TX(· − λx) dλ (I.46)
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Figure 1. The box spline and the multivariate spline
defined by the list X in Example 3.1. The multivariate spline
is calculated in Example 5.5. On the right, the dashed lines
are level curves.

using (I.44) as a starting point. In particular, TX = Tx1 ∗ · · · ∗ TxN . Since
DxTx = δ0, the convolution formula implies for Y ⊆ X that

DY TX = TX\Y where DY :=
∏
x∈Y

Dx. (I.47)

Example 5.5. We consider the same listX as in Example 3.1. By (I.44),
T(x1,x2) is the indicator function of R2

≥0. Then, by (I.46), we can deduce

TX(s1, s2) =

∫ ∞
0

χR2
≥0

(s1 − λ, s2 − λ) dλ = min(s1, s2). (I.48)

See Figure 1 for a graphic description of TX .

Example 5.6. Let Xi := (1, . . . , 1︸ ︷︷ ︸
i times

). Then,

TX1(s) = χR≥0
(s) (I.49)

and TXi+1(s) =

∫ ∞
0

TXi(s− λ) dλ =

∫ s

0

λi−1

(i− 1)!
dλ =

si

i!
for s ≥ 0.

6. Arithmetic matroids

In this section we will introduce arithmetic matroids. They only ap-
pear again in the very last section of this thesis. Arithmetic matroids are
matroids together with a so-called multiplicity function. In the realisable
case, the multiplicity function records the determinants of the bases. Arith-
metic matroids are the analogues of matroids in the discrete theory (cf. Sec-
tion 1 and Table 1).

An arithmetic matroid is a pair (M,m), where M is a matroid on the
ground set A and m : 2A → Z≥0 is a function that satisfies certain axioms
[22, 74]. The function m is called a multiplicity function. The prototype of
an arithmetic matroid is the one that is canonically associated with a finite
list A of elements of a finitely generated abelian group G. Recall that such
a group is isomorphic to G = Zr ⊕Gt for some r ∈ N and some finite group
Gt (the torsion subgroup of G). Given a sublist S ⊆ A, we denote by 〈S〉
the subgroup of G generated by S. We define the rank of a sublist S ⊆ A as
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continuous theory discrete theory
X list of vectors in a vector space X list of vectors in a lattice
box spline / multivariate spline vector partition function
hyperplane arrangement toric arrangement
continuous zonotopal spaces discrete zonotopal spaces
matroid arithmetic matroid

Table 1. Continuous and discrete zonotopal algebra

the maximal rank of a free abelian subgroup of 〈S〉. This defines a matroid
structure on A. For S ∈ 2A, let GS be the maximal subgroup of G that
contains S and in which the subgroup index [GS : 〈S〉] is finite. We define
the multiplicity of S as m(S) := [GS : 〈S〉].

Recall that matroids have a nice duality theory and that they come with
a Tutte polynomial TM(x, y) =

∑
S⊆A(x−1)rk(A)−rk(S)(y−1)|S|−rk(S) which

captures a lot of information about the matroid. Luca Moci and Michele
D’Adderio have shown that arithmetic matroids also have a nice duality
theory and that they come with an arithmetic Tutte polynomial :

M(M,m)(x, y) :=
∑
S⊆A

m(S)(x− 1)rk(A)−rk(S)(y − 1)|S|−rk(S). (I.50)

Other work on arithmetic matroids includes [10, 23, 24].
The discrete Dahmen-Micchelli space DM(X) is an example of a dis-

crete zonotopal space. It is defined like D(X) but differential operators are
replaced by difference operators. It is a space of quasi-polynomials that is
spanned by the local pieces of the vector partition function. The dimension
of DM(X) agrees with the volume of the zonotope Z(X) for any list X ⊆ Zr
in contrast to D(X), where this holds only if X is totally unimodular. A
discrete analogue of Proposition 4.7 [74, Theorem 6.3] states that

dim DM(X) = qN−rM(M,m)(1,
1

q
). (I.51)

where (M,m) denotes the arithmetic matroid defined by the list X.

7. Remarks on the notation, level of abstraction and ground
fields

As zonotopal spaces have been studied by people from different fields, the
notation and the level of abstraction used in the literature varies. Authors
with a background in spline theory usually work over Rr and identify it
with its dual space via the canonical inner product even though many of
their results hold for other fields as well. Other authors work in a more
abstract setting as we do.

So what is the ”right“ field to work over? P-spaces can be defined over
any field (e. g. [7]). If one studies power ideals and their kernels, it is help-
ful to assume that the ground field K has characteristic zero. Otherwise,
problems might arise essentially because in characteristic p equalities like
(t1 + t2)p = tp1 + tp2 hold. Of course, if one is interested in connections with
splines and zonotopes, one has to work in a Euclidian setting.
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In Chapter II we will work over the real numbers because our construc-
tion involves splines. In Chapter III we will work over a field of characteristic
zero because we study power ideals. A reader with no background in abstract
algebra may safely assume K = R and work with polynomial rings instead
of symmetric algebras everywhere in this thesis. This setting captures all of
the important ideas.

Some authors (e. g. [3]) work in a dual setting and consider a central
hyperplane arrangement A instead of a finite list of vectors X. Both settings
are equivalent but for us it is more natural to work with a list of vectors since
we are also interested in the zonotope Z(X) and the multivariate spline TX .





CHAPTER II

Zonotopal Algebra and Forward Exchange
Matroids

The first of the two main results in this chapter is the con-
struction of a canonical basis for the Dahmen-Micchelli space
D(X). We show that it is dual to the canonical basis for
P(X) that is already known.

The second main result is the construction of a new family
of zonotopal spaces that is far more general than the ones that
were recently studied by Ardila-Postnikov, Holtz-Ron, Holtz-
Ron-Xu, Li-Ron, and others. We call the underlying combin-
atorial structure of those spaces forward exchange matroid.

1. Introduction

Given a pair of vector spaces that are dual to each other, it is often
helpful to have a pair of dual bases for the two spaces. It is known that
there is a canonical way to construct bases for the spaces of P-type (see
[3, 45, 54, 55, 69] and Proposition I.4.3 and I.4.12).

The first of the two main results in this paper is that there is an algorithm
that produces a canonical basis for the spaces of D-type that is dual to the
canonical basis for the spaces of P-type. Here, canonical means that the
basis we obtain only depends on the order of the elements in the list X
and not on any further choices. The two previously known algorithms that
construct a basis for spaces of D-type depend on additional choices [25, 32].

Our second main result is that far more general pairs of zonotopal spaces
with nice properties can be constructed than the ones that were previously
known. We will define a new combinatorial structure called forward ex-
change matroid. A forward exchange matroid is an ordered matroid together
with a subset of its set of bases that satisfies a weak version of the basis ex-
change axiom. This is the underlying structure of the generalised zonotopal
D-spaces and P-spaces that we introduce.

This chapter is based on the preprint [68].

1.1. Outline of this chapter. This chapter is organised as follows.
In Section 2 we will construct certain polynomials RB as convolutions of
differences of multivariate splines. In Section 3 we will show that the set

Б(X) := {det(B)RB : B ∈ B(X)} (II.1)

is a basis for D(X) and we will prove that this basis is dual to the basis B(X)
for P(X). In Section 4 we will discuss deletion-contraction and two short
exact sequences. In Section 5 we will introduce a new combinatorial structure
called forward exchange matroid. This is an ordered matroid together with a

25
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subset B′ of its set of bases with the so-called forward exchange property. In
Section 6 we will introduce the generalised P-space P(X,B′) := span{QB :
B ∈ B′} and the generalised D-space D(X,B′). We will show that most of
the results that we have described in Section I.4 and in Section 3 still hold
for those spaces if B′ has the forward exchange property. For example, the
two spaces are dual and a suitable subset of Б(X) will turn out to be a basis
for D(X,B′). Furthermore, D(X,B′) and P(X,B′) have deletion-contraction
decompositions that are related to the deletion-contraction reduction of the
Tutte polynomial.

In Section 7 we will review the previously known zonotopal spaces and
we will show that they are special cases of our spaces D(X,B′) and P(X,B′).

2. Construction of basis elements

In this section we will construct a polynomial RBZ in R[s1, . . . , sr], given
a finite list Z ⊆ U ∼= Rr and a basis B ⊆ Z. Later on we will show
that polynomials of this type form bases for various zonotopal D-spaces if
one chooses suitable pairs (B,Z). The polynomial RBZ is constructed as a
convolution of differences of multivariate splines.

Let Z ⊆ U be a finite list and let B = (b1, . . . , br) ⊆ Z be a basis.
It is important that the basis is ordered and that this order is the order
obtained by restricting the order on Z to B. For i ∈ {0, . . . , r}, we define
Si = SBi := span{b1, . . . , bi}. Hence,

{0} = SB0 ( SB1 ( SB2 ( . . . ( SBr = U ∼= Rr (II.2)

is a flag of subspaces. We define an orientation on each of the spaces Si by
saying that (b1, . . . , bi) is a positive basis for Si. Now a basis D = (d1, . . . , di)
for Si is called positive if the map that sends bν to dν for 1 ≤ ν ≤ i has
positive determinant.

Let u ∈ Si\Si−1. If (b1, . . . , bi−1, u) is a positive basis, we call u positive.
Otherwise, we call u negative. We partition Z ∩ (Si \ Si−1) as follows:

PBi := {u ∈ Z ∩ (Si \ Si−1) : u positive} (II.3)

and NB
i := {u ∈ Z ∩ (Si \ Si−1) : u negative}. (II.4)

We define

TB+
i := (−1)|Ni| · TPi ∗ T−Ni and T

B−
i := (−1)|Pi| · T−Pi ∗ TNi . (II.5)

Note that TB+
i is supported in cone(Pi,−Ni) and that

TB−i (x) = (−1)|Pi∪Ni|TB+
i (−x). (II.6)

Now define

RBi := TB+
i − TB−i and RBZ = RB := RB1 ∗ · · · ∗RBr . (II.7)

For an example of this construction see Example 3.4 and Figure 2. In
Corollary 2.4, we will see that the distribution RBZ can be identified with a
homogeneous polynomial.
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x2

b1 = x1

b2 = x3

cone(P2)

cone(−P2)

S1

S2 = R2

Figure 2. The geometry of the construction of the polyno-
mial R(x1,x3)

X in Example 3.4. Note that N2 = ∅.

Remark 2.1. A similar construction of certain quasi-polynomials in the
discrete case is done in [38, Section 3] (see also [36, Section 13.6]). The part
of Theorem 3.2 that exhibits a basis for D(X) can be seen as a special case
of Theorem 3.22 in [38].

Remark 2.2. The construction of the polynomials RBZ may at first seem
rather complicated in comparison with the construction of the polynomials
QB that form bases of the P-spaces.

Here are a few remarks to explain this construction: multivariate splines
are very convenient because it is so easy to calculate their partial derivatives
(cf. (I.47)). Taking differences of two splines in the definition of RBi ensures
that RBZ is a polynomial and not just piecewise polynomial. In fact, RB1 ∗
. . . ∗RBi is a “polynomial supported in Si” for all i.

We have to change the sign of some of the vectors before constructing the
multivariate spline TB+

i to ensure that all the convolutions are well-defined.
For example, the convolutions in (II.7) are well-defined for the following
reason: the support of RB1 ∗ · · · ∗RBi is contained in Si. The support of RBi+1

is cone(Pi+1,−Ni+1)∪ cone(−Pi+1, Ni+1). For every compact set K, the set

(Si ∩ (K − (cone(Pi+1,−Ni+1) ∪ cone(Pi+1,−Ni+1)) (II.8)

is compact.

Proposition 2.3. The distribution RBZ is a local piece of the multivari-
ate spline TB+

1 ∗ · · · ∗ TB+
r .

Proof. Let c� 0 and let

τ := b1 +
1

c
b2 + . . .+

1

cr−2
br−1 +

1

cr−1
br. (II.9)

See Figure 3 for an example of this construction. The vector τ is contained in
cone(Z). By Theorem I.5.3 there exists a subcone of cone(Z) that contains
τ s. t. TZ agrees with a polynomial pτ,Z on this subcone. We claim that RBZ
is equal to pτ,Z . Note that

RBZ = (TB+
1 − TB−1 ) ∗ · · · ∗ (TB+

r − TB−r ) (II.10)

=
∑
J⊆[r]

(−1)|J |+
∑
i 6∈J |Ni|+

∑
i∈J |Pi|TZJB

, (II.11)
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b1

cone(b1, P2,−N2)

b2

τ

xi

−xi

Figure 3. The setup in the proof of Proposition 2.3.

where

ZJB =
⋃
i 6∈J

(Pi,−Ni) ∪
⋃
i∈J

(−Pi, Ni). (II.12)

In order to prove our claim, it is sufficient to show that τ is contained in
cone(ZJB) if and only if J = ∅. The “if” part is clear.

Let J be non-empty and let j∗ be the minimal element. For α ∈ R let
φα : U → R be the linear form that maps a vector x to

r∑
j=j∗

(−1)χJ (j)αjλj , (II.13)

where λj denotes the coefficient of bj when x is written in the basis (b1, . . . , br).
We claim that for sufficiently large α, φα is non-negative on ZJB and φα(τ) <
0. By Farkas’ Lemma (e. g. [79, Section 5.5]), this proves that τ is not con-
tained in cone(ZJB).

If x ∈ Si∩ZJB for i < j∗, then obviously φα(x) = 0. If x ∈ (Si\Si−1)∩ZJB
for i ≥ j∗, then λi 6= 0 and λν = 0 for all ν ≥ i+1. In addition, (−1)χJ (i)λi >
0, since all vectors in (Pi,−Ni) have a positive bi component when written in
the basis (b1, . . . , br). Hence, φα(x) = (−1)χJ (i)αiλi+o(αi) = αi |λi|+o(αi).
This is positive for sufficiently large α. For τ , we obtain

φ(τ) = − αj
∗

cj∗−1
± αj

∗+1

cj∗
± . . . = − αj

∗

cj∗−1
+ o

(
1

cj∗−1

)
. (II.14)

This is negative for sufficiently large c. Note that we fix a large α first and
then we let c grow. �

Note that the distribution RBZ does not change if we add or remove zero
vectors from the list Z. Using Theorem I.5.3, we can deduce the following
corollary.

Corollary 2.4. Let Z̃ be the list of vectors obtained from Z by remov-
ing all copies of the zero vector. The distribution RBZ = RB

Z̃
can be identified

with a homogeneous polynomial of degree |Z̃| − r.

Remark 2.5. The local pieces of the multivariate spline are uniquely
determined by a certain equation (cf. [36, Theorems 9.5 and 9.7]). Taking
into account Proposition 2.3, this gives us a different method to calculate
the polynomials RBZ .
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The following theorem that is due to Zhiqiang Xu will yield another
formula for the polynomials RBZ . It is a variant of Brion’s formula [12].

Theorem 2.6 ([91, Theorem 3.1.]). Let X ⊆ U ∼= Rr be a list of N
vectors that spans U. Let c ∈ RX be a vector s. t. the hyperplane arrangement
H(X, c) is in general position. For a basis B ∈ B(X), let θB ∈ V denote the
vertex of H(X, c) corresponding to B (cf. Subsection I.3.2). Then

TX(u) =
1

(N − r)!
∑

B∈B(X)

(−θBu)N−r

|det(B)|
∏
x∈X\B(θBx− cx)

χcone(B)(u). (II.15)

Note that the numerator (II.15) is non-zero because c is chosen s. t.
H(X, c) is in general position. Using Proposition 2.3, one can deduce the
following corollary.

Corollary 2.7. Let Z ⊆ U ∼= Rr be a list of n vectors that spans U .
Let c and θB as in Theorem 2.6. Then, the polynomial RBZ (u) is given by

RBZ (u) =
1

(n− r)!
∑

B′∈B(ZB+)
τ∈cone(B′)

(−θB′u)n−r

|det(B′)|
∏
x∈Z\B′(θB′x− cx)

, (II.16)

where τ denotes the vector defined in (II.9) and ZB+ denotes the reori-
entation of the list Z s. t. all vectors are positive with respect to B, i. e.
ZB+ =

⋃r
i=1(Pi,−Ni).

3. A basis for the Dahmen-Micchelli space D(X)

In this section we will define a set Б(X) and we will show that this set is
a basis for the central D-space D(X). Furthermore, we will show that this
basis is dual to the basis B(X) of the central P-space P(X). Note that Б is
the equivalent of the letter B in the Cyrillic alphabet.

Definition 3.1 (Basis for D(X)). Let X ⊆ U ∼= Rr be a finite list of
vectors that spans U. Recall that B(X) denotes the set of bases that can be
selected from X and that E(B) denotes the set of externally active elements
with respect to a basis B. We define

Б(X) := {det(B)RBX\E(B) : B ∈ B(X)}. (II.17)

Theorem 3.2. Let X ⊆ U ∼= Rr be a finite list of vectors that spans
U. Then, Б(X) is a basis for the central Dahmen-Micchelli space D(X) and
this basis is dual to the basis B(X) for the central P-space P(X).

Remark 3.3. D(X) and P(X) are independent of the order of the ele-
ments of X. The bases B(X) and Б(X) both depend on that order. In
Theorem 3.2, we assume that both bases are constructed using the same
order.
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Example 3.4. This is a continuation of Example I.3.1. See also Figure 2
on page 27. The elements of Б(X) are

R
(x1,x2)
(x1,x2) = 1, (II.18)

R
(x1,x3)
X = (Tx1 − T−x1) ∗ (T(x2,x3) − T(−x2,−x3)) = s2, (II.19)

and R(x2,x3)
X = (Tx2 − T−x2) ∗ (T(x1,x3) − T(−x1,−x3)) = s1. (II.20)

The elements of B(X) are

Q(x1,x2) = p∅ = 1, (II.21)
Q(x1,x3) = px2 = t2, (II.22)

and Q(x2,x3) = px1 = t1. (II.23)

B(X) and Б(X) are obviously dual bases.

The proof of Theorem 3.2 is split into four lemmas. Recall that for a
basis B = (b1, . . . , br) we defined a flag of subspaces {0} = SB0 ( SB1 ( . . . (
SBr = U ∼= Rr, where SBi := span(b1, . . . , bi).

Lemma 3.5 (Annihilation criterion). Let Z ⊆ U ∼= Rr be a finite list of
vectors and let B ⊆ Z be a basis. Let RBZ be the polynomial that is defined
in (II.7). Let C ⊆ Z. Suppose there exists i ∈ [r] s. t. Z ∩ (SBi \ SBi−1) ⊆ C.

Then, DCR
B
Z = 0.

Proof. Note that DaT−a = −δ0. Using (I.47), we obtain

DCR
B
i = DC((−1)|Ni|TPi ∗ T−Ni − (−1)|Pi|T−Pi ∗ TNi))

= DC\(Si\Si−1)(δ0 − δ0) = 0.

