Differentiability of martingale driven BSDE and application to hedging in incomplete markets

Peter Imkeller, Anthony Réveillac, Anja Richter

Humboldt Universität zu Berlin

IRTG Stochastic Models of Complex Processes

Summer School
Chorin, September 2009
Motivation

Risk source: n-dimensional SDE

$$dR_s = \sigma(s, R_s) dM_s + b(s, R_s) dC_s$$

with M d-dim. continuous local martingale, $d\langle M, M \rangle_s = q_s q_s^* dC_s$

Aim: price and hedge a derivative of the form $F(R_T)$

Correlated financial market: $k \leq d$ assets

$$dS_s = S_s(\beta(s, R_s) dM_s + \alpha(s, R_s) dC_s)$$

Preferences:

$$U(x) = -e^{-\eta x}, \quad 0 < \eta = \text{risk aversion}$$
Value function:

\[V^F(x, t, r) = \sup_{\lambda} \mathbb{E} \left[U(x + \sum_{i=1}^{k} \int_t^T \lambda_s^{(i)} \frac{dS_s^{(i)}}{S_s^{(i)}} - F(R^t_r)) \right] \]

What is a BSDE (M=W)?

A BSDE with terminal condition \(B \) and generator \(f \) is an equation of the type

\[Y_t = B - \int_t^T Z_s dW_s + \int_t^T f(s, Y_s, Z_s) ds. \]

\[\rightarrow \text{A solution is a pair of adapted processes } (Y, Z). \]
Theorem (Hu et al. ’05, Morlais ’08)

The value function satisfies

\[V^F(x, t, r) = U(x - Y^F_{t}, t, r) \]

and the optimal strategy \(\pi^F \) is given by

\[\pi^F_s = Z^F_{s, t}, t, r q^*_s \beta^*(\beta^*)^{-1}(s, R^t_{s}, r) + \frac{1}{\eta} \alpha^*(\beta^*)^{-1}(s, R^t_{s}, r), \]

where \((Y^F_{t}, t, r, Z^F_{t}, t, r)\) is the solution of a certain quadratic BSDE with terminal value \(F(R_T) \).
Indifference pricing and delta hedging

Decomposition:

\[\pi^F = \pi^0 + \Delta = \text{pure investment} + \text{optimal hedge} \]

Indifference price:

\[V^F(x - p(t, r), t, r) = V^0(x, t, r) \]

Theorem (Ankirchner et al. ’07)

Let \(M \) be the Brownian motion. The indifference price is given by

\[p(t, r) = Y^0_{t, t, r} - Y^F_{t, t, r}. \]

The optimal hedge \(\Delta \) can be derived explicitly

\[\Delta(t, r) = \left[Z^0_{t, t, r} - Z^F_{t, t, r} \right] \beta^* (\beta \beta^*)^{-1}(t, r) \]

\[= [-\partial_2 p(t, r) \sigma(t, r)] \beta^* (\beta \beta^*)^{-1}(t, r). \]
Theorem (Ankirchner et al. '07)

Let f be of quadratic growth, i.e. $|f(\cdot, z)| \leq C(1 + |z|^2)$.

Assume that σ, b are Lipschitz, have uniformly bounded partial derivatives, f is differentiable in r, z, ...

Then

- **Markov property:**

 $$Y_{s}^{t,r} = u(s, R_{s}^{t,r}),$$

- **$Y^{t,r}$ is continuously differentiable in r and Malliavin differentiable:**

 $$D_\theta Y_{s}^{t,r} = \partial_2 u(s, R_{s}^{t,r}) D_\theta R_{s}^{t,r}$$

- **Malliavin trace:**

 $$Z_{s}^{t,r} = D_{s} Y_{s}^{t,r} = \partial_2 u(s, R_{s}^{t,r}) \sigma(s, R_{s}^{t,r}).$$
Our aim

Brownian setting: If the coefficients σ, b and f are nice, then

$$Y_{s^{t,r}} = u(s, R_{s^{t,r}})$$
$$Z_{s^{t,r}} = \partial_2 u(s, R_{s^{t,r}}) \sigma(s, R_{s^{t,r}})$$

Question: Does this relation between Y and Z hold in other settings, f.e. in a continuous martingale setting?
What is a martingale driven BSDE?

