Duality of Markov processes with respect to a function

Sabine Jansen
Ruhr-Universität Bochum, Germany

joint work with Noemi Kurt (TU Berlin)

Mini-workshop Duality of Markov processes and applications to spatial population models,
Berlin, 6-7 November 2014
Duality is a useful tool in a variety of areas – e.g., random walks with absorbing / reflecting barriers, queuing theory Feller, Asmussen, diffusions, interacting particle systems Liggett, hydrodynamic limits, population genetics...

Basic idea: in order to understand the long-time behavior of some complicated process, follow a simpler, dual process backwards in time.

Related: duality wrt a measure (potential theory Hunt ’57-58).
General theory available.

Question: general theory for duality wrt a function?
Outline

1. Duality with respect to a measure

2. Duality of linear operators. Existence and uniqueness

3. Spectrum

5. Quantum mechanics
Definition

- E and F Polish spaces (Borel σ-algebra).
- (X_t) and (Y_t) Markov processes with state spaces E and F.
- $H : E \times F \to \mathbb{R}$ bounded, measurable (duality function).

(X_t) and (Y_t) are dual with respect to the function H if for all $t > 0$, $x \in E$ and $y \in F$,

$$
\mathbb{E}_x H(X_t, y) = \mathbb{E}^y H(x, Y_t)
$$

\mathbb{E}_x: (X_t) started in x, \mathbb{E}^y: (Y_t) started in y.

In terms of the semi-groups (P_t) and (Q_t):

$$
\int_E P_t(x, dx') H(x', y) = \int_F Q_t(y, dy') H(x, y')
$$

Finite state spaces: matrix equation (A^T: transposed)

$$
P_t H = HQ_t^T.
$$

Special case: $H = \text{diag}(1/\mu(x))$:

$$
\mu(x) P_t(x, y) = \mu(y) Q_t(y, x).
$$

Duality wrt measure \approx duality wrt diagonal function.
Pathwise duality

Fix a time horizon $T > 0$, starting points $x \in E$, $y \in F$. Dual processes can be defined on common probability space so that $X_0 = x$, $Y_0 = y$ \mathbb{P}-a.s. and

$$E H(x, Y_T) = E H(X_t, Y_{T-t}) = E H(X_T, y).$$

= weak pathwise duality. Often, processes can be coupled in such a way that

$$\forall t \in [0, T] : H(x, Y_T) = H(X_t, Y_{T-t}) = H(X_T, y) \quad \mathbb{P}\text{-a.s.}$$

= strong pathwise duality. Examples:

- $H(x, y) = 1(x \leq y)$ on totally ordered spaces Clifford, Sudbury ’85:

 $$\forall t \in [0, T] : x \leq Y_T \iff X_t \leq Y_{T-t} \iff X_T \leq y. \quad \mathbb{P}\text{-a.s.}$$

- Interacting particle systems with “graphical representations”.

- Stochastic recursions: common “driving sequence” (W_n), recurrence relations

 $$X_{n+1} = f(X_n, W_n), \quad Y_{n+1} = g(Y_n, W_{T-n}).$$

 Ex. random walks, $W_n = \text{“up” or “down”}$ Lindley ’52, books by Feller, Asmussen.
Duality with respect to a measure

Discrete state spaces: if \(\mu(x) > 0 \) for all \(x \) and \((P_t) \) and \((Q_t) \) are time reversals of each other wrt \(\mu \), then \(H(x, y) = \frac{1}{\mu(x)} \delta_{x,y} \) is a duality function. What about continuous state spaces?

Definition: \(\mu \) \(\sigma \)-finite measure on \(E = F \). Processes \((X_t) \), \((Y_t) \) with semi-groups \((P_t) \), \((Q_t) \) and resolvents \((R_\lambda) \), \((\hat{R}_\lambda) \) are in duality wrt \(\mu \) if

- For all \(\lambda, x, y \), \(R_\lambda(x, \cdot) \) and \(\hat{R}_\lambda(x, \cdot) \) are abs. cont. wrt. \(\mu \).
- For all \(\lambda \) and \(f, g \geq 0 \), \(\int_E (P_tf)g \, d\mu = \int_E f(Q_tg) \, d\mu \).