This implies

DCR
B
Z = DC\(Si\Si−1)R

B
1 ∗ · · · ∗RBi−1 ∗ 0 ∗RBi+1 ∗ · · · ∗RBr = 0. �

Lemma 3.6 (Inclusion). The polynomial RBX\E(B) is contained in D(X \
E(B)) for all B ∈ B(X). Since D(X \ E(B)) ⊆ D(X), this implies

Б(X) ⊆ D(X). (II.24)

Proof. Let det(B)RBX\E(B) ∈ Б(X) and let C ⊆ X \ E(B) be a cocir-
cuit, i. e. C intersects all bases that can be selected from X \E(B). We need
to show that DCR

B
X\E(B) = 0. C can be written as C = X \ (H ∪E(B)) for

some hyperplane H ⊆ U .
Let i be minimal s. t. Si 6⊆ H. Such an i must exist since Sr = U . Even

(Si \ Si−1) ∩H = ∅ holds. This implies

(X \ E(B)) ∩ (Si \ Si−1) ⊆ X \ (H ∪ E(B)) = C. (II.25)

By Lemma 3.5, this implies DCR
B
X\E(B) = 0. �

The following lemma will be used only in the proof of Lemma 3.8.

Lemma 3.7. Let B,D ∈ B(X). Suppose that both bases are distinct but
have the same number of externally active elements.
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Then, there exists i ∈ [r] s. t.

(X \ E(D)) ∩ (SDi \ SDi−1) ⊆ X \ (B ∪ E(B)). (II.26)

Proof. Let B = (b1, . . . , br) and D = (d1, . . . , dr). Suppose that the
lemma is false. Then, there exist vectors z1, . . . , zr s. t.

zi ∈ (X \ E(D)) ∩ (SDi \ SDi−1) ∩ (B ∪ E(B)). (II.27)

These vectors form a basis because zi ∈ SDi \SDi−1. Since zi is not contained
in E(D), zi ≤ di must hold. This implies E(D) ⊆ E(z1, . . . , zr). On the
other hand, E(z1, . . . , zr) ⊆ E(B) since all zi are contained in B ∪ E(B).

We have shown that E(D) ⊆ E(B). This is a contradiction since no
finite set can be contained in a distinct set of the same cardinality. �

Lemma 3.8 (Duality). Let B,D ∈ B(X). Let QB = pX\(B∪E(B)) ∈ B(X)

and let RDX\E(D) be the polynomial that is defined in (II.7). Then,

〈QB, RDX\E(D)〉 =
δB,D

det(D)
. (II.28)

δB,D denotes the Kronecker delta and we consider B and D to be equal
if there exist 1 ≤ i1 < . . . < ir ≤ N s. t. B = (xi1 , . . . , xir) = D.

Proof. By Corollary 2.4, RDX\E(D) is a homogeneous polynomial of de-
gree N − r − |E(D)|. Thus, if |E(B)| 6= |E(D)|, then QB and RDX\E(D) are
homogeneous polynomials of different degrees and 〈QB, RDX\E(D)〉 = 0.

Now suppose that B 6= D and both bases have the same number of ex-
ternally active elements. In this case, the statement follows from Lemma 3.5
and Lemma 3.7.

The only case that remains is B = D. Recall that RBX\E(B) = RB1 ∗ . . . ∗
RBr . Consider the ith factor RBi . The elements of (X \ E(B)) ∩ (Si \ Si−1)
are used for the construction of RBi . Exactly one basis element is contained
in this set: bi. Recall that in Section 2 we defined a partition Pi ∪ Ni =
(X \ E(B)) ∩ (Si \ Si−1). By construction, bi is positive, i. e. bi ∈ Pi. Now
we apply the differential operator D(Pi\bi)∪Ni to R

B
i :

D(Pi∪Ni)\bi((−1)|Ni| · TPi ∗ T−Ni − (−1)|Pi| · T−Pi ∗ TNi) = (Tbi + T−bi).

Now, we can put things together. Note that X \ (B ∪ E(B)) =
⋃r
i=1((Pi \

bi) ∪Ni). Hence,

DX\(B∪E(B))RB = (Tb1 + T−b1) ∗ · · · ∗ (Tbr + T−br) =
1

det(B)
. (II.29)

This finishes the proof. �

Proof of Theorem 3.2. We know that P(X) and D(X) are dual via
the pairing 〈·, ·〉 and that B(X) is a basis for P(X). By Lemma 3.8, Б(X)
and B(X) are dual to each other and by Lemma 3.6, Б(X) is contained in
D(X). Hence, Б(X) is a basis for D(X). �
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3.1. Previously known methods for constructing bases for D-
spaces. Two other methods are known to construct a basis for D(X). How-
ever, our algorithm has several advantages over the other two: it is canonical,
i. e. it only depends on the order of the list X and it yields a basis that is
dual to the known basis B(X) for the P-space.

In Wolfgang Dahmen’s construction [25], polynomials are chosen as basis
elements that are local pieces of certain multivariate splines. For certain
choices of the parameters in his construction, it might yield the same basis
as ours.

The second construction uses least map interpolation that was intro-
duced in Subsection I.4.3. Recall that D(X) equals the least space Π(S),
where S is the set of vertices of a certain hyperplane arrangement. De Boor
and Ron give a method to select a basis from Π(S) in [32] (see also [30,
Chapter II] for a summary). Their construction depends on the choice of the
vector c, an ordering of the bases and an ordering of Nr while our construc-
tion only depends on the order on X.

4. Deletion-contraction and exact sequences

By Proposition I.4.7, the Hilbert series of D(X) and P(X) are equal and
an evaluation of the Tutte polynomial. In particular, they satisfy a deletion-
contraction identity that extends in a natural way to our algebraic setting.
This is reflected by two dual short exact sequences.

In this section we will define deletion and contraction and we explain
these two exact sequences. While the two sequences were known before,
their duality has not yet been stated explicitly in the literature.

Two important matroid operations are deletion and contraction. For
realisations of matroids, they are defined as follows. Let X ⊆ U ∼= Rr be a
finite list of vectors and let x ∈ X. The deletion of x is the list X \ x. The
contraction of x is the list X/x, which is defined to be the image of X \ x
under the projection πx : U → U/x.

The space P(X/x) is contained in the symmetric algebra Sym(U/x). If
x = sr, then there is a natural isomorphism Sym(U/x) ∼= R[s1, . . . , sr−1]
that maps s̄i to si. This isomorphism depends on the choice of the basis
(s1, . . . , sr) for U . Under this identification, Sym(πx) is the map from
R[s1, . . . , sr] to R[s1, . . . , sr−1] that sends sr to zero and s1, . . . , sr−1 to them-
selves.

For D(X/x), the situation is simpler: this space is contained in the sym-
metric algebra Sym((U/x)∗) ∼= Sym(xo). This is a subspace of Sym(V ). We
denote the inclusion map by jx. If x = sr, then Sym((U/x)∗) is isomorphic
to R[t1, . . . , tr−1]. This is a canonical isomorphism that is independent of
the choice of the basis elements s1, . . . , sr−1.

For a graded vector space S, we write S[1] for the vector space with the
degree shifted up by one.

Proposition 4.1 ([3]). Let X ⊆ U ∼= Rr be a finite list of vectors that
spans U and let x ∈ X be neither a loop nor a coloop. Then, the following
sequence of graded vector spaces is exact:

0→ P(X \ x)[1]
·px→ P(X)

Sym(πx)−→ P(X/x)→ 0. (II.30)
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Proposition 4.2 ([34]). Let X ⊆ U ∼= Rr be a finite list of vectors that
spans U and let x ∈ X be neither a loop nor a coloop. Then, the following
sequence of graded vector spaces is exact:

0→ D(X/x)
jx→ D(X)

Dx→ D(X \ x)[1]→ 0. (II.31)

Note that (II.31) is a special case of (1.12) in [34] and it is exact by the
results in that paper.

Remark 4.3. Proposition 4.1 and Proposition 4.2 are equivalent because
of the duality of P(X) and D(X).

Proof of Remark 4.3. We only show that Proposition 4.2 implies
Proposition 4.1. The other implication is similar.

Since dualisation of finite dimensional vector spaces is a contravariant
exact functor, the following sequence is exact by Proposition 4.2:

0→ D(X \ x)∗
(Dx)∗−→ D(X)∗

(jx)∗−→ D(X/x)∗ → 0. (II.32)

By Proposition I.4.6, P(X) is isomorphic to D(X)∗ via q 7→ 〈q, ·〉. Hence, it
is sufficient to show that the following two diagrams commute:

P(X \ x)
q 7→〈q,·〉//

·px
��

D(X \ x)∗

(Dx)∗

��
P(X)

q 7→〈q,·〉 // D(X)∗

and

P(X)
q 7→〈q,·〉 //

Sym(πx)

��

D(X)∗

(jx)∗

��
P(X/x)

q 7→〈q,·〉// D(X/x)∗

.

(II.33)

For the diagram on the left, we have to show that 〈pxq, ·〉 = 〈q,Dx · 〉 for all
q ∈ P(X \ x). This is easy.

For the diagram on the right, we have to show that 〈Sym(πx)q, ·〉 =
〈q, jx(·)〉 for all q ∈ P(X). If we choose a basis with sr = x this follows from
the fact that ∂

∂tr
f = 0 for all f ∈ R[t1, . . . , tr−1]. �

5. Forward exchange matroids

In this section we will introduce forward exchange matroids. A forward
exchange matroid is an ordered matroid together with a subset of its set of
bases that satisfies a weak version of the basis exchange axiom (I.1).

The motivation for this definition is the following: we noticed that most
of the results in Section I.4 and Section 3 hold in a far more general context.
An important ingredient of the definitions of the spaces P(X) and D(X)
and their bases is the set of bases B(X) of the list X. These two spaces still
have nice properties if we modify their definitions and use only a suitable
subset B′ of B(X). It turned out that forward exchange matroids are the
right axiomatisation of “suitable subset”.

Let (A,B) be an ordered matroid of rank r and let B = (b1, . . . , br) ∈ B
be an ordered basis. The flag (II.2) can be defined in combinatorial terms:
for i ∈ {0, . . . , r}, we define Si = SBi := cl{b1, . . . , bi} ⊆ A. Hence, we obtain
a flag of flats

{x ∈ A : x loop} = SB0 ( SB1 ( SB2 ( . . . ( SBr = A. (II.34)
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One can easily show that for a basis B ∈ B and i ∈ [r], the following
statement holds:

let x ∈ SBi \ SBi−1. Then B
′ = (B \ bi) ∪ x is also in B. (II.35)

Note that x ∈ SBi \ SBi−1 satisfies x > bi if and only if x is externally active
with respect to B. This motivates the name of the following definition.

Definition 5.1 (Forward exchange property). Let (A,B) be an ordered
matroid and let B′ ⊆ B. We say that the set of bases B′ has the forward
exchange property if the following holds for all bases B ∈ B′ and all i ∈ [r]:

let x ∈ SBi \ (SBi−1 ∪ E(B)). Then B′ = (B \ bi) ∪ x is also in B′. (II.36)

Remark 5.2. Note that SBj = SB
′

j holds for all j ≥ i. If x is the ith
vector in B′, this equality holds for all j, i. e. B and B′ define the same flag.

Definition 5.3 (Forward exchange matroid). A triple (A,B,B′) is called
a forward exchange matroid if (A,B) is an ordered matroid and B′ is a subset
of the set of bases B with the forward exchange property.

Remark 5.4. In this thesis, we mainly consider realisations of forward
exchange matroids, i. e. pairs (X,B′) where X is a list of vectors and B′ ⊆
B(X) is a set of bases with the forward exchange property.

Definition 5.5 (Tutte polynomial for forward exchange matroids). Let
(A,B,B′) be a forward exchange matroid.

Then, we define its Tutte polynomial to be

T(A,B,B′)(x, y) :=
∑
B∈B′

x|I(B)|y|E(B)|, (II.37)

where I(B) and E(B) denote the sets of internally and externally active
elements with respect to B in the ordered matroid (A,B).

Remark 5.6. It would be interesting to clarify the relationship between
forward-exchange matroids and other set systems studied in combinatorics
such as greedoids [9, 62].

6. Generalised D-spaces and P-spaces

Earlier, we considered the spaces D(X) and P(X) for a given list of
vectors X. The construction of these spaces relied mainly on the matroidal
properties of the list X, namely on the sets of bases and cocircuits.

Motivated by questions in approximation theory, various authors gener-
alised these constructions. Given a list X and a subset B′ of its set of bases
B(X), one can define a set D(X,B′) as the kernel of the ideal generated by
the B′-cocircuits (i. e. sets that intersect all bases in B′). Under certain con-
ditions, dimD(X,B′) = |B′| still holds. In this section we will show that if
the set B′ has the forward exchange property, this equality holds and there
is a canonical dual space P(X,B′). Both, the generalised D-spaces and the
generalised P-spaces satisfy deletion-contraction identities as in Section 4
and there are canonical bases for both spaces that are dual.
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6.1. Definitions and Main Result.

Definition 6.1 (generalised D-spaces). Let X ⊆ U ∼= Rr be a finite list
of vectors that spans U and let B′ be an arbitrary subset of its set of bases
B(X). A set C ⊆ X is called a B′-cocircuit if C intersects every basis in B′
and C is inclusion-minimal with this property.

The generalised D-space defined by X and B′ is

D(X,B′) := {f : DCf = 0 for all B′-cocircuits C} = kerJ (X,B′),
where J (X,B′) := ideal{pC : C ⊆ X is a B′-cocircuit}.

Proposition 6.2 ([31, Theorem 6.6]). Let X ⊆ U ∼= Rr be a finite list
of vectors that spans U and let B′ be an arbitrary subset of its set of bases
B(X). Then

dimD(X,B′) ≥
∣∣B′∣∣ . (II.38)

Definition 6.3 (generalised P-spaces). Let X ⊆ U ∼= Rr be a finite list
of vectors that spans U and let B′ be an arbitrary subset of its set of bases
B(X). Then, we define

B(X,B′) := {QB : B ∈ B′} = {pX\(B∪E(B)) : B ∈ B′} (II.39)

and P(X,B′) := spanB(X,B′). (II.40)

We call P(X,B′) the generalised P-space defined by X and B′.

Remark 6.4. The set B(X,B′) is a basis for P(X,B′). By definition, it
is spanning and it is linearly independent because it is a subset of B(X).

If the set B′ has the forward exchange property, the spaces D(X,B′)
and P(X,B′) have many nice properties. Here is the Main Theorem of this
section.

Theorem 6.5. Let X ⊆ U ∼= Rr be a finite list of vectors that spans U
and let B′ ⊆ B(X) be a set of bases with the forward exchange property.

Then, the generalised D-space D(X,B′) and the generalised P-space
P(X,B′) are dual via the pairing 〈·, ·〉. In addition, the set

Б(X,B′) := {det(B)RBX\E(B) : B ∈ B′} (II.41)

forms a basis for D(X,B′) and this basis is dual to the basis B(X,B′) for
P(X,B′).

Corollary 6.6. Let X ⊆ U ∼= Rr be a list of N vectors that spans
U and let B′ ⊆ B(X) be a set of bases with the forward exchange property.
Then

Hilb(P(X,B′), q) = Hilb(D(X,B′), q) =
∑
B∈B′

qN−r−|E(B)|

= qN−rT(X,B(X),B′)(1,
1

q
).

Here are two examples that help to understand generalised D-spaces,
generalised P-spaces, and Theorem 6.5.
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Example 6.7. Let X = (e1, e2, e3, a, b) ⊆ R3 where e1, e2, e3 denote the
unit vectors and a = (α, β, γ) and b are generic. In particular, α, β, γ 6= 0.
Let

B′ := {(e1e2e3), (e1e2a), (e1e2b), (e1e3a), (e1e3b), (e2e3a), (e2e3b)} ⊆ B(X).

The reader is invited to check that B′ has the forward exchange property.
The Tutte polynomial is T(X,B(X),B′)(x, y) = 3x+3y+y2 and the B′-cocircuits
are {e1e2, e1e3, e2e3, e1ab, e2ab, e3ab}. Hence,

D(X,B′) = ker ideal{s1s2, s1s3, s2s3, s1pab, s2pab, s3pab}
= span{1, t1, t2, t3, t21, t22, t23},

B(X,B′) = {1, pe3 , pe3a, pe2 , pe2a, pe1 , pe1a},
P(X,B′) = span{1, s1, s2, s3, s1(αs1 + βs2 + γs3),

s2(αs1 + βs2 + γs3), s3(αs1 + βs2 + γs3)}, and

Б(X,B′) =

{
1, t3,

t23
2γ
, t2,

t22
2β
, t1,

t21
2α

}
.

Example 6.8. Let N ≥ 3 be an integer. Let XN = (x1, . . . , xN ) be a list
of vectors in general position in R2 with x1 = e1, x2 = e2, and x3 = e1 + e2.
In addition, we suppose that the second coordinate of all vectors xi (i ≥ 3)
is one. Let B′ := {(x1, xi) : i ∈ {2, . . . , N}} ∪ {(x2, x3)}. Note that B′ is
totally unimodular, i. e. all elements have determinant 1 or −1 and B′ has
the forward exchange property. Then,

D(XN ,B′) = ker ideal{px1x2 , px1x3 , px2···xN } = span{1, t1, t2, t22, . . . , tN−2
2 },

Б(XN ,B′) =

{
1, t1, t2,

t22
2
, . . . ,

tN−2
2

(N − 2)!

}
, and (II.42)

B(XN ,B′) = {1, px1} ∪ {px2···xi : i ∈ {2, . . . , N − 1}}. (II.43)

Now we will embark on the proof of Theorem 6.5. We will start with
the following simple lemma.

Lemma 6.9 (Inclusion). Let X ⊆ U ∼= Rr be a finite list of vectors that
spans U and let B′ ⊆ B(X) be a set of bases with the forward exchange
property. Then

Б(X,B′) ⊆ D(X,B′). (II.44)

Proof. Let B ∈ B′ and let det(B)RBX\E(B) ∈ Б(X,B′) be the corres-
ponding basis element. Let C ⊆ X be a B′-cocircuit, i. e. an inclusion-
minimal subset of X that intersects every basis in B′.