- M continuous d-dim. martingale, (\mathcal{F}_t) cont. and complete and thus every martingale is of the form $Z \cdot M + L$
- $d\langle M, M \rangle_t = q_t q^*_t dC_t$
- B \mathcal{F}_T-measurable r.v.
- $f: \Omega \times [0, T] \times \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$ Borel-measurable function

A BSDE with terminal value B and generator f is an equation

$$Y_t = B - \int_t^T Z_s dM_s - \int_t^T dL_s + \frac{\eta}{2} \int_t^T d\langle L, L \rangle_s$$
$$+ \int_t^T f(s, Y_s, Z_s) dC_s.$$

A solution is a triple of adapted processes (Y, Z, L) such that the above equation makes sense.
Our Setting - Martingale driven FBSDE

- M continuous d-dim. martingale

For $(x, m) \in \mathbb{R}^n \times \mathbb{R}^d$ and $t \in [0, T]$ we consider

$$X^{x,m}_t = x + \int_0^t \sigma(s, X^{x,m}_s, M^m_s) dM_s + \int_0^t b(s, X^{x,m}_s, M^m_s) dC_s$$

with solution processes $(X^{x,m}, Y^{x,m}, Z^{x,m}, L^{x,m})$.

Anja Richter, richtera@math.hu-berlin.de
Differentiability of martingale driven BSDE
Our Setting - Martingale driven FBSDE

- \(M\) continuous \(d\)-dim. martingale
- \(F\) is a bounded function
- \(f\) is quadratic in \(z\)

For \((x, m) \in \mathbb{R}^n \times \mathbb{R}^d\) and \(t \in [0, T]\) we consider

\[
X_t^{x, m} = x + \int_0^t \sigma(s, X_s^{x, m}, M_s^m) dM_s + \int_0^t b(s, X_s^{x, m}, M_s^m) dC_s
\]

\[
Y_t^{x, m} = F(X_T^{x, m}) - \int_t^T Z_r^{x, m} dM_r - \int_t^T dL_r^{x, m} + \frac{\eta}{2} \int_t^T d\langle L_r^{x, m}, L_r^{x, m} \rangle_r
\]

\[+ \int_t^T f(r, X_r^{x, m}, M_r^m, Y_r^{x, m}, Z_r^{x, m} q^*_r) dC_r\]

with solution processes \((X^{x, m}, Y^{x, m}, Z^{x, m}, L^{x, m})\).
The Markov property

Theorem (IRR ’09)

Let $M_{t,m}$ be a strong Markov process. Then there exist deterministic functions u and v such that for $s \in [t, T]$

$$Y_{s}^{t,x,m} = u(s, X_{s}^{t,x,m}, M_{s}^{t,m}), \quad Z_{s}^{t,x,m} = v(s, X_{s}^{t,x,m}, M_{s}^{t,m}).$$

Anja Richter, richtera@math.hu-berlin.de

Differentiability of martingale driven BSDE
Differentiability of Y

Difficulty: Presence of $\langle L^x,m, L^x,m \rangle$ in

$$Y^x,m_t = F(X^x,m_T) - \int_t^T Z^x,m_r dM_r - \int_t^T dL^x,m_r + \frac{\eta}{2} \int_t^T d\langle L^x,m, L^x,m \rangle_r$$

$$+ \int_t^T f(r, X^x,m_r, M^m_r, Y^x,m_r, Z^x,m_r q^*_r) dC_r$$

Introduce assumption (MRP):
There exists a square-integrable martingale N with $\langle M, N \rangle = 0$ and such that (M, N) satisfies the martingale representation property.

$$\implies \exists \text{ process } U^x,m \text{ such that } L^x,m = U^x,m \cdot N$$
Theorem (IRR '09)