Theorem Let \((P_t), (Q_t) \) be in duality wrt \(\mu \). Write

\[
R_\lambda(x, dy) = r_\lambda(x, y) \mu(dy), \quad \hat{R}_\lambda(x, dy) = r_\lambda(y, x) \mu(dy)
\]

Functions \(y \mapsto r_\lambda(x, y) \) and \(x \mapsto r_\lambda(x, y) \) \(\lambda \)-excessive wrt \((R_\lambda) \) resp. \((\hat{R}_\lambda) \). Then for all \(\lambda > 0 \), \(r_\lambda(x, y) \) is a duality function for \((X_t), (Y_t) \).

Blumenthal, Getoor: *Markov processes and potential theory.*
Duality of linear operators

Question: Relation with notions of duality in functional analysis?

Natural framework: dual pairs / duality wrt bilinear form.

Def.: \(V, W \) vector spaces. Bilinear form \(\langle \cdot, \cdot \rangle : V \times W \to \mathbb{R} \) called non-degenerate if right null space is trivial

\[
\mathcal{N}_R = \{ w \in W | \forall v \in V : \langle v, w \rangle = 0 \} = \{0\}
\]

and left null space is trivial. \((V, W, \langle \cdot, \cdot \rangle)\) is a dual pair.

Linear operators \(S : V \to V, T : W \to W \) are dual wrt \(\langle \cdot, \cdot \rangle \) if

\[
\forall v \in V \forall w \in W : \langle Sv, w \rangle = \langle v, Tw \rangle.
\]

Notion useful in study of weak topologies, locally convex vector spaces. s
Application to duality of Markov processes

- $\mathcal{M}(E)$ = finite signed Borel measures on E.
- Bilinear form associated with H:
 \[B_H : \mathcal{M}(E) \times \mathcal{M}(F) \rightarrow \mathbb{R}, \quad B_H(\mu, \nu) := \int_{E \times F} H(x, y) \mu(dx)\nu(dy). \]
- \[(P_t^* \mu)(A) = (\mu P_t)(A) = \int_E \mu(dx)P_t(x, A).\]

Observation: Markov semi-groups (P_t) and (Q_t) dual wrt H iff
\[
\forall t > 0 \ \forall \mu \in \mathcal{M}(E) \ \forall \nu \in \mathcal{M}(F) : \quad B_H(P_t^* \mu, \nu) = B_H(\mu, Q_t^* \nu).
\]

H duality function for $(P_t), (Q_t) \Leftrightarrow (P_t^*), (Q_t^*)$ dual wrt bilinear form B_H.

Question: Given: (P_t) and H, existence of a dual Markov semi-group (Q_t)? Uniqueness?
Uniqueness

Functional analysis fact: The dual of a given operator with respect to a non-degenerate bilinear form is unique.

Consequence: if B_H is non-degenerate then the dual, if it exists, is unique. Applies to a lot of common duality functions:

- Siegmund dual: $H(x, y) = \mathbf{1}(x \leq y), x, y \in \mathbb{R}$.
- Moment dual: $H(x, n) = x^n, x \in [0, 1], n \in \mathbb{N}_0$.
- Laplace dual: $H(x, \lambda) = \exp(-\lambda x), \lambda, x \in [0, \infty)$.

Uniqueness in moment problems, injectivity of the Laplace transform.

Remark: Connection with kernel identities used in integrable quantum systems (Toda, Calogero-Moser systems) related to Doob h-transforms / non-colliding processes. Non-degeneracy does not come for free. **Ruijsenaars ’13** *On positive Hilbet-Schmidt operators*
Existence

Functional analysis fact: Every bounded operator in a Hilbert space has a unique adjoint. Every bounded operator in a Banach space has a unique dual operator. But: for general dual pairs, a given operator need not have a dual (need continuity in suitable weak topology...)

Consequence: semi-group \((P^*_t)\) need not have a dual semi-group of operators \(T_t : M(F) \rightarrow M(F)\).

Additional problem: dual operator semi-group need not come from a Markov semi-group – need to know whether \((T_t \nu)(A) = \int_F \nu(dy)Q_t(y, B)\) for Markov semi-group \((Q_t)\).

Existence and uniqueness criteria available for Siegmund duality in totally ordered state spaces (stochastic monotonicity). Generalization?