Let B = (b1, . . . , br). If there exists an i s. t. (SBi \SBi−1)∩(X\E(B)) ⊆ C,
we are done by Lemma 3.5. Now suppose that this is not the case, i. e. for
every i ∈ [r], there is a zi ∈ (SBi \SBi−1)∩ (X \ (E(B)∪C)). Then we define
a sequence of bases B0, . . . , Br by

B0 := B and Bi := (Bi−1 \ bi) ∪ zi for i ∈ [r]. (II.45)
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The lists Bi are indeed bases and even though in general, they might define
different flags, they satisfy

(S
Bi−1

i \ SBi−1

i−1 ) ∩ (X \ E(Bi−1)) = (SBi \ SBi−1) ∩ (X \ E(B)), (II.46)

because span(b1, . . . , bi) = span(z1, . . . , zi) for all i ∈ [r]. Hence, Bi ∈ B′
implies Bi+1 ∈ B′ because B′ has the forward exchange property. In par-
ticular, Br = (z1, . . . , zr) ∈ B′. By construction, Br ∩ C = ∅. This is a
contradiction. �

Definition 6.10. Let (A,B) be a matroid and let B′ ⊆ B. Let x ∈ A.
B′ can be partitioned as B′ = B\x ∪ B|x, where

B′\x := {B ∈ B′ : x 6∈ B} denotes the deletion of x and (II.47)

B′|x := {B ∈ B′ : x ∈ B} the restriction to x. (II.48)

If we are given a list of vectors X ⊆ U and a set of bases B′ ⊆ B(X), we
can also define the contraction B′/x. Recall that πx : U → U/x denotes the
canonical projection. Then, we define

B′/x := {πx(B \ x) : x ∈ B ∈ B′|x}. (II.49)

Remark 6.11. For technical reasons, it is helpful to distinguish the
contraction B′/x and the restriction B′|x although there is a canonical bijection
between both sets.

We will now introduce the concept of placibility. This is a condition on
a set of bases B′ which implies equality in (II.38).

Definition 6.12 ([34], see also [69]). Let (A,B) be a matroid and let
B′ ⊆ B be a non-empty set of bases.
(i) We call an element x ∈ A placeable in B′ if for each B ∈ B′, there

exists an element b ∈ B such that (B \ b) ∪ x ∈ B′.
(ii) We say that B′ is placible if one of the following two conditions holds:

(a) B′ is a singleton or
(b) there exists x ∈ A s. t. x is placeable in B′ and both, B′|x and B′\x

are non-empty and placible.

Proposition 6.13 ([34]). Let X ⊆ U ∼= Rr be a finite list of vectors
that spans U and let B′ be an arbitrary subset of its set of bases B(X).

If B′ is placible, then dimD(X,B′) = |B′|.

Lemma 6.14. Let (A,B,B′) be a forward exchange matroid. Then B′ is
placible.

Proof. If |B′| = 1, then B′ is placible by definition. Now let |B′| ≥ 2.
Let x be the minimal element in A s. t. both, B′|x and B′\x are non-empty.
Such an element must exist if |B′| ≥ 2.

We will now show that x is placeable in B′. Let B = (b1, . . . , br) be a
basis in B′ and let i ∈ [r] s. t. x ∈ SBi \SBi−1. We claim that x ≤ bi. Suppose
it is not. Because of the minimality of x, this implies that b1, . . . , bi are
contained in all bases in B′. Since x ∈ span(b1, . . . , bi), this implies that x
is not contained in any basis. This is a contradiction because we assumed
that B′|x is non-empty.
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Now we have established that x ≤ bi. This implies that x is not extern-
ally active. Hence, because of the forward exchange property, (B\bi)∪x ∈ B′,
i. e. x is placeable in B ∈ B′.

It remains to be shown that B′\x and B′/x are both placible. By induction,
it is sufficient to show that both sets have the forward exchange property.
For B′\x, this is clear. For B′|x, this follows from the following fact: by the
choice of x, all a ∈ A that satisfy a < x are either contained in all bases or
in no basis in B′|x. �

Proof of Theorem 6.5. By Lemma 6.9, Б(X,B′) ⊆ D(X,B′). By
Proposition 6.13 and by Lemma 6.14, dimD(X,B′) = |B′| = |Б(X,B′)|.
Linear independence of Б(X,B′) is clear because it is a subset of Б(X). For
the same reason, the duality with B(X,B′) ⊆ B(X) follows from Lemma 3.8.

�

Remark 6.15. The correspondence between D(X) and the set of vertices
S of a hyperplane arrangement H(X, c) in general position that is stated in
Theorem I.4.17 generalises in a straightforward way to a correspondence
between D(X,B′) and the subset of S that is defined by B′.

6.2. Deletion-contraction and exact sequences. In this subsection
we will show that the results in Section 4 about deletion-contraction and
exact sequences naturally extend to generalised D-spaces and P-spaces. We
will use the same terminology as in that section.

Recall that for a graded vector space S, we write S[1] for the vector
space with the degree shifted up by one.

Proposition 6.16. Let X ⊆ U ∼= Rr be a finite list of vectors that spans
U and let B′ ⊆ B(X) be a set of bases with the forward exchange property.
Let x be the minimal element of X that is neither a loop nor a coloop. Then,
the following sequence of graded vector spaces is exact:

0→ D(X/x,B′/x)
jx→ D(X,B′) Dx→ D(X \ x,B′\x)[1]→ 0. (II.50)

Proof. Let B ∈ B′ be a basis that does not contain x. Because of
the minimality, x is not externally active with respect to B. This implies
DxR

B
X\E(B) = RBX\(E(B)∪x). Hence, Dx : {det(B)RB ∈ Б(X,B′) : x 6∈ B} →

Б(X \x,B′\x) is a bijection and consequently, Dx maps D(X,B′) surjectively
to D(X \ x,B′\x). For the rest of the proof, we refer the reader to [34], in
particular to the explanations following (1.12) and to Theorem 2.16. �

Proposition 6.17. Let X ⊆ U ∼= Rr be a finite list of vectors that spans
U and let B′ ⊆ B(X) be a set of bases with the forward exchange property.
Let x be the minimal element of X that is neither a loop nor a coloop. Then,
the following sequence of graded vector spaces is exact:

0→ P(X \ x,B′\x)[1]
·px→ P(X,B′) Sym(πx)−→ P(X/x,B′/x)→ 0. (II.51)

Proof. One can easily check this for the bases of the P-spaces. Altern-
atively, it can be deduced from Proposition 6.16 using a duality argument
as in the proof of Remark 4.3. �
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Remark 6.18. The exact sequences in this section require x to be min-
imal in contrast to the ones Section 4, where x can be any element that is
neither a loop nor a coloop. This reflects the fact that matroids have an
(unordered) ground set, while forward exchange matroids have an (ordered)
ground list.

Remark 6.19. One could replace D(X/x,B′/x) by D(X,B′|x) in Propos-
ition 6.16. The analogous replacement in Proposition 6.17 would be prob-
lematic. The reasons for that are explained in Section 4.

6.3. P(X,B′) as the kernel of a power ideal. By now we have seen
that most of the results regarding D(X) and P(X) that we stated earlier also
hold for the generalised D-spaces and P-spaces. The only thing that is miss-
ing is a power ideal I(X,B′) s. t. P(X,B′) = ker I(X,B′). Unfortunately,
such an ideal does not always exist.

In this section we will describe the natural candidate for this power ideal
and we will give an example where its kernel is equal to P(X,B′) and one
where it is not.

Definition 6.20. Let X ⊆ U ∼= Rr be a finite list of vectors that spans
U and let B′ be an arbitrary subset of its set of bases B(X). Recall that
V := U∗. We define a function κ : V → N by

κ(η) := max
B∈B′

|X \ (B ∪ E(B) ∪ ηo)| (II.52)

and I(X,B′) := ideal{pκ(η)+1
η : η ∈ V \ {0}}. (II.53)

Lemma 6.21. Let X ⊆ U ∼= Rr be a finite list of vectors that spans U
and let B′ be an arbitrary subset of its set of bases B(X). Then

P(X,B′) ⊆ ker I(X,B′). (II.54)

Proof. It is sufficient to show that all elements of the basis B(X,B′)
are contained in ker I(X,B′). Let B ∈ B′ and let η ∈ V \ {0}. Then,

Dκ(η)
η pX\(B∪E(B)) = p(X∩ηo)\(B∪E(B))D

κ(η)+1
η pX\(B∪E(B)∪ηo) = 0 (II.55)

The first equality follows from Leibniz’s law. The second follows from the
fact that by definition, κ(η) ≥ |X \ (B ∪ E(B) ∪ ηo)|. �

Remark 6.22. If one examines the proof of Lemma 6.21, one imme-
diately sees that I(X,B) is the only power ideal for which P(X,B′) =
ker I(X,B′) can possibly hold.

Remark 6.23. In some cases, P(X,B′) and ker I(X,B′) are equal (see
Example 6.25). In other cases however, P(X,B′) is not even closed under
differentiation (see Example 6.8).

Remark 6.23 naturally leads to the following question.

Question 6.24. Is there a simple criterion to decide whether P(X,B′)
is closed under differentiation or if P(X,B′) = ker I(X,B′) holds?

Example 6.25. This is a continuation of Example 6.7. Recall that we
considered the list X = (e1, e2, e3, a, b) ⊆ R3 where a and b are generic
vectors and a = (α, β, γ) with α, β, γ 6= 0. The set of bases is

B′ = {(e1e2e3), (e1e2a), (e1e2b), (e1e3a), (e1e3b), (e2e3a), (e2e3b)} ⊆ B(X).
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In order to calculate the function κ, we first determine the inclusion-maximal
lists in {X \ (B ∪ E(B)) : B ∈ B}. Those are (e1a), (e2a), and (e3a). We
can deduce that κ(η) is one if η ∈ ao and two otherwise. We obtain

I(X,B′) = ideal{p2
(α,−β,0), p

2
(0,β,−γ), p

2
(α,0,−γ)}+ R[s1, s2, s3]≥3 and

P(X,B′) = ker I(X,B′) = span{1, s1, s2, s3, s1(αs1 + βs2 + γs3),

s2(αs1 + βs2 + γs3), s3(αs1 + βs2 + γs3)}.

The degree two component of R[s1, s2, s3]/I(X,B′) is three-dimensional.
This implies that P(X,B′) = ker I(X,B′).

7. Comparison with previously known zonotopal spaces

In this section we will review the definitions of various zonotopal spaces
that have been studied previously by other authors. It turns out that they are
all special cases of the generalised D-spaces and P-spaces that we introduced
in Section 6. The most prominent examples are of course the central spaces
D(X) and P(X) that we obtain if we choose B′ = B(X).

Let A = (a1, . . . , an) ⊆ Rr be a list of vectors that spans Rr and let X =
(x1, . . . , xN ) ⊆ Rr, where N ≥ n and ai = xi for i ∈ [n]. In [54, 55, 69], the
spaces D(X,B′) and P(X,B′) are studied for certain sets of bases B′ ⊆ B(X).

We have already seen internal and external bases in Definition I.4.8.
They are special cases of semi-internal and semi-external.

Recall that the lattice of flats L(M) of the matroid M = (A,B(A)) is
the set {C ⊆ A : cl(C) = C} ordered by inclusion. An upper set J ⊆ L(M)
is an upward closed set, i. e. C1 ⊆ C2 ∈ J implies C1 ∈ J .

Definition 7.1 (Semi-internal and semi-external bases [55]). Let A ⊆
Rr be a list of vectors that spans Rr and let B0 = (b1, . . . , br) ⊆ Rr be
an arbitrary basis for Rr that is not necessarily contained in B(A). Let
X = (A,B0) and let

ex : {I ⊆ A : I linearly independent} → B(X) (II.56)

be the function that maps an independent set in A to its greedy extension.
This means that given an independent set I ⊆ A, the vectors b1, . . . , br are
added successively to I unless the resulting set would be linearly dependent.

In addition, we fix an upper set J in the lattice of flats L(M) of the
matroid M = (A,B(A)). For the semi-internal space, we fix an independent
set I0 ⊆ A whose elements are maximal in A.

Then we define the set of semi-external bases B+(A,B0, J) and the set
of semi-internal bases B−(A, I0) by
B+(A,B0, J) := {B ∈ B(X) : B = ex(I) for some I ⊆ A independent

and cl(I) ∈ J} and
B−(A, I0) := {B ∈ B(A) : B ∩ I0 contains no internally active elements}.

Definition 7.2 (Generalised external bases [69]). Let A ⊆ Rr be a
list of vectors. Let κ : L(A) → {0, 1, 2, . . .} be an increasing function, i. e.
C1 ⊆ C2 implies κ(C1) ≤ κ(C2).

Let X = (A, Y ), where Y = (y1, y2, . . . , yκ(A)+r) is a list of generic
vectors, i. e. if yi is in the span of Z ⊆ X \ yi, then span(Z) = span(X).
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Then we define

Bκ(A, Y ) := {B ∈ B(X) : B ∩ Y ⊆ (y1, . . . , yκ(cl(A∩B))+|B∩Y |)}. (II.57)

Remark 7.3. The spaces P(X,B′) and D(X,B′) are equal to

• the external spaces P+(X) and D+(X) in [54] resp. Definition I.4.8
if B′ is the set of external bases;
• the semi-external spaces P+(X, J) andD+(X,J) in [55] resp. Defin-
ition 7.1 if B′ is the set of semi-external bases;
• the generalised external spaces Pκ(X) and Dκ(X) in [69] resp. De-
fition 7.2 if B′ is the set of generalised external bases. For Pκ(X),
we need to assume in addition that κ is incremental, i. e. for two
flats C1 ⊆ C2, κ(C2)− κ(C1) ≤ dim(C2)− dim(C1).

Furthermore, the space D(X,B′) is equal to the (semi-)internal space D−(X)
resp. D−(X, I0) in [54, 55] if B′ is the set of (semi-)internal bases.

Remark 7.4. The (semi-)internal spaces P(X,B−(X)) and P(X,B−(X,
I0)) are in general different from the spaces P−(X) and P−(X, I0) in [54, 55],
but they have the same Hilbert series.

Remark 7.5. The theorems about duality of certain P-spaces and D-
spaces in [54, 55, 69] are all special cases of Theorem 6.5. This is a con-
sequence of Lemma 7.6 below.

Lemma 7.6. The sets of bases defined in Definitions I.4.8, 7.1, and 7.2
all have the forward exchange property.

Proof. We use the following notation throughout the proof: B =
(b1, . . . , br) is a basis and x ∈ (SBi \ SBi−1) ∩ (X \ E(B)) for some i ∈ [r]. In
addition, B′ := (B ∪ x) \ bi. Since x is not externally active, x ≤ bi holds.
We may even assume x < bi because if equality occurs, nothing needs to be
shown.

Internal and external bases are special cases of semi-internal and semi-
external bases so we do not consider them separately.

Let us start with the semi-external bases. Let B ∈ B+(A,B0, J), i. e. B
is the greedy extension of an independent set I ⊆ A. Recall that x < bi.
Hence, x ∈ A because if x was in B0, the greedy extension of I would contain
x instead of bi. Now one can easily check that B′ ∩ A is independent and
that ex(B′ ∩A) = B′. This is equivalent to B′ ∈ B+(A,B0, J).

Now we will consider the semi-internal bases. Let B ∈ B−(A, I0). By
construction, the fundamental cocircuits of B and bi resp. x are equal. As
x < bi, inactivity of bi implies inactivity of x. Hence, B′ ∈ B−(A, I0).

Last, let us consider the generalised external bases. Let B ∈ Bκ(A, Y ).
If bi ∈ A, then κ(cl(A ∩ B)) + |B ∩ Y | = κ(cl(A ∩ B′)) + |B′ ∩ Y |. This
implies B′ ∈ Bκ(A, Y ). If bj ∈ Y , then j = r must hold because the vectors
in Y are generic and we are supposing bj 6= x. Replacing br by x reduces the
index of the maximal element in Y that is permitted in B′ by at most one
since κ is non-decreasing on L(A). Since we remove the maximal element of
the basis B, this causes no problems. �
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CHAPTER III

Hierarchical Zonotopal Power Ideals

Given a finite list of vectors X, an integer k ≥ −1 and an
upper set in the lattice of flats of the matroid defined by X,
we will define and study the associated hierarchical zonotopal
power ideal. This ideal is generated by powers of linear forms.
We will show that its kernel is generated by products of linear
forms and we will give a method to select a basis for it.

This work unifies and generalises results by Ardila-Post-
nikov on power ideals and by Holtz-Ron and Holtz-Ron-Xu
on (hierarchical) zonotopal algebra. We will also generalise
a result on zonotopal Cox modules that were introduced by
Sturmfels-Xu.

The zonotopal spaces studied in this chapter can be seen
as special cases of the generalised P-spaces in Chapter II.

1. Introduction

LetX = (x1, . . . , xN ) ⊆ Rr be a list of vectors that span Rr. For a vector
η, let m(η) denote the number of vectors in X that are not perpendicular to
η. A vector v ∈ Rr defines a linear polynomial pv :=

∑
i viti ∈ R[t1, . . . , tr].

For Y ⊆ X, let pY :=
∏
x∈Y px. Then define

P(X) := span{pY : X \ Y spans Rr} (III.1)

and I(X) := ideal{pm(η)
η : η 6= 0}. (III.2)

The following theorem and several generalisations are well-known (cf. Pro-
position I.4.4 and [3, 28, 54]).

Theorem 1.1.

P(X) = ker I(X) := span {q ∈ R[t1, . . . , tr] : f(D)q = 0 for all f ∈ I(X)} ,

where f(D) := f
(

∂
∂t1
, . . . , ∂

∂tr

)
. In addition, I(X) is equal to the ideal

I ′(X) := {pm(η)
η : the vectors in X perpendicular to η span a hyperplane}.

In this chapter we will show that a statement as in Theorem 1.1 holds
in a far more general setting: we will study the kernel of the hierarchical
zonotopal power ideal

I(X, k, J) := ideal{pm(η)+k+χJ (η)
η : η 6= 0} (III.3)

where k ≥ −1 is an integer and χJ is the indicator function of an upper set
J in the lattice of flats of the matroid defined by X. We will examine these
spaces in a slightly more abstract setting, e. g. P(X, k, J) is contained in the

43
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symmetric algebra over an r-dimensional K-vector space, where K is a field
of characteristic zero.

Central P-spaces (in our terminology the kernel of I ′(X)) were intro-
duced in the literature on approximation theory around 1990 [1, 28, 45].
The dual space D(X) appeared almost 30 years ago [29]. Recently, Olga
Holtz and Amos Ron introduced internal (k = −1) and external (k = +1)
P-spaces and D-spaces and coined the term zonotopal algebra [54]

Federico Ardila and Alexander Postnikov [3] constructed P-spaces for
arbitrary integers k ≥ −1. Olga Holtz, Amos Ron, and Zhiqiang Xu [55]
introduced hierarchical zonotopal spaces, i. e. structures that depend on the
choice of an upper set J in addition to X and k. They studied semi-internal
and semi-external spaces (i. e. k = −1 and k = 0 and some special upper sets
J). A result related to semi-external spaces (a decomposition of the external
space in terms of the lattice of flats of X) appeared in the work of Peter
Orlik and Hiroaki Terao [76] on hyperplane arrangements.

This chapter is based on [67]. An extended abstract of that paper has
appeared in the proceedings of FPSAC 2011 [65].