Let (MRP) be satisfied, $\partial_i f$ of linear growth in $z,...$

Then there exists a modification $(Y^{x,m}, Z^{x,m}, U^{x,m})$ such that

- $Y^{x,m}$ is continuously differentiable in x and m,
- and there exist processes $\partial_x Z^{x,m}, \partial_m Z^{x,m}$ and $\partial_x U^{x,m}, \partial_m U^{x,m}$ such that the derivatives

$$ (\partial_x Y^{x,m}, \partial_x Z^{x,m}, \partial_x U^{x,m}) \text{ and } (\partial_m Y^{x,m}, \partial_m Z^{x,m}, \partial_m U^{x,m}) $$

solve BSDEs.
The representation formula

Theorem (IRR '09)

If

- $Y^{t,x,m}_s = u(s, X^{t,x,m}_s, M^{t,m}_s)$ and
- $Y^{t,x,m}$ continuously differentiable in (x, m).

Then

$$Z^{t,x,m}_s = \partial_2 u(s, X^{t,x,m}_s, M^{t,m}_s) \sigma(s, X^{t,x,m}_s, M^{t,m}_s)$$

$$+ \partial_3 u(s, X^{t,x,m}_s, M^{t,m}_s).$$

Anja Richter, richtera@math.hu-berlin.de

Differentiability of martingale driven BSDE
Hedging with stochastic correlation [Ankirchner, Heyne '09]

- $F(R_T) =$ derivative of risk R with payoff function F
- $S =$ correlated traded asset

\[
dS_t = S_t (\mu_S dt + \sigma_S dW^1_t)
\]
\[
dR_t = R_t (\mu_R dt + \sigma_R (\rho_t dW^1_t + \sqrt{1-\rho_t^2} dW^2_t)),
\]

where ρ is the stochastic correlation with dynamics

\[
d\rho_t = a(\rho_t) dt + g(\rho_t) (\gamma dW^1_t + \delta dW^2_t + \sqrt{1-\gamma^2-\delta^2} dW^3_t).
\]

Aim: Find a local risk minimizing hedge for $F(R_T)$.
FS decomposition and BSDEs

- Standard method for deriving the local risk minimizing strategy π is based on FS decomposition

\[F(R_T) = C + \int_0^T \pi_u dS_u + L_T. \]

- Let (Y, Z) be the solution of the linear BSDE

\[Y_t = F(R_T) - \int_t^T Z_u dW_u - \int_t^T Z_u \frac{\mu_S}{\sigma_S} du. \]

Then FS decomposition of $F(R_T)$ is given by

\[F(R_T) = Y_0 + \int_0^T \frac{Z_u^1}{\sigma_S S_u} dS_u + \int_0^T Z_u^2 dW_u^2 + \int_0^T Z_u^3 dW_u^3. \]
Optimal hedge

Hedging strategy $\pi = \frac{Z^1}{\sigma_S S} \rightsquigarrow$ Explicit description of π?

The solution of

$$Y_t = F(R_T) - \int_t^T Z_u dW_u - \int_t^T Z^1_u \frac{\mu_S}{\sigma_S} du.$$

can be described in terms of

$$u(t, x, \nu) = E^Q \left[h(R^t_{T, x, \nu}) \right], \text{ i.e. } Y_t = u(t, R_t, \rho_t).$$

Difficulty: $x \mapsto u(t, x, \nu)$ is only locally Lipschitz continuous \rightsquigarrow no (direct) access to the chain rule of Malliavin Calculus

With the representation formula

$$Z_t = \sigma(t, R_t, \rho_t)^* \begin{pmatrix} \partial_2 u(t, R_t, \rho_t) \\ \partial_3 u(t, R_t, \rho_t) \end{pmatrix}.$$
Literature

- *Pricing and hedging based on non-tradable underlyings*
 S. Ankirchner, P. Imkeller, G. Dos Reis, to appear in Math. Finance

- *Differentiability of quadratic BSDE generated by continuous martingales and hedging in incomplete markets*

- *Quadratic BSDEs driven by continuous martingales and applications to the utility maximization problem*
 M.-A. Morlais, Finance Stoch., 2009

- *Cross hedging with stochastic correlation*
 S. Ankirchner, G. Heyne, 2009

Thank you for your attention!