Key: invariance of convex sets Möhle.
Existence, continued

\[\mathcal{M}(F) = \text{signed Borel measures}, \quad \mathcal{M}_{1,+}(F) = \text{probability measures}. \]

Images

\[\mathcal{V} = \left\{ \int_F H(\cdot, y) \nu(dy) \mid \nu \in \mathcal{M}(F) \right\} \subset L^\infty(E) \]

\[\mathcal{V}_{1,+} = \left\{ \int_F H(\cdot, y) \nu(dy) \mid \nu \in \mathcal{M}_{1,+}(F) \right\} \subset \mathcal{V}. \]

Analogous subsets \(\mathcal{W}_{1,+} \subset \mathcal{W} \subset L^\infty(F) \).

Finite state spaces: linear / convex combinations of rows / columns of \(H \).

Proposition Let \(E \) and \(F \) be countable, discrete state spaces and \(P \) a \(E \times E \) stochastic matrix. Then

1. \(PH = HQ^T \) has a solution \(Q = (Q(x, y))_{x, y \in F} \) with \(\sum_z |Q(y, z)| < \infty \) for all \(y \) iff \(\mathcal{V} \) is invariant.

2. \(Q \) can be chosen as a stochastic matrix iff \(\mathcal{V}_{1,+} \) is invariant.

Siegmund duality \(H(x, y) = 1(x \leq y) \) in totally ordered state spaces: \(\mathcal{V}_{1,+} \) = monotone increasing functions. Recover known relationship Siegmund duality / stochastic monotonicity.
Existence, continued

In continuous time and space, more delicate – Chapman-Kolmogorov and measurability issues, theorems for non-degenerate H given by Möhle.

Convex combination of the columns of H:

$$V_{1,+} = \left\{ \int_F H(\cdot, y) \nu(dy) \mid \nu \in \mathcal{M}_{1,+}(F) \right\} \subset L^\infty(E).$$

Theorem E, F locally compact, $H : E \times F \to \mathbb{R}$ continuous, non-degenerate. Then

- (P_t) has a H-dual Markov semi-group if and only if $V_{1,+}$ is invariant.
- The dual (Q_t) is unique.
- The dual is a Feller semi-group if and only if (P_t) is.

Example: moment duality.
Finite state spaces: if $P_t H = HQ_t^T$ and H is invertible, then P_t and Q_t have the same eigenvalues.

In infinite state spaces, non-degenerate duals need not have the same spectrum.

Unless processes are reversible!

Theorem: (P_t), (Q_t) dual with non-degenerate duality function H. Assume that (X_t) and (Y_t) have symmetrizing measures μ and ν. Then (P_t) and (Q_t), as operators in $L^2(E, \mu)$ and $L^2(F, \nu)$, are unitarily equivalent. In particular, same spectrum.
Convex geometry & cone dual: definitions

Klebaner, Rösler, Sagitov ’07, Möhle ’11: duality wrt a **convex set** rather than a function.

Simplex in \mathbb{R}^n: non-empty convex, compact set such that every point in C is a unique convex combination of its extremal points $\text{ex}C$.

Choquet simplex: generalization to locally convex vector spaces; bijection simplex \leftrightarrow probability measures on $\text{ex}C$, **unique integral representation**. Characterization via partial order defined by cone $\{\lambda f \mid f \in C, \lambda \geq 0\}$.

Proposition B_H non-degenerate, $H \in C_0(E \times F)$, F compact $\Rightarrow \mathcal{V}_{1,+} \subset C_0(E)$ compact (topology of uniform convergence), Choquet simplex.

Def. $C \subset L^\infty(E)$ simplex, invariant under (P_t). **Cone dual** is process (R_t) with state space $\text{ex}C$, duality fct

$$E \times \text{ex}C \to \mathbb{R}, \quad (x, e) \mapsto e(x).$$

Observation: for non-degenerate B_H, bijection $F \to \text{ex}C$, $y \mapsto H(\cdot, y)$, cone dual and usual dual can be identified.
More interesting: B_H degenerate but $\mathcal{V}_{1,+}$ simplex. For $y \in F$, let $\Pi(y, \cdot)$ be the unique probability measure on $ex\mathcal{V}_{1,+}$ such that
\[
H(\cdot, y) = \int_{ex\mathcal{V}_{1,+}} \Pi(y, de)e(\cdot).
\]

Transition kernel from F to “smaller” space $ex\mathcal{V}_{1,+}$.

Theorem $H \in C_0(E \times F)$, F compact, $\mathcal{V}_{1,+}$ simplex, invariant under (P_t).