1.1. Comparison with the results in Chapter II. The general idea
in Chapter II was to define nice D-spaces together with some dual P-space
that does not even have to be closed under differentiation.

In this chapter, it is the other way around. We will define nice P-spaces
and not mention D-spaces at all. However, if we assume k ≥ 0, dual D-
spaces exist since in this case the P-spaces in this chapter are special cases
of the generalised P-spaces in Chapter II. This is not obvious and can be
seen as follows: Li and Ron [69] have shown that the P-spaces for k ≥ 0 in
this chapter fit into their framework and in Section II.7 we have seen that
the spaces in [69] are special cases of our generalised P-spaces and D-spaces.

The construction of the P-space in Chapter II is quite different from the
one in this chapter. In the former construction, it was eventually necessary
to add additional elements to the list X in order to obtain arbitrarily large
P-spaces. In this chapter it is sufficient to let the integer parameter k grow
while keeping the list X fixed. The construction of the bases for the P-spaces
in this chapter takes into account the internal activity of the bases in B(X).
Every element of B(X) with internally active elements may define multiple
elements of the basis for the P-space.

1.2. Outline of this chapter. In Section 2 we will briefly review the
notation. In Section 3 we will describe the kernels of the ideals I(X, k, J)
and define a subideal I ′(X, k, J) with finitely many generators. We will
show that the two ideals are equal for k ≤ 0.

In Section 4 we will construct bases for the vector spaces P(X, k, J) for
k ≥ 0. We will deduce formulae for the Hilbert series of the spaces P(X, k, J)
in Section 5.

In Section 6 we will apply our results to prove a statement about zono-
topal Cox modules that were defined by Bernd Sturmfels and Zhiqiang Xu
[86].

Finally, in Section 7 we will give plenty of examples.
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2. Notation

In this chapter we work over a fixed field K of characteristic zero. As
usual, U ∼= Kr denotes a finite-dimensional K-vector space of dimension
r ≥ 1 and V := U∗ its dual. Our main object of study is a finite list
X = (x1, . . . , xN ) ⊆ U whose elements span U . The order of the elements in
X is irrelevant for us except in a few cases, where this is explicitly mentioned.

Recall that the set of flats of the matroid M(X) defined by X forms a
lattice (i. e. a poset with joins and meets) that is called the lattice of flats
L(X) = L(M(X)). An upper set J ⊆ L(X) is an upward closed set, i. e.
C ⊆ C ′, C ∈ J implies C ′ ∈ J . We call C ∈ L(X) a maximal missing flat
if C 6∈ J and C is maximal with this property. In this chapter, hyperplane
always refers to the matroid-theoretic object, i. e. a flat H ⊆ X of rank r−1.

Given an upper set J ⊆ L(X), χJ : L(X)→ {0, 1} denotes its indicator
function. The index is omitted if it is clear which upper set is meant. χ can
be extended to the power set of X by χ(A) := χ(cl(A)) for A ⊆ X.

A vector η ∈ V defines a flat C = {x ∈ X : η(x) = 0} ⊆ X. Recall that
mX(C) = mX(η) := |X \ C|. Sometimes, we write m(C) instead of mX(C).
If η defines the flat C, we call η a defining normal for C. Note that for
hyperplanes, there is a unique defining normal (up to scaling).

In this chapter we study P-spaces that are contained in Sym(U) (the
symmetric algebra over U) and ideals that are contained in Sym(V ). For
a given x ∈ U , we denote the image of X under the canonical injection
U ↪→ Sym(U) by px. For Y ⊆ X, we define pY :=

∏
x∈Y px. For η ∈ V ,

we write Dη for the image of η under the canonical injection V ↪→ Sym(V )
in order to stress the fact that we mostly think of Sym(V ) as the algebra
generated by the directional derivatives on Sym(U).

For more explanations and background information, see Chapter I.

3. Hierarchical zonotopal power ideals and their kernels

In this section we will define hierarchical zonotopal power ideals and
show that their kernels have a nice description as P-spaces, i. e. they are
spanned by products of linear forms.

The first subsection contains the definitions and the statement of the
Main Theorem. In the second subsection we will prove some simple facts
and give explicit formulae for the P-spaces in two simple cases. In the third
subsection we will define deletion and contraction for pairs consisting of a
matroid and an upper set in its lattice of flats. This will then be used to
give an inductive proof of the Main Theorem.

3.1. Definitions and the Main Theorem.

Definition 3.1 (Hierarchical zonotopal power ideals and P-spaces). Let
K be a field of characteristic zero, V be a finite-dimensional K-vector space
of dimension r ≥ 1 and U = V ∗. Let X = (x1, . . . , xN ) ⊆ U be a finite
list of vectors whose elements span U . Let k ≥ −1 be an integer and let
J ⊆ L(X) be a non-empty upper set, where L(X) denotes the lattice of flats
of the matroid defined by X.

Let χJ : L(X) → {0, 1} denote the indicator function of J . Let E :
L(X) → V be a normal selector function, i. e. a function that assigns a
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defining normal to every flat. Now define

I ′(X, k, J,E) := ideal
{
D
m(C)+k+χ(C)
E(C) : C hyperplane or max. missing flat

}
I(X, k, J) := ideal

{
Dm(η)+k+χ(η)
η : η ∈ V \ {0}

}
⊆ Sym(V ) (III.4)

P(X, k, J) := spanS(X, k, J) ⊆ Sym(U) (III.5)

where

S(X, k, J) := {fpY : Y ⊆ X, 0 ≤ deg f ≤ χ(X \ Y ) + k − 1} for k ≥ 1
(III.6)

S(X, 0, J) := {pY : Y ⊆ X, cl(X \ Y ) ∈ J}
S(X,−1, J) := {pY : |Y \ C| < m(C)− 1 + χ(C) for all C ∈ L(X) \ {X}}

Note that the definition of S(X, 0, J) can be seen as a special case of the
definition of S(X, k, J) for k ≥ 1. Therefore, we distinguish only the two
cases k ≥ 0 and k = −1 in the proofs.

The condition X ∈ J is only relevant in the case k = 0. Then it ensures
1 ∈ S(X, 0, J). One can easily see that in the definition of S(X,−1, J), it
is sufficient to check only the inequalities associated to hyperplanes and to
maximal missing flats. If x is a coloop and X \x 6∈ J , then S(X,−1, J) = ∅.

For examples, see Section 7, Remark 3.11, and Proposition 3.12.

Theorem 3.2 (Main Theorem). We are using the same terminology as
in Definition 3.1. For k = −1, we assume in addition that J contains all
hyperplanes in X. Then

P(X, k, J) = ker I(X, k, J) ⊆ ker I ′(X, k, J,E). (III.7)

Furthermore, for k ∈ {−1, 0}, I ′(X, k, J,E) is independent of the choice of
the normal selector function E and

P(X, k, J) = ker I(X, k, J) = ker I ′(X, k, J,E). (III.8)

Remark 3.3. Example 7.3 explains why there is an additional condition
for k = −1 (see also Remark 3.21). Holtz, Ron, and Xu [55] define a different
semi-internal structure. For a fixed C0 ∈ L(X) and JC0 := {C ∈ L(X) :
C ⊇ C0}, they show ker I ′(X,−1, JC0) =

⋂
x∈C0

P(X \x, 0, {X}). However,
they do not have a canonical generating set for this space. See Subsection 5.3
for more details. In the same paper, Holtz, Ron, and Xu define semi-external
spaces that are the same as ours. However, they only identify them with the
kernel of a power ideal in the special case where all maximal missing flats
are hyperplanes.

From the Main Theorem and the results in Section 5, one can easily
deduce the following two corollaries:

Corollary 3.4. In the setting of the Main Theorem,

P(X, k,L(X)) = P(X, k + 1, {X}) (III.9)

Corollary 3.5. The Hilbert series of P(X, k, J) depends only on the
matroid M(X) and k and J , but not on the realisation X.
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Remark 3.6. One might wonder if similar theorems can be proven for
k ≤ −2. One would of course need to impose extra conditions on X to ensure
that the exponents appearing in the definition of the ideals are non-negative.
It is easy to see that I and I ′ are equal in this case (Lemma 3.13). However,
we do not know how to construct a generating set for their kernel. A different
approach would be required: in general, their kernel is not spanned by a set
of polynomials of type pY for some Y ⊆ X [3].

Remark 3.7. The internal, central, and external P-space that were
defined in Section I.4 are special cases of the hierarchical zonotopal P-spaces
that where defined in this section. Namely,

P−(X) = P−(X,−1, {X}), (III.10)
P(X) = P(X, 0, {X}), (III.11)

and P+(X) = P(X, 1, {X}). (III.12)

3.2. Basic results. In this subsection we will prove three lemmas that
will be needed later on and we will prove the Main Theorem in two special
cases that will be the base cases for the inductive proof in the next subsection.

Lemma 3.8. Let Y ⊆ X and let η ∈ V be a defining normal for C ⊆ X.
Then

DηpY = pY ∩CDηpY \C . (III.13)

Proof. This is a direct consequence of Leibniz’s law. �

The following lemma is related to Waring decompositions of monomials
(cf. [20]).

Lemma 3.9. Let u1, . . . , us ∈ U and let k ∈ N. Then,

span{(α1u1 + . . .+ αsus)
k : αi ∈ K \ {0}} = span

{
ua :

s∑
i=1

ai = k

}
,

where ua :=
∏s
i=1 u

ai
i and ai ∈ N.

Proof. “⊆” is clear. Let L denote the number of monomials of the form∏s
i=1 u

ai
i (
∑

i ai = k, ai ∈ N). Order those monomials lexicographically. By
induction, we can see that there are polynomials p1, . . . , pL contained in the
set on the left s. t. the leading term of pi is the ith monomial. This implies
that all those monomials are contained in the set on the left side.

Alternatively, the statement follows from the following beautiful formula
that is mentioned in [5]:

ua =
1

k!

∑
0≤λi≤ai

(−1)k−(λ1+...+λs)

(
a1

λ1

)
· · ·
(
as
λs

)
(λ1u1 + . . .+ λsus)

k. �

Lemma 3.10. P(X, k, J) ⊆ ker I(X, k, J) ⊆ ker I ′(X, k, J) holds for all
k ≥ −1 and all J ⊆ L(X).

Proof. The second inclusion is clear. For the first, we generalise the
proof of [54, Theorem 3.5]: it suffices to prove that every generator of
I(X, k, J) annihilates every element of S(X, k, J). For k = −1, this is
obvious. Now consider the case k ≥ 0. Let C be a flat, η a defining normal
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for C, Y ⊆ X, deg f ≤ k+χ(X \ Y )− 1. Set e(C) := m(C) + k+χ(C). By
Lemma 3.8,

De(C)
η fpY = pY ∩C

e(C)∑
i=0

(
e(C)

i

)
Di
ηfD

e(C)−i
η pY \C (III.14)

(*)
= pY ∩C

k+χ(X\Y )−1∑
i=k+χ(C)

(
e(C)

i

)
Di
ηfD

e(C)−i
η pY \C . (III.15)

(∗) holds because f does not survive k+χ(X\Y ) differentiations and pY \C is
annihilated by m(C) + 1 differentiations. Suppose the term in (III.15) is not
zero. Then χ(X \Y ) = 1 and χ(C) = 0. Furthermore, m(C) differentiations
in direction η do not annihilate pY \C . This is only possible if Y \C = X \C.
This implies X \Y ⊆ C. Then χ(X \Y ) ≤ χ(C). This is a contradiction. �

Now we will give explicit formulae for P(X, k, J) and I(X, k, J) in two
particularly simple cases.

Remark 3.11. Suppose that dimU = 1 and that X contains N ′ non-
zero entries. Let x ∈ U and y ∈ V be non-zero vectors. Note that cl(∅) is the
only hyperplane in X. Hence, I ′(X, k, J) = I(X, k, J) = ideal{DN ′+k+χ(∅)

y }
and P(X, k, J) = span{pix : i ∈ {0, 1, . . . , N ′ − 1 + k + χ(∅)}}.

Proposition 3.12. We are using the same terminology as in Defini-
tion 3.1. Let X = (x1, . . . , xr) be a basis for U . Let (y1, . . . , yr) denote the
dual basis of V . Then, P(X, k, J) = ker I(X, k, J) ⊆ ker I ′(X, k, J,E).

Furthermore, for k ∈ {−1, 0}, ker I(X, k, J) = ker I ′(X, k, J,E) for all
normal selector functions E. More precisely, writing pi := pxi and Di := Dyi

as shorthand notation, we get

I(X, k, J) = ideal

{∏
i∈I

Dai+1
i :

∑
i∈I

ai = k + χ(X \ {xi : i ∈ I})

}
and

P(X, k, J) = span

{∏
i∈I

pai+1
i :

∑
i∈I

ai ≤ k + χ(X \ {xi : i ∈ I})− 1

}
,

(III.16)

where I ⊆ [r] and ai ∈ N.
For k = 0, this specialises to P(X, 0, J) = span {pY : X \ Y ∈ J}.
For k = −1, I(X,−1, J) = ideal{D1, . . . , Dr} if J contains all hyperplanes
in X and I(X,−1, J) = ideal{1} otherwise.

For a two-dimensional example of this construction, see Example 7.1 and
Figure 4 on page 64.

Proof. This proof generalises the proof of Proposition 4.3 in [3]. The
statements about k = −1 are trivial.

Every flat of X can be written as C = X \ {xi : i ∈ I} for some I ⊆ [r].
The set of defining normals for C is given by

{∑
i∈I αiyi : αi ∈ K \ {0}

}
.
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First, we show that for k = 0, I(X, k, J) = I ′(X, k, J,E). yi is the
defining normal for the hyperplane X \ xi. Hence,

D
1+χ(X\xi)
i ∈ I ′(X, k, J,E) for i = 1, . . . , r. (III.17)

Fix a flat C. Let Dm(C)+χ(C)
ηC be a generator of I(X, k, J). We will prove

now that Dm(C)+χ(C)
ηC is contained in I ′(X, k, J,E).

Case 1: C ∈ J . Hence, Dm(C)+χ(C)
ηC = (

∑
i∈I αiDi)

|I|+1 for some I ⊆ [r]
and αi ∈ K \ {0}. In the monomial expansion of this term, every monomial
contains a square. By (III.17), all squares are contained in I ′(X, k, J,E).

Case 2: C 6∈ J . Let C ′ be a maximal missing flat that contains C. Then,

D
m(C′)+χ(C′)
E(C′) =

( ∑
xi 6∈C′

λiDi

)m(C′) ∈ I ′(X, k, J,E). (III.18)

In the monomial expansion of this polynomial, there is only one monomial
that does not contain a square: q :=

∏
xi 6∈C′ Di. It follows from the defin-

ition of I ′(X, k, J,E) and (III.17) that q ∈ I ′(X, k, J,E). In the monomial
expansion of Dm(C)+χ(C)

ηC , there are only monomials containing squares and
a monomial that is a multiple of q. Hence, Dm(C)+χ(C)

ηC ∈ I ′(X, k, J,E).

One can easily see that (III.16) describes the P-space by comparing
(III.16) with (III.6) and taking into account that X is a basis for U .

Using Lemma 3.9, we can calculate I(X, k, J):

I(X, k, J) = ideal


(∑
i∈I

αiDi

)|I|+k+χ(X\{xi:i∈I})

: I ⊆ [r], αi ∈ K \ {0}


= ideal

{∏
i∈I

Dai+1
i : I ⊆ [r],

∑
i∈I

ai = k + χ(X \ {xi : i ∈ I})

}
.

It is now clear that ker I(X, k, J) = P(X, k, J). �

The following Lemma implies I(X, k, J) = I ′(X, k, J,E) for k ≤ 0, using
the Main Theorem for k = 0 as base case (cf. Remark 3.6).

Lemma 3.13. Let J ⊆ L(X) be an arbitrary upper set and k be an
arbitrary integer. If I(X, k, J) is contained in Sym(V ) (i. e. m(C) ≥ k for
all flats C) and I ′(X, k, J,E) = I(X, k, J) for all normal selector functions
E, then I ′(X, l, J, E) = I(X, l, J) for all l ≤ k which satisfy I(X, l, J) ⊆
Sym(V ) and all normal selector functions E.

Proof. Let Dm(η)+l+χ(η)
η be a generator of I(X, l, J). We show that

this generator is contained in I ′(X, l, J, E). By induction, we may suppose
that Dm(η)+l+1+χ(η)

η ∈ I ′(X, l + 1, J), i. e. there exist qi ∈ Sym(V ) and
D
m(ηi)+l+1+χ(ηi)
ηi generators of I ′(X, l + 1, J) s. t.

Dm(η)+l+1+χ(η)
η =

∑
i

qiD
m(ηi)+l+1+χ(ηi)
ηi (III.19)

Let u ∈ U be a vector s. t. η(u) = 1. We consider pu as a differential operator
on Sym(V ). By applying pu to (III.19), we see thatD

m(η)+l+χ(η)
η is contained

in I ′(X, l, J, E). �
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3.3. Deletion and contraction. In the third paragraph of this subsec-
tion we will prove the Main theorem. The proof is inductive using deletion
and contraction. In the first paragraph we will define those two operations
for realisations of matroids, i. e. for lists of vectors as in Section II.4. In the
second paragraph we will define them for upper sets.

3.3.1. Matroids under deletion and contraction. Two important matroid
operations are deletion and contraction of an element. For realisations of
matroids, they are defined as follows. Let X be a finite list of vectors and
let x ∈ X. The deletion of x is (the matroid defined by) the list X \ x.

For the rest of this paragraph, fix an element x ∈ X that is not a
loop. Let πx : U → U/x denote the projection to the quotient space. The
contraction of x is (the matroid defined by) the list X/x which contains the
images of the elements of X \ x under πx.

We want to be able to see Sym(U/x) as a subspace of Sym(U). For that,
pick a basis B = {b1, . . . , br} ⊆ U with br = x. LetW := span{b1, . . . , br−1}.
Then we have an isomorphism U/x ∼= W which extends to an isomorphism
Sym(U/x) ∼= Sym(W ) ⊆ Sym(U). Under this identification, Sym(πx) be-
comes the map that sends px to zero and maps all other basis vectors to
themselves. Then Sym(U) ∼= Sym(W )⊕ px Sym(U).

Let Y ⊆ X \ x. We write Ȳ to denote the sublist of X/x with the same
index set as Y and vice versa. Let C̄ ⊆ X/x ⊆ W be a flat and η ∈ W ∗ be
a defining normal for C̄. Since W ∗ ∼= xo := {v ∈ V : v(x) = 0}, η is also a
defining normal for the flat C ∪ {x} ⊆ X.

3.3.2. The lattice of flats under deletion and contraction. In this para-
graph we will discuss how the lattice of flats of a matroid behaves under
deletion and contraction and for a given upper set J we define upper sets
J \ x ⊆ L(X \ x) and J/x ⊆ L(X/x).

For the whole paragraph we fix an element x ∈ X that is not a loop.
First, we will exhibit some relations between the lattices of flats of X, X \x
and X/x. There are two bijective maps

Lx : L(X \ x)→ {C ∈ L(X) : C = cl(C \ x)} (III.20)
and Lx : L(X/x)→ {C ∈ L(X) : x ∈ C}. (III.21)

The maps are given by Lx(C) := clX(C), L−1
x (C) := C \ x, Lx(C̄) := C ∪ x

and (Lx)−1(C) := C \ x.

Definition 3.14. Let J ⊆ L(X) be an upper set. Then define

J \ x := {C \ x : C ∈ J and C = cl(C \ x)} = L−1
x (J ∩ Lx(L(X \ x)))

and J/x := {(C \ x) : x ∈ C ∈ J} = (Lx)−1(J ∩ Lx(L(X/x))) ⊆ L(X/x).

It is easy to check that these two sets are upper sets. The following
statement on the indicator functions is also easy to prove.

Lemma 3.15. Let x 6∈ Y ⊆ X. Then χJ\x(Y ) = χJ(Y ) and χJ/x(Ȳ ) =
χJ(Y ∪ x).

From this, we can deduce the following lemma.

Lemma 3.16. (1) If C ⊆ X \ x is a maximal missing flat for J \ x then
C or C ∪ x is a maximal missing flat for J .
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(2) If C̄ ⊆ X/x is a maximal missing flat for J/x then C ∪ x is a maximal
missing flat for J .

We will also need the following two facts.

Remark 3.17. Let x ∈ X be neither a loop nor a coloop. Suppose that
J contains all hyperplanes in X. Then,
(1) J \ x contains all hyperplanes in X \ x. This follows from the fact that
L(X \ x) contains exactly the flats C that satisfy rk(C) = rk(C \ x).

(2) J/x contains all hyperplanes in X/x. This follows from the fact that
L(X/x) contains exactly the flats containing x and the fact that con-
traction reduces the rank of a flat containing x by one.

3.3.3. Proof of the Main Theorem. In this paragraph we will prove the
Main Theorem. The following proposition is a side product of the deletion-
contraction proof.

Proposition 3.18. We are using the same terminology as in Defini-
tion 3.1. Suppose that x ∈ X is neither a loop nor a coloop. For k = −1,
we assume in addition that J contains all hyperplanes in X or J = {X}.

Then the following is an exact sequence of graded vector spaces:

0 −→ ker I(X \ x, k, J \ x)[−1]
·px−→ ker I(X, k, J)

Sym(πx)−→ ker I(X/x, k, J/x)→ 0.
(III.22)

If x ∈ X is a loop, then ker I(X \ x, k, J \ x) = ker I(X, k, J). For
k ∈ {−1, 0}, both statements also hold if we replace I by I ′.

Here, (·)[−1] denotes the graded vector space (·) with the degree shifted
up by one and Sym(πx) denotes the algebra homomorphism that maps pv to
pπx(v).

Remark 3.19. Proposition 3.18 will turn out to be a special case of Pro-
position II.6.17 for k ≥ 0 once we have proven Theorem 3.2 (cf. Section 1).

The proof of Proposition 3.18 is inductive. It uses the following lemma.

Lemma 3.20. Suppose that we are in the same setting as in Proposi-
tion 3.18. Let x ∈ X be neither a loop nor a coloop. Suppose that P(X \
x, k, J \ x) = ker I(X \ x, k, J \ x) and P(X/x, k, J/x) = ker I(X/x, k, J/x).

(1) Then, the following sequence is exact:

0 −→ ker I(X \ x, k, J \ x)[−1]
·px−→ ker I(X, k, J)

Sym(πx)−→ ker I(X/x, k, J/x)→ 0.
(III.23)

(2) If we suppose in addition that I ′(X\x, k, J\x,E′) = I(X\x, k, J\x)
and I ′(X/x, k, J/x,E′′) = I(X/x, k, J/x), the following sequence is exact:

0 −→ ker I ′(X \ x, k, J \ x,E′)[−1]
·px−→ ker I ′(X, k, J,E)

Sym(πx)−→ ker I ′(X/x, k, J/x,E′′) −→ 0.
(III.24)

Here, E′ and E′′ denote the restrictions of E to L(X \ x) and L(X/x), i. e.
E′(C) := E(clX(C)) and E′′(C̄) := E(C ∪ x).
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Proof of Lemma 3.20. We only prove part (2). The reader will notice
that the same proof with some obvious modifications can be used to prove
part (1), unless k = −1 and J = {X}. In that case, both parts are equivalent
by Lemma 3.13.

Before starting with the proof, we will introduce some additional nota-
tion, which is only used here. For a flat C defined by η, we write eX(η) =
eX(C) := mX(C)+k+χ(C). As described above, we fix a subspace W ⊆ U
that is complementary to the space span(x) and identify U/x withW . Hence,
ker I ′(X/x, k, J/x,E′′) ⊆ Sym(W ).

Let f ∈ Sym(U) and v, η ∈ V . Let t be a formal symbol. Then f(v +
tη) ∈ K[t] and the following Taylor expansion formula holds: f(v + tη) =∑

k≥0
Dkη
k! f(v)tk. Now define ρf : V → N, the directional degree function

of f [3], as the function which assigns to η the degree of the univariate
polynomial f(v + tη) ∈ K[t] for generic v. We obtain ρfg = ρf + ρg by
comparing the Taylor expansion of f · g with the product of the Taylor
expansions of f and g. The number ρf (η) tells us how many derivations f
survives in direction η. Hence, ρ can be used to describe ker I(X, k, J) and
ker I ′(X, k, J,E). Namely,

ker I(X, k, J) = {f ∈ Sym(U) : ρf (η) < e(η), η ∈ V \ {0}}. (III.25)

Now we come to the main part of the proof. It is split into five parts.
(i) ·px is well-defined, i. e. really maps to ker I ′(X, k, J,E): due to

Lemma 3.10, it suffices to prove S(X \ x, k, J \ x)
·px
↪→ S(X, k, J). For k ≥ 0,

this follows directly from Lemma 3.15. For k = −1, consider pY ∈ S(X \
x,−1, J \x) and C ∈ L(X). Then C \x ∈ L(X \x) and χJ\x(C \x) ≤ χJ(C).
One can easily deduce |(Y ∪ x) \ C| < m(C) − 1 + χJ(C) from the corres-
ponding inequality for C \ x.

(ii) Sym(πx) is well-defined: let g ∈ ker I ′(X, k, J,E) and let h :=
(Sym(πx))(g). Let C̄ ∈ L(X/x) be a maximal missing flat or a hyperplane,
respectively. By Lemma 3.16, C ∪ x ∈ L(X) is a maximal missing flat or a
hyperplane, respectively. Let η := E(C ∪ x). This implies E′′(C̄) = η. We
need to prove ρh(η) < eX/x(C̄).

Note thatmX/x(C̄) = mX(C∪x) and by Lemma 3.15, χJ/x(C̄) = χJ(C∪
x). Hence, eX/x(C̄) = eX(C ∪x). The polynomial g can be uniquely written
as g = h+pxg1 for some g1 ∈ Sym(U). For all k ∈ N, Dk

ηg = Dk
ηh+pxD

k
ηg1.

As px does not divide h, this implies ρh(η) ≤ ρg(η). In summary, we get

eX/x(C̄) = eX(C ∪ x) > ρg(η) ≥ ρh(η). (III.26)

(iii) Injectivity of ·px: clear.
(iv) Exactness in the middle: let g ∈ ker I ′(X, k, J,E) and Sym(πx)(g) =

0. This implies that g can be written as g = pxh for some h ∈ Sym(U). We
need to show that h ∈ ker I ′(X \ x, k, J \ x,E′) = ker I(X \ x, k, J \ x).

Let C be a maximal missing flat (resp. hyperplane) in X \ x. By
Lemma 3.16, C ′ = C or C ′ = C ∪ x is a maximal missing flat (resp. hy-
perplane) in X. Let η := E(C ′). The vector η is also a defining normal
for C ⊆ X \ x. By definition of E′, η = E′(C). We will now show that
ρh(η) < eX\x(C).
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If x ∈ C ′, then ρpx = 0, mX\x(C) = mX(C ′), and χJ\x(C) = χJ(C ′). If
x 6∈ C ′, then ρpx(η) = 1, mX\x(C) + 1 = mX(C ′), and χJ\x(C) = χJ(C ′).
So, in both cases, eX\x(η) + ρpx(η) = eX(η). This implies

eX\x(η) = eX(η)− ρpx(η) > ρpxh(η)− ρpx(η) = ρh(η). (III.27)

(v) Surjectivity of Sym(πx): we consider the case k ≥ 0 first. Let fpȲ ∈
S(X/x, k, J/x). It suffices to prove that fpY ∈ S(X, k, J). Since x 6∈ Y , by
Lemma 3.15, χJ/x((X/x) \ Ȳ ) = χJ(X \ Y ). This implies fpY ∈ S(X, k, J).

Now consider the case k = −1. This requires a little more work. There
are two subcases.

(a) J contains all hyperplanes: let pȲ ∈ S(X/x,−1, J/x). We will now
show that pY ∈ S(X,−1, J). Let C ∈ L(X) \ {X}. Suppose first that
x ∈ C or codimC ≥ 2. Then D := cl(C ∪ x) 6= X. By assumption,∣∣∣Ȳ \ (D \ x)

∣∣∣ < mX/x(D \ x)−1+χJ\x(D \ x). By Lemma 3.15, this implies

|Y \D| < mX(D)− 1 + χJ(D). (III.28)

Since x ∈ D \ C and x 6∈ Y , |Y \ C| − |Y \D| ≤ mX(C) − mX(D) − 1.
Adding this inequality to (III.28), we obtain the desired inequality:

|Y \ C| < mX(C)− 1 + χJ(C). (III.29)

Now suppose that C is a hyperplane and x 6∈ C. By assumption, χJ(C) =
1. Since x 6∈ Y ∪ C, we can deduce that (III.29) holds for this C.

(b) J = {X}: this can be shown by a dimension argument using the
fact that the dimension of P(X−1, {X}) equals the cardinality of the set of
internal bases B−(X) (see [54, Theorem 5.9] or Proposition I.4.15). If x ∈ X
is the minimal element, the following deletion-contraction equality holds:

|B−(X)| = |B−(X \ x)|+ |B−(X/x)| . �

Proof of Proposition 3.18 and of the Main Theorem. We gen-
eralise the proof of [3, Propositions 4.4 and 4.5].

Loops can safely be ignored: they are contained in every flat C, thus
mX(C) = mX\x(C) and L(X) ∼= L(X \ x) if x is a loop. From now on, we
suppose that X does not contain loops.

We prove both statements by induction on the number of elements of
X that are not coloops. The reader should check that our reasoning below
also works for k = −1, although in that case, P-spaces might be equal
to {0}. Remark 3.17 ensures that an upper set that contains all hyperplanes
preserves this structure under deletion and contraction.

If X contains only coloops the Main Theorem follows from Proposi-
tion 3.12. Now suppose that x ∈ X is not a coloop and that the Main
Theorem holds for X/x and X \ x. In addition, we assume dimU ≥ 2. If
dimU = 1, the statement follows from Remark 3.11.

By Lemma 3.20, the following sequence is exact:

0 −→ ker I(X \ x, k, J \ x)[−1]
·px−→ ker I(X, k, J)

Sym(πx)−→ ker I(X/x, k, J/x)→ 0.
(III.30)
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Every short exact sequence of vector spaces splits. Hence, ker I(X, k, J) ∼=
px · ker I(X \ x, k, J \ x) ⊕ ker I(X/x, k, J/x). For k ∈ {−1, 0}, the same
argumentation also works for I ′(X, k, J,E). To conclude, we recall the
following two statements that were shown in the proof of Lemma 3.20:
(i) px · S(X \ x, k, J \ x) ⊆ S(X, k, J) and (ii) Sym(πx) : S(X, k, J) →
S(X/x, k, J/x) is surjective, if (k, J) 6= (−1, {X}). �

Remark 3.21. In general, the map

Sym(πx) : S(X,−1, {X})→ S(X/x,−1, {X/x}) (III.31)

is not surjective (cf. Example 7.4). Proposition 3.18 is false for arbitrary
upper sets J that do not contain all hyperplanes (cf. Example 7.3). The
difficulty of the case k = −1 was already observed by Holtz and Ron.
They conjectured that the Main Theorem holds in the internal case, i. e.
for k = −1 and J = {X} [54, Conjecture 6.1]. An incorrect “proof” of this
conjecture appeared in [3], which assumed that Sym(πx) : S(X,−1, {X})→
S(X/x,−1, {X/x}) is always surjective. The authors of [3] later found a
counterexample to Holtz’s and Ron’s conjecture [2].

4. Bases for P-spaces

In this section we will show how a basis for P(X, k, J) can be selected
from S(X, k, J) for k ≥ 0. Our construction depends on the order on X.
This order is used to define internal and external activity. Our result is a
generalization of [3, Proposition 4.21] to hierarchical spaces. At the end of
this section, there is a remark on the case k = −1.

Recall that B(X) denotes the set of all bases B ⊆ X. In Subsection I.3.1
we defined the set I(B) of internally active elements and the set E(B) of
externally active elements with respect to a basis B ∈ B(X).

Definition 4.1. We are using the same terminology as in Definition 3.1.
In addition, let k ≥ 0. Then define

Γ(X, k, J) :=
{

(B, I,aI) : B ∈ B(X), I ⊆ I(B), aI ∈ NI ,∑
x∈I

ax ≤ k + χ((B ∪ E(B)) \ I)− 1
}
and (III.32)

B(X, k, J) :=
{
pX\(B∪E(B))

∏
x∈I

pax+1
x : (B, I,aI) ∈ Γ(X, k, J)

}
⊆ Sym(U).

For k = 0, this specialises to

B(X, 0, J) = {p(X\(B∪E(B)))∪I : B ∈ B(X), I ⊆ I(B),

cl((B ∪ E(B)) \ I) ∈ J}.
(III.33)

Note that a priori, it is unclear whether the set Γ(X, k, J) has the same
cardinality as the set B(X, k, J) since we do not know if distinct elements
of Γ(X, k, J) correspond to distinct polynomials in B(X, k, J). This desired
property only becomes clear in the proof of the following theorem.

Theorem 4.2 (Basis Theorem). We are using the same terminology as
in Definition 3.1. In addition, let k ≥ 0. Then B(X, k, J) is a basis for
P(X, k, J).
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Proof. As in the proof of the Main Theorem, we may suppose that X
does not contain any loops: if x is a loop, it is not contained in any basis in
B(X), but x is contained in every flat and always externally active. Hence,
the removal of a loop changes neither P(X, k, J) nor Γ(X, k, J).
The remainder of this proof is split into four parts.

(i) Let x ∈ X be the minimal element. Let B,B′ ∈ B(X) with x 6∈ B
and x ∈ B′. x is externally active with respect to B if and only if x is a loop
and x is internally active in B′ if and only if x is a coloop.

(ii) |Γ(X, k, J)| = dimP(X, k, J): we prove this by induction over the
number of elements that are not coloops. Suppose that X contains only
coloops. In this case there is only one basis and all its elements are internally
active. The spanning set given in (III.16) is a basis and it coincides with
B(X, k, J).

Now suppose that there is at least one element in x which is not a coloop.
In addition, we may assume dimU ≥ 1. If dimU = 1, the statement follows
from Remark 3.11. As dimP(X, k, J) and by induction also |Γ(X/x, k, J/x)|
and |Γ(X \ x, k, J \ x)| are independent of the order on X, we may assume
that x is the minimal element.

B(X) can be partitioned as B(X) = B(X \ x) ∪̇ ι(B(X/x)), where ι de-
notes the map that sends a basis B̄ ∈ B(X/x) to B ∪ x. It follows from
(i) and Lemma 3.15 that Γ(X, k, J) can also be written as a disjoint union
of two sets: Γ(X, k, J) = Γ(X \ x, k, J \ x) ∪̇ ι1(Γ(X/x, k, J/x)), where ι1
denotes the map that sends (B̄, Ī,aĪ) to (B∪x, I,aI). Comparing this with
Proposition 3.18, we see that |Γ(X, k, J)| = dimP(X, k, J).

(iii) B(X, k, J) ⊆ S(X, k, J) ⊆ P(X, k, J): if Y = (X \ (B ∪E(B)))∪ I,
then X \ Y = (B ∪E(B)) \ I. Hence, by comparison of (III.32) and (III.6),
the statement follows.

(iv) B(X, k, J) is linearly independent: by [3, Proposition 4.21], the set
B(X, k,L(X)) = B(X, k + 1, {X}) is linearly independent. As B(X, k, J) is
contained in this set, it is also linearly independent. �

Remark 4.3. We do not know if there is a simple method to construct
a basis for P(X,−1, J). This difficulty was already observed for the internal
case by Holtz and Ron [54]. In Section 5.3 we will define a set of semi-
internal bases B−(X, J) ⊆ B(X) whose cardinality is in some cases equal to
the dimension of P(X,−1, J). A natural candidate for B(X,−1, J) would
be the set B̃(X,−1, J) := {pX\(B∪E(B)) : B ∈ B−(X, J)}. In some cases,
this is indeed a basis, but in general it has the wrong cardinality or it fails
to be contained in P(X,−1, J) (see Example 7.2).

Remark 4.4. The external space has a vector space decomposition

P(X, 1, {X}) =
⊕

C∈L(X)

P(X)C (III.34)

where P(X)C := span{pY : cl(X \ Y ) = C} = pX\CP(C, 0, {C}) [7, 76].
This decomposition can be used to deduce Theorem 4.2 for k = 0 from the
well-known fact that {pX\(B∪E(B))∪I : B ∈ B(X), I ⊆ B} is a basis for
P(X, 1, {X}) [3, 7, 54].
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A related theorem due to Andrew Berget states that the Tutte polyno-
mial is equal to the Hilbert series of the external space P+(X) equipped with
a certain bigrading.

Theorem 4.5 ([7]). Let X be a list of vectors in some vector space over
an arbitrary field. Then

TM(X)(x, y) =
∑
j,k≥0

(x− 1)r−jyk−j dimP(X)j,k, (III.35)

where P(X)j,k := span{pY : rk(X \ Y ) = j and |X \ Y | = k}.

Remark 4.6. Corrado De Concini, Claudio Procesi, and Michèle Vergne
defined a space G(X) that also has a decomposition in terms of the lattice
of flats L(X) [37, Theorem 4.5]. P(X)C and the summand of G(X) that
corresponds to the flat C have the same dimension. Furthermore, the two
spaces are connected via the duality between P and D-spaces.