1. The cone dual (R_t) exists and is unique. It is defined on $ex\mathcal{V}_{1,+}$ (Borel σ-algebra, uniform topology); $ex\mathcal{V}_{1,+}$ is Polish.
2. (P_t) has at least one dual Markov semi-group (Q_t).
3. (Q_t) is dual to (P_t) iff for all t, y, B
\[
\int_F Q_t(y, dy')\Pi(y', B) = \int_{ex\mathcal{V}_{1,+}} \Pi(y, de)R_t(e, B).
\]

Intertwining relation. Usual duals are lifts of the cone dual.
In terms of processes: cone dual (Z_t), usual dual (Y_t) satisfy
\[
P(Z_t \in B \mid Y_t = y) = \Pi(y, B).
\]
Quantum mechanics

Definition: H self-adjoint operator (Hamiltonian) in Hilbert space \mathcal{H}. (P_t) Markov semi-group in Polish state space E, symmetrizing σ-finite measure μ, $U : \mathcal{H} \to L^2(E, \mu)$ unitary. Call $((P_t), E, \mu, U)$ a stochastic representation of H if

$$\forall t > 0 : \exp(-tH) = U^* P_t U.$$

Examples: Ornstein-Uhlenbeck process vs. harmonic oscillator, simple symmetric exclusion process vs. Heisenberg spin chain.

Earlier theorem, rephrased If two reversible processes with non-degenerate duality function are associated with Hamiltonians H_1 and H_2, then H_1 and H_2 are unitarily equivalent.

Strategy:

- interpret infinitesimal generator L as quantum Hamiltonian H.
- **Interacting particle systems / quantum many-body systems**: Break down transitions into birth and death of particles / creation and annihilation operators.
- Look for different representations of the relevant operator algebra.
- Often, this yields unitary equivalences and interesting dualities.

More flexible application: relax requirement of self-adjointness, reversibility. Giardina’s talk!
Further aspects & conclusion

- Generalized definition allowing for **Feynman-Kac corrections**.
- Solutions of martingale problems.
- Dualities and **scaling limits**.
 Swart ’06, Alkemper, Hutzenthaler ’07, J., Kurt ’12
- **Intertwining** of Markov processes
 Diaconis, Fill ’90, Carmona, Petit, Yor ’98; Huillet, Martinez ’11.
- Duality for interacting particle systems as **Fourier transforms** on groups
 Holley, Stroock ’79.

Conclusion: A lot of structure to explore.
Invariant subsets for Siegmund and moment duality

Convex subset $\mathcal{V}_{1,+} \subset L^\infty(E)$:

<table>
<thead>
<tr>
<th>$H(x, y)$</th>
<th>$x \in E$</th>
<th>$y \in F$</th>
<th>$\mathcal{V}{1,+} = { \int_F H(\cdot, y) \nu(dy) \mid \nu \in \mathcal{M}{1,+}(F) }$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1(x \leq y)$</td>
<td>$x \in \mathbb{R}$</td>
<td>$y \in \mathbb{R}$</td>
<td>monotone increasing, right-continuous functions f, $\lim_{-\infty} f = 0$, $\lim_{+\infty} f = 1$</td>
</tr>
<tr>
<td>x^n</td>
<td>$x \in [0, 1]$</td>
<td>$n \in \mathbb{N}_0$</td>
<td>absolutely monotone functions f w. $f(1) = 1$</td>
</tr>
</tbody>
</table>

Linear subspace $\mathcal{V} \subset L^\infty(E)$:

<table>
<thead>
<tr>
<th>$H(x, y)$</th>
<th>$x \in E$</th>
<th>$y \in F$</th>
<th>$\mathcal{V} = { \int_F H(\cdot, y) \nu(dy) \mid \nu \in \mathcal{M}(F) }$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi(x \leq y)$</td>
<td>$x \in \mathbb{R}$</td>
<td>$y \in \mathbb{R}$</td>
<td>bounded, right-continuous functions f with bounded variation, $\lim_{-\infty} f = 0$, $\lim_{+\infty} f \in \mathbb{R}$</td>
</tr>
<tr>
<td>x^n</td>
<td>$x \in [0, 1]$</td>
<td>$n \in \mathbb{N}_0$</td>
<td>functions $f \in C([0, 1])$ with analytic extension F to the complex open unit disk, F in positive Wiener algebra ($\subset H^\infty$ Hardy space).</td>
</tr>
</tbody>
</table>