5. Hilbert series

In this section we will give several formulae for the Hilbert series of the
spaces P(X, k, J). The formulae in the first subsection are recursive. In the
second subsection we will give combinatorial formulae for the case k ≥ 0.
The last subsection is devoted to the case k = −1. All formulae only depend
on the matroid M(X), the integer k, and the upper set J , but not on the
realisation X.

5.1. Recursive formulae. In this subsection we will give recursive
formulae for the calculation of Hilb(P(X, k, J), t). The following statement
is a direct consequence of Proposition 3.18 and of the Main Theorem:

Corollary 5.1. We are using the same terminology as in Definition 3.1.
Let x ∈ X be an element that is not a coloop. For k = −1, we assume in
addition that J contains all hyperplanes in X or J = {X}. Then,

Hilb(P(X, k, J), t) =


Hilb(P(X \ x, k, J \ x), t) if x is a loop
tHilb(P(X \ x, k, J \ x), t)

+ Hilb(P(X/x, k, J/x), t) otherwise

For coloops, the situation is more complicated and requires an additional
definition. Fix a coloop x ∈ X. Then, X\x is a hyperplane and the following
is an upper set:

Ĵ/x := {C̄ : x 6∈ C ∈ J} ∪ {X \ x} ⊆ L(X/x). (III.36)

Ĵ/x forgets about the flats containing x, whereas J/x forgets about the flats
not containing x. While the latter is always an upper set in L(X/x), some
elements of Ĵ/x are not closed unless X \ x is a hyperplane.
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Proposition 5.2. We are using the same terminology as in Defini-
tion 3.1. Let x ∈ X be a coloop and k ≥ 0. Then

Hilb(P(X, k, J), t) =



∑k
j=0 t

j+1 Hilb(P(X/x, k − j, Ĵ/x), t)

+ Hilb(P(X/x, k, J/x), t) if X \ x ∈ J∑k−1
j=0 t

j+1 Hilb(P(X/x, k − j, Ĵ/x), t)

+ Hilb(P(X/x, k, J/x), t) if X \ x 6∈ J

.

For k = −1, we have

Hilb(ker I(X,−1, J), t) =

{
Hilb(ker I(X/x, k, J/x), t) if X \ x ∈ J
0 if X \ x 6∈ J

.

This formula holds for arbitrary non-empty upper sets J ⊆ L(X).

For an example, see Example 7.1. Actually, we will prove a more general
statement, namely decomposition formulae for the P-spaces of type

P(X, k, J) ∼= P(X/x, k, J/x)⊕
⊕
j

pj+1
x P(X/x, k − j, Ĵ/x) (III.37)

Proof of Proposition 5.2. We will first prove the equation for k ≥ 0
using Theorem 4.2 by showing that there exists a bijection between the bases
of the P-spaces appearing on each side.

Fix a basis B ∈ B(X). Let ΓB(X, k, J) := {(B, I,aI) ∈ Γ(X, k, J)}.
Since x is a coloop, x is contained in every basis and always internally
active. Hence, I(B) = I(B/x) ∪ x̄. A similar relationship between the sets
of externally active elements with respect to B and B/x does not exist.
However, we do not need this since cl((B ∪ E(B)) \ I) = cl(B \ I) for all
I ⊆ I(B) [8, (7.13)].

Consider the following map:

ΦB : ΓB(X, k, J)→ ΓB(X/x, k, J/x) ∪̇
k−ε⋃̇
j=0

ΓB(X/x, k − j, Ĵ/x) (III.38)

(B, I,aI) 7→

{
(B \ x, Ī,aĪ) ∈ ΓB(X/x, k, Ĵ/x) if x 6∈ I
(B \ x, I \ x,aĪ) ∈ ΓB(X/x, k − ax, Ĵ/x) if x ∈ I

,

where ε = 1 if X \ x 6∈ J and 0 otherwise and aĪ denotes the restriction of
aI to NI\x.
From the following three facts, we can deduce that ΦB is a bijection:
(i) If x 6∈ I, then by Lemma 3.15, χJ(B \ I) = χJ/x(B \ (I ∪ x)).
(ii) If x ∈ I and X \ x ∈ J (i. e. we are in the first case of (III.37)), then

χJ(B \ I) = χ
Ĵ/x

(B \ I).
(iii) If x ∈ I and X \x 6∈ J (i. e. we are in the second case of (III.37)), then

χJ(B \ I) = χ
Ĵ/x

(B \ I) = 0.
We have to distinguish the cases X \ x ∈ J and X \ x 6∈ J for the following
reason: if I = {x} and χJ(B \ I) = 0, then ΓB(X, k, J) contains no elements
with ax = k. However, ΓB(X, k − k, Ĵ/x) is non-empty, since by definition,
χ
Ĵ/x

(B) = 1.
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Furthermore, note that the degrees of the polynomials corresponding
to (B, I,aI) and (B \ x, I \ x,aĪ) differ by ax + 1 if x ∈ I. If x 6∈ I,
the polynomials corresponding to (B, I,aI) and (B \ x, Ī,aĪ) have the same
degree. This completes the proof for k ≥ 0.

Now we consider the case k = −1. If X \ x 6∈ J , then I(X,−1, J) =
ideal{1}. Suppose that X \ x ∈ J . Let η be a defining normal for X \
x. Then Dη ∈ I(X,−1, J) and it is easy to check that ker I(X,−1, J) ∼=
ker I(X/x,−1, J/x). �

5.2. Combinatorial formulae for k ≥ 0. In this subsection we will
prove several combinatorial formulae for Hilb(P(X, k, J), t). As in the case
of the Tutte polynomial, there is a formula that depends on the internal
and external activity of the bases of X. For k = 0, there is also a subset
expansion formula and a particularly simple formula for the dimension.

Theorem 4.2 provides a method to compute the Hilbert series of a P-
space combinatorially.

Corollary 5.3. We are using the same terminology as in Definition 3.1.
Let k ≥ 0. Then

Hilb(P(X, k, J), t) =
∑

B∈B(X)

tN−r−|E(B)|

1 +
∑

∅6=I⊆I(B)

χ((B∪E(B))\I)
+k−1∑
j=0

t|I|+j
(
j + |I| − 1

|I| − 1

) ,

where E(B) and I(B) denote the sets of externally resp. internally active
elements. For k = 0, this specialises to

Hilb(P(X, 0, J), t) =
∑

B∈B(X):

tN−r−|E(B)|

1 +
∑

∅6=I⊆I(B)
χ((B∪E(B))\I)=1

t|I|

 .

Corollary 5.3 gives a formula in terms of the internal and external activity
of the bases of X. For k = 0, there is also a subset expansion formula similar
to the one for the Tutte polynomial. Recall that in the internal, central and
external case, the Hilbert series of the P-spaces are evaluations of the Tutte
polynomial ([3] resp. Section I.4). In particular,

Hilb(P(X, 0, {X}), t) = tN−r
∑
A⊆X

rk(A)=r

(
1

t
− 1

)|A|−rk(A)

, and (III.39)

Hilb(P(X, 1, {X}), t) = tN−r
∑
A⊆X

tr−rk(A)

(
1

t
− 1

)|A|−rk(A)

. (III.40)

When looking at these two formulae, one might wonder if it is possible
to find an “interpolating” formula for the semi-external case. Indeed, the
natural guess works: if χ(A) = 1, we take the corresponding summand from
(III.40) and if χ(A) = 0, we take the corresponding summand from (III.39).
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Note that the latter term is always 0. In the semi-internal case however, the
analogous statement is false.

Proposition 5.4. We are using the same terminology as in Defini-
tion 3.1. Then

Hilb(P(X, 0, J), t) = tN−r
∑
A⊆X
χ(A)=1

tr−rk(A)

(
1

t
− 1

)|A|−rk(A)

. (III.41)

Proof. We prove this statement by deletion-contraction. In this proof
we denote the polynomial on the right side of (III.41) by T(X,J)(t).

Let x ∈ X be a loop and let A ⊆ X \ x. If χJ(A) = 0, A contributes
neither to T(X\x,J\x)(t) nor to T(X\x,J\x)(t). If χJ(A) = 1, A contributes to
T(X\x,J\x)(t) the term tN−r−1tr−rk(A)(1/t − 1)|A|−rk(A) =: fA. To T(X,J)(t),
A contributes the term tfA and A∪x contributes t(1/t− 1)fA. This implies
T(X\x,J\x)(t) = T(X,J)(t).

From now on, we suppose that X does not contain any loops. Suppose
that X contains only coloops. Then by Proposition 3.12,

P(X, 0, J) = span{pY : X \ Y ∈ J} (III.42)

and it is easy to see that T(X,J)(t) is the Hilbert series of (III.42):

T(X,J)(t) = tN−r
∑
A⊆X
A∈J

tr−|A| =
∑
A⊆X
X\A∈J

t|A|. (III.43)

Now suppose that x ∈ X is neither a loop nor a coloop. By induction,
we may suppose that (III.41) holds for X/x and X \ x. Using Corollary 5.1
and Lemma 3.15, we obtain

Hilb(P(X, 0, J), t) = tHilb(P(X \ x, k, J \ x), t) + Hilb(P(X/x, k, J/x), t)

= tN−r
∑

A⊆X\x
χJ\x(A)=1

tr−rk(A)

(
1

t
− 1

)|A|−rk(A)

+ tN−r
∑

Ā∈X/x
χJ/x(Ā)=1

t(r−1)−rk(Ā)

(
1

t
− 1

)|Ā|−rk(Ā)

= tN−r
∑
x 6∈A

χJ (A)=1

tr−rk(A)

(
1

t
− 1

)|A|−rk(A)

+ tN−r
∑
x∈A

χJ (A)=1

tr−rk(A)

(
1

t
− 1

)|A|−rk(A)

= tN−r
∑
A⊆X
χ(A)=1

tr−rk(A)

(
1

t
− 1

)|A|−rk(A)

= T(X,J)(t) �
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If we set t = 1 in Proposition 5.4, we immediately obtain a result which
relates the dimension of P(X, 0, J) and the number of independent sets sat-
isfying a certain property. This has already been proven with a different
method by Holtz, Ron, and Xu [55].

Corollary 5.5. We are using the same terminology as in Definition 3.1.
Then

dimP(X, 0, J) = |{Y ⊆ X : Y independent, cl(Y ) ∈ J}|. (III.44)

Remark 5.6. It is possible to deduce Proposition 5.4 directly from
(III.39). This can be done using the decomposition (III.34) of the external
space.

5.3. The case k = −1. For k = −1, we do not know if there is such
a nice formula as in Corollary 5.3 or Proposition 5.4. The set B−(X, J) :=
{B ∈ B(X) : χ(B \ I(B)) = 1} can in some cases be used to calculate
the Hilbert series of P(X,−1, J), but in general the cardinality of B−(X, J)
depends on the order imposed on X (cf. Remark 4.3). Consider for example
a sequence X of three vectors a, b, c in general position in a two-dimensional
vector space and the ideal J = {X, {a}}. Depending on the order, B−(X, J)
may have cardinality 1 or 2.

Fix C0 ∈ L(X) and set JC0 := {C ∈ L(X) : C ⊇ C0}. All maximal
missing flats in JC0 are hyperplanes. They have unique defining normals
(up to scaling). Then ker I(X,−1, JC0) = ker I ′(X,−1, JC0) =

⋂
x∈C0

P(X \
x, 0, {X \ x}). This was shown by Holtz, Ron, and Xu [55]. They also show
that for a specific order on X (see below), the dimension of ker I(X,−1, JC0)
is equal to |B−(X, JC0)| and that B−(X, JC0) can be used to calculate the
Hilbert series.

Theorem 5.7 ([55, p. 20]). We are using the same terminology as in
Definition 3.1. In addition, let C0 ∈ L(X). Then

Hilb(ker I(X,−1, JC0), t) =
∑

B∈B−(X,JC0
)

tN−r−|E(B)|. (III.45)

The proof in [55] relies on the following construction: an independent
spanning subset I ⊆ C0 is fixed and the order is chosen s. t. the elements of
I are maximal. This makes it difficult or impossible to adjust this proof to
a more general setting.

6. Zonotopal Cox rings

In this section we will briefly describe the zonotopal Cox rings defined
by Sturmfels and Xu [86] and we show that our Main Theorem can be used
to generalise a result on zonotopal Cox modules due to Ardila and Postnikov
[3].

Fix m vectors D1, . . . , Dm ∈ V and u = (u1, . . . , um) ∈ Nm. Sturmfels
and Xu [86] introduced the Cox-Nagata ring RG ⊆ K[s1, . . . , sm, t1, . . . , tm].
This is the ring of polynomials that are invariant under the action of a certain
group G which depends on the vectors D1, . . . , Dm. It is multigraded with a
Zm+1-grading. A ring R is Zm+1-multigraded if it decomposes into a direct
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sum R =
⊕

a∈Zm+1 Ra and RaRb ⊆ Ra+b. For r ≥ 3, RG is equal to the Cox
ring of the variety XG which is obtained from Pr−1 by blowing up the points
D1, . . . , Dm. Cox rings have received a considerable amount of attention in
the recent literature in algebraic geometry. See [64] for a survey.

Cox-Nagata rings are closely related to power ideals: we consider the
ideal Iu := ideal{Du1+1

1 , . . . , Dum+1
m }. Let I−1

d,u denote the homogeneous
component of grade d of ker Iu. Then, RG(d,u), the homogeneous component
of RG of grade (d,u), is naturally isomorphic to Id,u ([86, Proposition 2.1]).

Cox-Nagata rings are an object of great interest but in general, it is
quite difficult to understand their structure. However, for some choices of
the vectors D1, . . . , Dm, we understand a natural subring of the Cox-Nagata
ring very well.

LetH = {H1, . . . ,Hm} be the set of hyperplanes in L(X). H ∈ {0, 1}m×N
denotes the non-containment hyperplane-vector matrix, i. e. the 0-1 matrix
whose (i, j) entry is 1 if and only if Hi does not contain xj .

Sturmfels and Xu defined the following structures: the zonotopal Cox
ring

Z(X) :=
⊕

(d,a)∈NN+1

RG(d,Ha) (III.46)

and for w ∈ Zn the zonotopal Cox module of shift w

Z(X,w) :=
⊕

(d,a)∈NN+1

RG(d,Ha+w). (III.47)

Fix a vector a ∈ NN . Let X(a) denote the sequence of
∑

i ai vectors in U
that is obtained from X by replacing each xi by ai copies of itself and let
e := (1, . . . , 1) ∈ Nm. Ardila and Postnikov show the following isomorphisms
[3, Proposition 6.3]:

RG(d,Ha)
∼= P(X(a), 1, {X})d, (III.48)

RG(d,Ha−e)
∼= P(X(a), 0, {X})d, (III.49)

and RG(d,Ha−2e)
∼= P(X(a),−1, {X})d. (III.50)

They prove these isomorphisms by showing a statement similar to the fol-
lowing lemma.

Lemma 6.1. We are using the same terminology as in Definition 3.1.
Let b ∈ {0, 1}H and let Jb := {C ∈ L(X) : bH = 1 for all H ⊇ C}, i. e. the
maximal missing flats in Jb are exactly the hyperplanes that satisfy bH = 0.

Suppose that I(X(a), k, Jb) = I ′(X(a), k, Jb) for all a ∈ NN . Then,
RG(d,Ha+(k−1)e+b)

∼= (ker I(X, k, Jb))d for all d. (III.51)

Using the Main Theorem of this chapter, we can deduce the following
results about hierarchical zonotopal Cox modules.

Proposition 6.2. We are using the same terminology as in Lemma 6.1.
For the graded components of the semi-external zonotopal Cox module Z(X,
Ha− e + b), the following holds:

RG(d,Ha−e+b)
∼= P(X(a), 0, Jb)d for all d. (III.52)
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Proposition 6.3. We use the same terminology as in Lemma 6.1. Let
C0 ∈ L(X) be a fixed flat and JC0 := {C ∈ L(X) : C ⊇ C0} (cf. Subsection
5.3). If b ∈ {0, 1}H satisfies bH = 1 if and only if H ⊇ C0, then for
the graded components of the semi-internal zonotopal Cox module Z(X,
Ha− 2e + b), the following holds:

RG(d,Ha−2e+b)
∼= ker I(X(a),−1, JC0)d for all d. (III.53)

Using Theorems 5.4 and 5.7, we can calculate the multigraded Hilbert
series of the semi-external and the semi-internal zonotopal Cox modules.

Corollary 6.4. In the setting of Proposition 6.2, the dimension of
RG(d,Ha−e+b) equals the coefficient of td in

Hilb(P(X(a), 0, Jb), t) = t|a|−r
∑
A⊆X
χ(A)=1

tr−rk(A)
∑

1≤si≤ai
s∈NA, xi∈A

(∏
i

(
ai
si

))(
1

t
− 1

)|s|−rk(A)

,

where |a| :=
∑

i ai.

Proof. Apply Proposition 5.4 to X(a). Take into account that for
every S ⊆ X(a), there is a unique pair (A, s) with A ⊆ X and s ∈ NA
s. t. S is obtained from A by replacing each xi ∈ A by si copies of itself.
Furthermore, rk(S) = rk(A). For a fixed pair (A, s), there are

(
ai
si

)
options

to choose the corresponding vectors in X(a) for every i. �

Corollary 6.5. In the setting of Proposition 6.3, the dimension of
RG(d,Ha−2e+b) equals the coefficient of td in

Hilb(ker I(X(a),−1, JC0), t) =
∑

B∈B−(X,JC0
)

∑
0≤si≤ai−1

s∈NB

te(B,s) (III.54)

where e(B, s) :=
∑

i :xi 6∈E(B) ai − r −
∑

xi∈B si.

Proof. Apply Theorem 5.7. Choose an order on X(a) that is compat-
ible with the order on X, i. e. if x′, y′ ∈ X(a) are copies of x, y ∈ X (x 6= y)
then x′ < y′ if and only if x < y. Fix a basis B ⊆ X. Now we examine the
copies of B that are contained in X(a). All copies of the elements that are
externally active with respect to B in X are externally active with respect
to every copy of B in X(a). Let x ∈ B ⊆ X. If the ith copy (the maximal
one being the first) of x in X(a) is chosen, i − 1 copies of x are externally
active in X(a). Hence, for the copy of B in X(a) that corresponds to s, the
exponent of t equals e(B, s). �

7. Examples

This section contains a large number of examples. In the first subsection
we will give explicit examples for the various structures appearing in this
chapter (X, J , S, P, I, Γ, B, B, B−). In the second subsection we will
give an example for deletion and contraction as defined in Section 3.3. In
the third subsection we will exemplify the decomposition of P-spaces that
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appears in the proof of Proposition 5.2. In the last subsection we will explain
several problems that occur in the semi-internal case.

In this section we work over the polynomial rings K[x, y] and K[x, y, z]
instead of the symmetric algebras Sym(U) and Sym(V ).

7.1. Structures.

Let X1 :=

(
1 0 1
0 1 1

)
= (x1, x2, x3). (III.55)

Define two ideals J1 := {X1} and J2 := {X1, (x1), (x3)}. The set of bases
is B(X1) = {(x1x2), (x1x3), (x2x3)}. The sets of semi-internal bases are
B−(X1, J1) = {(x1x2)} and B−(X1, J2) = {(x1x2), (x1x3)}.

S(X1,−1, J1) = {1} S(X1, 0, J1) = {1, px1 , px2 , px3}
P(X1,−1, J1) = span{1} P(X1, 0, J1) = span{1, x, y}
I(X1,−1, J1) = ideal{x, y} I(X1, 0, J1) = ideal{x2, xy, y2}

Γ(X1, 0, J1) = {((x1x2), ∅, 0), ((x1x3), ∅, 0),

((x2x3), ∅, 0)}
B(X1, 0, J1) = {p∅, px2 , px1}

S(X1,−1, J2) = {1, px2} S(X1, 0, J2) = {1, px1 , px2 , px3 , px1x2 , px2x3}
P(X1,−1, J2) = span{1, y} P(X, 0, J2) = span{1, x, y, xy, y2}
I(X1,−1, J2) = ideal{x, y2} I(X1, 0, J2) = ideal{x2, xy2, y3}

Γ(X1, 0, J2) = {((x1x2), ∅, 0), ((x1x3), ∅, 0),

((x1x3), (x3), 0), ((x2x3), ∅, 0),

((x2x3), (x2), ∅, 0)}
B(X1, 0, J2) = {p∅, px2 , px2x3 , px1 , px1x2}

7.2. Deletion and contraction. In this subsection we will give ex-
amples explaining deletion and contraction for pairs (X, J).

X1 \ x1 =

(
0 1
1 1

)
= (x2, x3) X1/x1 =

(
1 1

)
= (x̄2, x̄3) (III.56)

J1 \ x1 = {(x2, x3)} J1/x1 = {(x̄2, x̄3)} (III.57)

J2 \ x1 = {(x2, x3), (x3)} J2/x1 = {(x̄2, x̄3), ∅̄} = L(X1/x1) (III.58)

Recall that we identify K[x, y]/x and K[y]. Then

I(X1 \ x1, 0, J1 \ x1) = ideal{x, y}, I(X1 \ x1, 0, J2 \ x1) = ideal{x, y2},
P(X1 \ x1, 0, J1 \ x1) = span{1}, P(X1 \ x1, 0, J2 \ x1) = span{1, y},
I(X1/x1, 0, J1/x1) = ideal{y2}, I(X1/x1, 0, J2/x1) = ideal{y3},
P(X1/x1, 0, J1/x1) = span{1, y}, P(X1/x1, 0, J2/x1) = span{1, y, y2}.

The reader should check that P(X1, 0, Ji) = pxP(X1 \ x1, 0, Ji \ x1) ⊕
P(X1/x1, 0, Ji/x1) holds for i = 1 and i = 2.
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y
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y2

y · P(X2/x2, 2, Ĵ4/x2)
x2yxy
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xy2
y2 · P(X2/x2, 1, Ĵ4/x2)

y3 · P(X2/x2, 0, Ĵ4/x2)
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Figure 4. On the left, P(X2, 2, J4) and on the right
P(X2, 2, J3). For both spaces, the decompositions corres-
ponding to Proposition 5.2 are shown.

7.3. Recursion for the Hilbert series.

Example 7.1. This is an example for the description of P-spaces in
Proposition 3.12 and for the decomposition of P-spaces that appears in the
proof of Proposition 5.2:

X2 :=

(
1 0
0 1

)
= (x1, x2) J3 := {X2} J4 := {X2, (x1)}

I(X2, 2, J3) = ideal{x3, y3, x2y2} Ĵ3/x2 = Ĵ4/x2 = {(x1)} (III.59)

P(X2, 2, J3) = span{1, x, y, x2, xy, y2, x2y, xy2} (III.60)

= span{1, x, x2} ⊕ y span{1, x, x2} ⊕ y2 span{1, x} (III.61)

I(X2, 2, J4) = ideal{x3, y4, x2y2, xy3} (III.62)

P(X2, 2, J4) = span{1, x, y, x2, xy, y2, x2y, xy2, y3} (III.63)

= span{1, x, x2} ⊕ y span{1, x, x2} ⊕ y2 span{1, x} ⊕ y3 span{1}
For a graphical description of the decomposition, see Figure 4.

7.4. Problems in the semi-internal case.

Example 7.2 (No canonical basis for internal spaces). In Section 5.3, we
defined the set of semi-internal bases B−(X, J). Now consider B̃−(X, J) :=
{pX\(B∪E(B)) : B ∈ B−(X, J)}. This example shows that even in the internal
case, where B̃−(X, J) has the right cardinality, this set is in general not
contained in ker I(X,−1, J).

X3 :=

0 0 1 1 1
1 0 0 0 1
0 1 1 0 0

 = (x1, x2, x3, x4, x5) (III.64)

B−(X3, {X3}) = {(x1, x2, x3), (x1, x2, x4)}
I(X3,−1, {X3}) = ideal{x2, y, z} (III.65)

P(X3,−1, {X3}) = ker I(X3,−1, {X3}) = span{1, x} (III.66)
E((x1, x2, x3)) = (x4, x5) E((x1, x2, x4)) = (x5) (III.67)

B̃−(X3, {X3}) = {1, x+ z} 6⊆ span{1, x}
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Example 7.3. This example shows why there is an additional condition
on the ideal J in the Main Theorem for k = −1. We use the matrix X1

defined at the beginning of this section and the ideal J5 := {X1, {x1}}.
Note that J does not contain all hyperplanes in X. Then J5 \ x1 = {X1 \
x1} and J5/x1 = {X1/x1, ∅̄}. This implies S(X1 \ x1,−1, J5 \ x1) = ∅,
S(X1,−1, J5) = {1} and S(X1/x1,−1, J5/x1) = {1, y}. Hence, the map
Sym(πx1) : P(X5,−1, J)→ P(X5/x1,−1, J5/x1) is not surjective.

The three S-sets appearing in this example span the corresponding ker-
nels. However, our proof of the Main Theorem fails here, since

ker I(X1,−1, J5) 6= px1 ker I(X1 \x1,−1, J5 \x1)⊕ ker I(X1/x1,−1, J5/x1),

i. e. Proposition 3.18 does not hold.

Example 7.4. This example shows why our proof of the Main Theorem
in general does not work in the case J = {X} (cf. Remark 3.21). It demon-
strates that Sym(πx) : S(X,−1, {X}) → S(X/x,−1, {X/x}) is in general
not surjective.

Consider the following matrix:

X4 =

1 1 0 0 1 1 0
1 1 1 1 0 0 0
0 0 0 0 1 1 1

 = (x1, x2, x3, x4, x5, x6, x7).

The corresponding internal P-space and ideal are:

I(X4,−1, {X4}) = ideal{x3, y3, z2, (x− y)3, (x− z)2, (x− y − z)2} and
P(X4,−1, {X4}) = span{1, x, y, z, xy + yz, xy + y2, x2 + xz,

x2y + xy2 + xyz + y2z}.
By deletion and contraction of x7 we obtain

I(X4 \ x7,−1, X4 \ x7) = ideal{x, y, z}, (III.68)
P(X4 \ x7,−1, X4 \ x7) = span{1}, (III.69)

I(X4/x7,−1, {X4/x7}) = ideal{x3, y3, (x− y)3}, (III.70)

and P(X4/x7,−1, X4/x7) = span{1, x, y, x2, xy, y2, x2y + xy2}. (III.71)

The Main Theorem and Proposition 3.18 both hold in this example.
px̄5px̄6 ∈ S(X4/x7,−1, {X4/x7}), but px5px6 6∈ S(X4,−1, {X4}). No

element of S(X4,−1, {X4}) is projected to px̄5px̄6 . Hence, our proof of the
Main Theorem does not work in this case.
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CHAPTER IV

Matroid Polynomials and Mason’s Conjecture

We will show that f -vectors of matroid complexes of real-
isable matroids are log-concave. This was conjectured by
Mason in 1972. Our proof uses the recent result by Huh
and Katz who proved that the coefficients of the character-
istic polynomial of a realisable matroid form a log-concave
sequence. In addition, we will give an example which shows
that the analogous statement for arithmetic matroids does
not hold.

We will discuss the relationship between log-concavity
of f -vectors and log-concavity of h-vectors and show that
various graph and matroid polynomials can be obtained from
the Hilbert series of the internal and central zonotopal spaces.

1. Introduction

Let M = (E,∆) be a matroid of rank r. E denotes the ground set and
∆ ⊆ 2E denotes the matroid complex, i. e. the abstract simplicial complex
of independent sets. Let f = (f0, . . . , fr) be the f -vector of ∆, i. e. fi is
the number of sets of cardinality i in ∆. Dominic Welsh conjectured in
1969 [90] that the f -vector of a matroid complex is unimodal, i. e. there
exists j ∈ {0, 1, . . . , r} s. t. f0 ≤ f1 ≤ . . . ≤ fj ≥ . . . ≥ fr. Three successive
strengthenings of this conjecture were proposed by John Mason in 1972 [72].
The weakest of them is log-concavity of the f -vector, i. e.

f2
i ≥ fi−1fi+1 for i = 1, . . . , r − 1. (IV.1)

Since then, these conjectures have received considerable attention. See for
example [15, 27, 44, 52, 60, 61, 71, 81, 82, 89, 92]. Carolyn Mahoney
proved log-concavity for cycle matroids of outerplanar graphs in 1985 [71].
David Wagner [89] describes further partial results, several stronger variants
of Mason’s conjecture, and other sequences of integers that are associated
with a matroid and that are conjectured to be log-concave. Log-concave
sequences arising in combinatorics have been studied by many authors. For
an overview, see the surveys by Francesco Brenti and Richard Stanley [11,
83].

Recall that a matroid is realisable if it is equivalent to a matroid whose
ground set is a multiset of vectors in a vector space over some field K and
whose independent sets are the linearly independent subsets of this multiset.
The main result in this chapter is the following theorem.

Theorem 1.1. The f -vector of the matroid complex of a realisable ma-
troid is log-concave.

67
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The strongest of Mason’s three conjectures [72] is ultra-log-concavity,
i. e. the conjecture that the following inequalities hold:

f2
i(

f1
i

)2 ≥ fi−1(
f1
i−1

) fi+1(
f1
i+1

) for i = 1, . . . , r − 1. (IV.2)

This conjecture was one of the main topics of a workshop at AIM in 20113.
Finding inequalities satisfied by f -vectors of matroid complexes is inter-

esting because it is a step towards the classification of f -vectors and h-vectors
of matroid complexes. In this context, it is also interesting to know that the
convex hull of the set of f -vectors of matroid complexes on N elements is a
simplex whose vertices are f -vectors of uniform matroids [63].

Johnson, Kontoyiannis, and Madiman [60] have shown that a stronger
version of Theorem 1.1 would imply a bound on the entropy of the cardinality
of a random independent set in a matroid. Our log-concavity results might
also help to prove statements about coefficients and zeroes of various graph
polynomials in the future. A possible application to the theory of network
reliability is explained in Section 6.

This chapter is based on [66].

1.1. Outline of this chapter. We will introduce the f -polynomial
and the characteristic polynomial of a matroid in Section 2. Recently, June
Huh and Eric Katz [58] proved that the characteristic polynomial of a real-
isable matroid is log-concave (a univariate polynomial is log-concave if its
coefficients form a log-concave sequence). In Section 3 we will establish a
connection between the characteristic polynomial and the f -polynomial. In
conjunction with the result by Katz and Huh, this implies log-concavity of
the f -polynomial of realisable matroids. In Section 4 we will discuss con-
nections between (strict) log-concavity of h-vectors and f -vectors and the
matroid operation thickening.

In Section 5 we will show how the f -polynomial and the characteristic
polynomial can be obtained from the Hilbert series of the internal and central
zonotopal spaces. In Section 6 we will explain the relationship between
various other graph and matroid polynomials and zonotopal algebra. In
Section 7 we will give an example which shows that the f -polynomial and
the characteristic polynomial of an arithmetic matroid are in general not
log-concave.

2. Matroid polynomials

In this section we will review the definitions of some matroid polynomials.
For more information on matroids, see Subsection I.3.1.

Recall that we denote byM = (E,∆) a matroid of rank r. Let rk denote
the rank function of M . The Tutte polynomial [18] of M is defined as

TM (x, y) =
∑
A⊆E

(x− 1)r−rk(A)(y − 1)|A|−rk(A). (IV.3)

3Workshop on Stability, hyperbolicity, and zero localization of functions, December
5 to December 9, 2011 at the American Institute of Mathematics, Palo Alto, California.
Organised by Petter Brändén, George Csordas, Olga Holtz, and Mikhail Tyaglov.
http://www.aimath.org/ARCC/workshops/hyperbolicpoly.html

http://www.aimath.org/ARCC/workshops/hyperbolicpoly.html
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An important specialisation of the Tutte polynomial is the characteristic
polynomial

χM (q) = (−1)rTM (1− q, 0) =
∑
A⊆E

(−1)|A|qr−rk(A). (IV.4)

The reduced characteristic polynomial is defined as

χ̄M (q) =
1

q − 1
χM (q). (IV.5)

Note that since E 6= ∅, χM (q) vanishes for q = 1, so χ̄M (q) is indeed a
polynomial. Huh and Katz proved the following theorem, generalising an
earlier result by Huh [57].

Theorem 2.1 ([58]). If M is a realisable matroid, then the coefficients
of its reduced characteristic polynomial χ̄M (q) form a log-concave sequence.

It is easy to see that log-concavity of χ̄M (q) implies log-concavity of
χM (q). We are interested in the f -polynomial of the matroid given by

fM (q) = TM (1 + q, 1) =
∑
A∈∆

qr−rk(A) =
r∑
i=0

fiq
r−i. (IV.6)

3. Free (co-)extensions

In this section we will introduce free (co-)extensions of matroids. This
will help us to establish a connection between the characteristic polynomial
and the f -polynomial. In conjunction with Theorem 2.1, this connection
implies log-concavity of the f -polynomial of realisable matroids.

Definition 3.1. Let M = (E,∆) be a matroid of rank r and let e 6∈ E.
The free extension of M (by e) is the matroid M + e = (E ∪ {e},∆ + e),
where

∆ + e := ∆ ∪ {(I ∪ {e}) : I ∈ ∆ and |I| ≤ r − 1}. (IV.7)

Several properties of the free extension are described in [16, 7.3.3. Pro-
position].

Remark 3.2. If M is realised over the field K by the list of vectors
X ⊆ Kr, then M + e is realised by the list (X,x), where x ∈ Kr is a vector
that is not contained in any (linear) hyperplane spanned by the vectors in
X. If K is a finite field, such a vector might not exist. However, if M is
realisable over the field K, it is also realisable over the infinite field K(t) of
rational functions in t with coefficients in K.

Recall that the dual matroid M∗ = (E,∆∗) is given by

∆∗ = {A : rk(E \A) = r}. (IV.8)

The dual matroid has rank r∗ = |E| − r and its rank function is given by
rk∗(A) = |A| + rk(E \ A) − r. The Tutte polynomial satisfies TM (x, y) =
TM∗(y, x). We will use the free coextension M × e of a matroid M which is
defined as

M × e := (M∗ + e)∗. (IV.9)
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Equivalently, the free coextension of M is the extension by a non-loop e
which is contained in every dependent flat [77, Section 7.3].

Proposition 3.3. Let M be a matroid of rank r and let M × e denote
its free coextension. Then,

(−1)r+1χM×e(−q) = (1 + q)fM (q). (IV.10)

Proof. For the proof of this statement, we use the fact that both the
characteristic polynomial and the f -polynomial are evaluations of the Tutte
polynomial. Note that the matroid M × e has rank r + 1. To simplify
notation, the rank functions of M∗ and M∗ + e are both denoted by rk∗.

(−1)r+1χM×e(−q) = TM×e(1 + q, 0) = TM∗+e(0, 1 + q) (IV.11)

=
∑

A⊆E∪{e}

(−1)r
∗−rk∗(A)q|A|−rk∗(A) (IV.12)

=
∑
A⊆E

(
(−1)r

∗−rk∗(A)q|A|−rk∗(A)

+ (−1)r
∗−rk∗(A∪e)q|A|+1−rk∗(A∪e)

) (IV.13)

= (1 + q)
∑
A⊆E

rk∗(A)=r∗

q|A|−r
∗

= (1 + q)TM∗(1, 1 + q)

(IV.14)
= (1 + q)TM (1 + q, 1) = (1 + q)fM (q) (IV.15)

(IV.14) is equal to (IV.13) because rk∗(A) < r∗ implies that rk∗(A ∪ e) =
rk∗(A) + 1. For those A, the summands vanish. �

Remark 3.4. Proposition 3.3 appeared implicitly in an article by Tom
Brylawski on (reduced) broken-circuit complexes [19].

In Section 5 we will give another proof of Proposition 3.3 for matroids
that are realisable over a field of characteristic zero. This proof uses zono-
topal algebra.

Proof of Theorem 1.1. Combine Proposition 3.3 and Theorem 2.1.
Bear in mind that free coextensions of realisable matroids are realisable
(cf. Remark 3.2). �

Example 3.5. We consider the uniform matroid U2,6, i. e. the matroid
on six elements where every set of cardinality at most two is independent.
Note that U2,6 × e = (U4,6 + e)∗ = U∗4,7 = U3,7.

fU2,6(q) = q2 + 6q + 15

(−1)3χU3,7(−q) = q3 + 7q2 + 21q + 15 = (q + 1)fU2,6(q)

4. h-vectors, f-vectors, and strict log-concavity

This section contains some results on connections between (strict) log-
concavity of h-vectors and f -vectors and the matroid operation thickening.
In Subsection 4.1 we will show that log-concavity of h-vectors implies strict
log-concavity of f -vectors. In Subsection 4.2 we will show that strict log-
concavity of f -vectors implies strict log-concavity of h-vectors of certain
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thickenings of a matroid. In Subsection 4.3, we will discuss possible locations
of the modes of f -vectors.

As one might expect, a sequence of real numbers is called strictly log-
concave if it is log-concave and all inequalities are strict.

4.1. h-vectors and strict log-concavity. In this subsection we will
show that log-concavity of h-vectors implies strict log-concavity of f -vectors.
The former was shown very recently by June Huh in the case of matroids
that are realisable over a field of characteristic zero [56].

The fact that f -vectors of a large class of matroid complexes are strictly
log-concave indicates that they might satisfy even stronger inequalities as
Mason conjectured.

Definition 4.1. LetM be a matroid of rank r. Its h-vector (h0, . . . , hr)
consists of the coefficients of the h-polynomial defined by the equation
hM (q) =

∑r
i=0 hiq

r−i = fM (q − 1), i. e.

hj =

j∑
i=0

(−1)j−i
(
r − i
j − i

)
fi for i = 0, . . . , r. (IV.16)

It is well-known that log-concavity of h-vectors implies log-concavity of
f -vectors (see [11, Corollary 8.4], [17, Proposition 6.13], [27]). In fact, it
implies even strict log-concavity of f -vectors. This is a consequence of the
following lemma.

Lemma 4.2. Let a0, . . . , ar be non-negative integers and a0 6= 0. Suppose
that the polynomial a(q) =

∑r
i=0 aiq

r−i is log-concave. Then, the polynomial
b(q) =

∑r
i=0 biq

r−i = a(q + 1) is strictly log-concave.

Proof. Our proof is inspired by Dawson’s proof in [27]. For 0 ≤ k ≤ r,
we define ak(q) =

∑k
i=0 aiq

k−i and bk(q) =
∑k

i=0 bi,kq
k−i = ak(q + 1).

The polynomials ak(q) are by construction log-concave. We show by
induction over k that this implies log-concavity of the polynomials bk(q).
This is sufficient since b(q) = br(q).

For k ≤ 1, nothing needs to be shown. For k = 2, we need to check one
inequality:

b21 = (a1 + 2a0)2 = a2
1 + 4a0a1 + 4a2

0 (IV.17)

≥ a0a2 + 4a0a1 + 4a2
0 > a0(a2 + a1 + a0) = b0b2. (IV.18)

Now let k ≥ 3. Note that

bk+1(q) = ak+1(q + 1) = (q + 1)ak(q + 1) + ak+1 = (q + 1)bk(q) + ak+1.

This polynomial is strictly log-concave if (q + 1)(qbk(q) + ak+1) = q((q +
1)bk(q) + ak+1) + ak+1 is, since setting the q0 coefficient to zero followed by
a division by q preserves strict log-concavity.

It is an easy exercise to show that multiplication by (q + 1) preserves
strict log-concavity of a polynomial in q. Hence, it is sufficient to prove that
(qbk(q) + ak+1) is strictly log-concave. By induction, we only need to check
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the inequality involving the term ak+1, i. e. b2k,k > bk−1,kak+1:

b2k,k − bk−1,kak+1 = (a0 + . . .+ ak)
2 −

k−1∑
j=0

(k − j)ajak+1 (IV.19)

≥ (a0 + . . .+ ak)
2 −

k−1∑
j=0

k−j∑
i=1

aj+iak+1−i (IV.20)

=
∑
i+j≤k

aiaj ≥ a2
0 ≥ 1. (IV.21)

To see that (IV.19) is greater than (IV.20), note that log-concavity of the
aj implies ajak+1 ≤ aj+iak+1−i for 1 ≤ i ≤ k − j. �

In a very recent preprint, June Huh proved the following result about
h-vectors of matroids that was conjectured by Jeremy Dawson in [27].

Theorem 4.3 ([56]). The h-vector of a matroid complex of a matroid
that is realisable over a field of characteristic zero is log-concave.

Combining this theorem with Lemma 4.2, we obtain the following Co-
rollary that slightly strengthens Theorem 1.1 in the case of matroids that
are realisable over a field of characteristic zero.

Corollary 4.4. The f -vector of a matroid complex of a matroid that
is realisable over a field of characteristic zero is strictly log-concave.

4.2. Thickenings. In this section we will introduce the matroid opera-
tion k-fold thickening and we show that the f -vector of a “sufficiently thick”
matroid is strictly log-concave if and only its h-vector is.

Definition 4.5. Let M = (E,∆) be a matroid and let k be a positive
integer. We define the k-fold thickening Mk of M to be the matroid on the
ground set E × {1, . . . , k} whose matroid complex is given by

∆k = {I ⊆ E × {1, . . . , k} : πE(I) ∈ ∆ and |πE(I)| = |I|}. (IV.22)

In this definition, πE : E × {1, . . . , k} → E denotes the projection to E.

Remark 4.6. If M is realised by a list of vectors X, Mk is realised by
the list Xk that contains k copies of every element of X.

Proposition 4.7. Let M = (E,∆) be a matroid of rank r and let f1

denote the number of elements in E that are not loops. Suppose that the f -
vector ofM is strictly log-concave. Then there exists an integer k0 ≤ (f1r)

3r

s. t. for all k ≥ k0, the h-vector of Mk, the k-fold thickening of M , is strictly
log-concave.

Put differently, for “sufficiently thick” matroids, the f -vector is strictly
log-concave if and only if the h-vector is strictly log-concave.

Remark 4.8. We expect that a careful analysis will yield an upper bound
on k0 that is a lot stronger.

Remark 4.9. One should note that Proposition 4.7 holds for arbitrary
matroids and even for other classes of simplicial complexes that have positive
h-vectors and that are closed under k-fold thickening.



5. ZONOTOPAL ALGEBRA AND MATROID POLYNOMIALS 73

Proof of Proposition 4.7. First, we observe the following connec-
tion between the f -polynomials of M and Mk:

fMk(q) =
r∑
i=0

kifiq
r−i = krfM

( q
k

)
. (IV.23)

Let (f0, . . . , fr) denote the f -vector of M and let (h′0, . . . , h
′
r) denote the

h-vector of Mk. By (IV.16), h′j =
∑j

i=0(−1)j−i
(
r−i
j−i
)
kifi. Hence,

(h′j)
2 =

(
j∑
i=0

(−1)j−i
(
r − i
j − i

)
kifi

)2

= k2jf2
j + o(k2j) (IV.24)

h′j−1h
′
j+1 =

(
j−1∑
i=0

(−1)j−i
(

r − i
j − i− 1

)
kifi

)(
j+1∑
i=0

(−1)j−i
(

r − i
j − i+ 1

)
kifi

)
= k2jfj−1fj+1 + o(k2j). (IV.25)

Thus, for large k, (h′j)
2 > h′j−1h

′
j+1 is equivalent to f2

j > fj−1fj+1. The
latter inequality holds by assumption.

For the upper bound on k0, note that Ed Swartz proved in [87] that

fi ≤
i∑

j=0

(
r − j
r − i

)((
r − 1

j

)
hr +

(
r − 1

j − 1

))
. (IV.26)

hr can be bounded above by the following argument: the h-vector of a
matroid complex is the h-vector of a multicomplex [84, Theorem II.3.3]. It
follows directly from (IV.16) that h1 = f1 − r. Hence, hr ≤

(
f1−1
r−1

)
. Thus,

we can deduce from (IV.26) that fi ≤ r2if r1 . Comparing this with (IV.24)
and (IV.25) implies the upper bound. �

Remark 4.10. Jason Brown and Charles Colbourn showed that every
matroid has a thickening s. t. its h-polynomial has only real zeroes [15]. This
implies that it is log-concave. Here, thickening denotes an operation where
additional copies of some elements of the ground set are added. In contrast
to the k-fold thickening, the number of additional copies can be different for
every element.

4.3. Modes of f-vectors. For a unimodal sequence f0, . . . , fr, it is
interesting to find the location of its modes, i. e. the element(s) where the
maximum of the sequence is attained.

Remark 4.11. The index of the smallest mode of the f -vector of a
rank r matroid is at least br/2c. In fact, the first half of the f -vector of
every matroid is strictly monotonically increasing [8, 7.5.1. Proposition]. The
minimum br/2c is attained by the uniform matroid Ur,r. Some matroids
have monotonically increasing f -vectors. It follows from (IV.23) that for
an arbitrary matroid M and sufficiently large k, the f -vector of the k-fold
thickening of M is strictly monotonically increasing.

5. Zonotopal algebra and matroid polynomials

Recall that the Hilbert series of the internal, central, and external zono-
topal spaces are evaluations of the Tutte polynomial (cf. Section I.4). In
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this section we will show that this implies that various matroid and graph
polynomials are evaluations of the Tutte polynomial. In addition, we will
give a proof of Proposition 3.3 that uses zonotopal algebra.

While this section and the following do not contain any new results,
we will point out some connections between combinatorics and zonotopal
algebra that might be useful in the future.

The two zonotopal spaces that are of interest to us now are the central
space P(X) and the internal space P−(X). Since we are only interested in
the Hilbert series, we sometimes just call them the central and the internal
space. Recall that if X is a list of rank r with N elements, their Hilbert
series are

Hilb(P(X), q) = qN−rTM(X)(1,
1

q
) (IV.27)

and Hilb(P−(X), q) = qN−rTM(X)(0,
1

q
). (IV.28)

Let X∗ ∈ K(N−r)×r denote a list of vectors realising the matroid dual to
the matroid realised by X. In the central case, we obtain

qr Hilb(P(X∗),
1

q
) = TM(X)(q, 1) (IV.29)

by dualising and by reversing the order of the coefficients. In the internal
case, we obtain

qr Hilb(P−(X∗),
1

q
) = TM(X)(q, 0) (IV.30)

by dualising and by reversing the order of the coefficients. By comparing
(IV.29) and (IV.30) with the definitions in Section 2 we obtain the following
result.

Proposition 5.1. Let X ⊆ Kr be a list of vectors spanning Kr. Then,

fX(q) = TM(X)(q + 1, 1) = (q + 1)r Hilb(P(X∗),
1

q + 1
)

and (−1)rχX(−q) = TM(X)(q + 1, 0) = (q + 1)r Hilb(P−(X∗),
1

q + 1
).

Remark 5.2. Proposition 5.1 can be restated as follows: the Hilbert
series of the internal space is equal to the h-polynomial of the broken-circuit
complex [19] of M(X∗) and the Hilbert series of the central space equals the
h-polynomial of the matroid complex of M(X∗) (cf. [8] (7.12) and (7.15)).

Remark 5.3. The sum of the entries of the h-vector of the broken circuit
complex (resp. the dimension of the internal space of the dual matroid) is
called the Möbius invariant. Recently, De Loera, Sturmfels and Vinzant
have shown that the degree of the central curve in linear programming is
the Möbius invariant of a certain matroid related to the linear program [41].

Example 5.4. Let X = ((1, 0), (0, 1), (1, 1)). X realises the uniform
matroid U2,3 and X∗ = (1, 1, 1).
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The Tutte polynomial is TM(X)(x, y) = x2 + x+ y.

P(X∗) = span{1, s, s2} P−(X∗) = span{1, s}
q2 Hilb(P(X∗), 1/q) = q2 + q + 1 q2 Hilb(P−(X∗), 1/q) = q2 + q

fM(X)(q) = q2 + 3q + 3 χM(X)(−q) = q2 + 3q + 2

Proposition 5.5. Let K be some field and let X ⊆ Kr be a list of
vectors spanning Kr. Let x ∈ Kr be generic, i. e. x is not contained in any
(linear) hyperplane spanned by the vectors in X. Then

P−(X,x) = P(X). (IV.31)

Proof. Recall that P−(X,x) =
⋂
y∈(X,x) P((X,x) \ y). This implies

that P(X) contains P−(X,x). Equality can be established by a dimension
argument: in [54], it is shown that the dimension of P(X) is equal to the
cardinality of the set B(X) of bases that can be selected from X and that
the dimension of P−(X) equals the number of internal bases in X, i. e. bases
that have no internally active elements. It can easily be seen that B ⊆ (X,x)
is an internal basis if and only if B is a basis and x 6∈ B. �

Remark 5.6. Proposition 5.1 and Proposition 5.5 imply Proposition 3.3
for realisable matroids. This is how the author (re-)discovered the con-
nection between the characteristic polynomial and the f -polynomial. The
author believes that in the future, zonotopal algebra will help to solve further
problems in matroid theory.

Question 5.7. We have seen that for P•(X) ∈ {P−(X),P(X)}, the
coefficients of the polynomial (q + 1)N−r Hilb(P•(X), 1/(q + 1))
(a) have a combinatorial interpretation and
(b) form a log-concave sequence.
For which other zonotopal spaces does this hold?

6. Graph polynomials and zonotopal algebra

In this section we will present some graph polynomials that are related
to internal and central zonotopal spaces. In all cases, the connection is made
via the Tutte polynomial. Even though this connection is rather straight-
forward, it has never been stated explicitly in the literature. A good survey
on graph polynomials that are related to the Tutte polynomial is [47] by
Joanna Ellis-Monaghan and Criel Merino.

Let G = (V,E) be a graph, possibly with multiple edges and loops. Let
M(G) denote the cycle matroid of G, i. e. the matroid on the ground set
E whose bases are the spanning trees of the graph G. If κ(G) denotes the
number of connected components of G, then M(G) has rank rk(M(G)) =
|V |−κ(G). Let X(G) denote a reduced oriented incidence matrix of G. Note
that X(G) realises the matroid M(G).

6.1. Chromatic and flow polynomials. The chromatic polynomial
and the flow polynomial of a graph are related to the internal space P−(X).

The chromatic polynomial χG of G evaluated at q ∈ N equals the number
of proper colourings of the graphG with q colours. The chromatic polynomial
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is equal to the characteristic polynomial of M(G) up to a factor:

χG(q) = (−1)rk(M(G))qκ(G)TM(G)(1− q, 0). (IV.32)

Hence,

(−1)rk(M(G))χG(−q) = (q + 1)rk(M(G))qκ(G) Hilb(P−(X(G)∗),
1

q + 1
).

Let ~E denote an orientation of the edges of G and let q ≥ 2. A nowhere-zero
q-flow is an assignment E → {1, . . . , q − 1} s. t. for each vertex, the sum
over the incoming edges equals the sum over the outgoing edges modulo q.
The function φG(q) which counts the number of nowhere zero q-flows is a
polynomial and independent of the orientation ~E:

φG(q) = (−1)|E|−rk(M(G))TM(G)(0, 1− q). (IV.33)

Hence, φG(q) is equal to the characteristic polynomial of the dual matroid.
This implies that by the result of Huh and Katz, the coefficients of φG(q)
form a log-concave sequence. Furthermore,

φG(q) = (q − 1)|E|−rk(M(G)) Hilb(P−(X(G)), 1/(1− q)). (IV.34)

6.2. Chip-firing games, shellings, and reliability. Three graph
and matroid polynomials are related to the central space P(X): the crit-
ical configuration polynomial, the shelling polynomial, and the reliability
polynomial.

The critical configuration polynomial PG(q) := TM(G)(1, q) is related to
chip-firing games played on the graph G. Its qi coefficient equals the number
of critical configurations of level i in the chip-firing game played on the graph
G. The polynomial hM (q) := TM (q, 1) that we defined in Definition 4.1
is also called the shelling polynomial of the matroid M . This polynomial
encodes certain combinatorial properties of shellings of the matroid complex
of M .

By (IV.27), the shelling polynomial hM (q) and the critical configuration
polynomial PG(q) are evaluations of the Hilbert series of the central P-space
of X(G) resp. of a realisation of M∗. For further information on these two
polynomials, see [8] and [47, Sections 6.4 and 6.6].

Let G = (V,E) be a connected graph on n vertices. Let RG(p) denote
the probability that G is connected if each edge is independently removed
with probability p. The function RG(p) is a polynomial [15]. It is called
reliability polynomial of G and it can be be expressed in the following way:

RG(p) = (1− p)n−1

|E|−n+1∑
i=0

hip
i (IV.35)

= (1− p)n−1p|E|−n+1TG(1,
1

p
). (IV.36)

The hi denote the coefficients of the h-polynomial of the cycle matroid of
G. The relationship between the h-vector and the reliability polynomial im-
plies that bounds for the h-vector (e. g. Huh’s result [56] resp. Theorem 4.3)
might have some real-world applications in determining the reliability of a
network. Brown and Colbourn [15, p. 117] state that if log-concavity of
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the h-vector “holds for matroids arising in reliability problems, it would im-
ply stronger constraints on the relation between coefficients in the h-vector
than does Stanley’s conditions. These conditions can be incorporated in the
Ball-Provan strategy for computing reliability bounds and, hence, would lead
to an efficient bounding technique of the reliability polynomial.”

Example 6.1. Let G be the complete graph on three vertices. Its cycle
matroid is realised by the matrix X in Example 5.4. Recall that the Tutte
polynomial of this matroid is TG(x, y) = x2 + x+ y. Hence

χG(q) = q3 − 3q2 + 2q, φG(q) = q − 1,

hG(q) = q2 + q + 1, PG(q) = q + 2, and RG(p) = (1− p)2(1 + 2p).

7. Arithmetic matroids and log-concavity

It is interesting to find out which properties of matroids have a suitable
analogue for arithmetic matroids. In this section we will give an example
which shows that the f -polynomial and the characteristic polynomial of an
arithmetic matroid (cf. Section I.6) are in general not log-concave.

The f -polynomial and the characteristic polynomial of a matroid are
specialisations of the Tutte polynomial. The f -polynomial and the char-
acteristic polynomial of an arithmetic matroid are defined to be the same
specialisations of the arithmetic Tutte polynomial. Let (M,m) be an arith-
metic matroid of rank r on the ground set E. Then we define

f(M,m)(q) :=
∑
A⊆E

A independent

m(A)qr−|A| = M(M,m)(q + 1, 1) (IV.37)

and χ(M,m)(q) :=
∑
A⊆E

(−1)|A|m(A)qr−rk(A) = (−1)rM(M,m)(1− q, 0).

Incidentally, if (M,m) is realised by the list X, χ(M,m)(q) is the character-
istic polynomial of the toric arrangement defined by the list X just as the
characteristic polynomial of a realisable matroid is the characteristic polyno-
mial of the hyperplane arrangement defined by a realisation of the matroid.

It is a natural question to ask whether f(M,m) and χ(M,m)(q) are log-
concave. In general this is false as we can see from the following example.

Example 7.1. Let ei denote the ith unit vector in Rr. Let α ∈ Z and
let

X := (e1, e2, . . . , er−1, e1 + . . .+ er−1 + αed) (IV.38)

We consider the arithmetic matroid (MX ,m) defined by the list X. X
is a basis for Rr and all strict sublists of X have multiplicity one. The
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multiplicity of X is α. Hence,

M(M,m)(x, y) = α+
r∑
i=1

(
r

i

)
(x− 1)i, (IV.39)

f(M,m)(q) = qr +

(
r

1

)
qr−1 + . . .+

(
r

r − 1

)
q1 + α, (IV.40)

and χ(M,m)(q) = qr −
(
r

1

)
qr−1 + . . .±

(
r

r − 1

)
q1 ∓ α. (IV.41)

For sufficiently large α and r ≥ 2, the polynomials f(M,m)(q) and χ(M,m)(q)
are not log-concave and for r ≥ 4, they are not even unimodal.

A special case of Example 7.1 is mentioned in [22, Section 8]. It was
suggested to the authors of that paper by the author of this thesis.
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