Three ways to cover a graph

Kolja Knauer1* and Torsten Ueckerdt2**

1 Université Montpellier 2, Montpellier, France
kolja.knauer@math.univ-montp2.fr
2 Karlsruhe Institute of Technology, Karlsruhe, Germany
torsten.ueckerdt@kit.edu

Abstract. We consider the problem of covering a host graph G with several graphs from a fixed template class \mathcal{T}. The classical covering number of G with respect to \mathcal{T} is the minimum number of template graphs needed to cover the edges of G. We introduce two new parameters: the local and the folded covering number. Each parameter measures how far G is from the template class in a different way. Whereas the folded covering number has been investigated thoroughly for some template classes, e.g., interval graphs and planar graphs, the local covering number was given only little attention.

We provide new bounds on each covering number w.r.t. the following template classes: linear forests, star forests, caterpillar forests, and interval graphs. The classical graph parameters turning up this way are interval-number, track-number, and linear-, star-, and caterpillar arboricity. As host graphs we consider graphs of bounded degeneracy, bounded degree, or bounded (simple) tree-width, as well as, outerplanar, planar bipartite and planar graphs. For several pairs of a host class and a template class we determine the maximum (local, folded) covering number of a host graph w.r.t. that template class exactly.

1 Introduction

Graph covering is one of the most classical topics in graph theory. In 1891, in one of the first purely graph-theoretical papers at all, Petersen shows that any $2r$-regular graph can be covered with r sets of vertex disjoint cycles [45]. A first survey on covering problems of Beineke [10] appeared in 1969. Graph covering problems are lively and ramified fields of research – over the last decades as well as today [29, 30, 2, 3, 25, 43]. This is supported through the course of this paper by many references to recent works of different authors.

In every graph covering problem one is given a host graph G, a template class \mathcal{T}, and a notion of how to cover G with one or several template graphs. One is then interested in covers of G w.r.t. \mathcal{T} that are in some sense simple, or well structured; the most prevalent measure of simplicity being the number of template graphs needed to cover G.

* Partially supported by DFG grant FE-340/8-1 as part of ESF project GraDR EUROGIGA
** Research was supported by GraDR EUROGIGA project No. GIG/11/E023
The main motivation of this paper is to introduce the following three parameters, each of which represents how well G can be covered w.r.t. T in a different way: The *global covering number*, or simply *covering number*, is the most classical one. All kinds of arboricities, e.g. star [4], caterpillar [24], linear [3], pseudo [46], and ordinary [44] arboricity of a graph are global covering numbers. Other global covering numbers are the (outer) thickness [10, 43] and the track-number [27] of a graph. To the best of our knowledge the only two *local covering numbers* in the literature are the *biclique cover number* introduced by Fishburn and Hammer [21], rediscovered by Dong and Liu [15] as the *local biclique cover number* and very recently studied in comparison with the global variant by Pinto [47]. The *local clique cover number* is another local covering parameter. It is studied by Javadi, Maleki, and Omoomi [53, 35]. In the case of local covering numbers the *coloring-aspect* is removed from the global covering number, but the underlying covering problem is the same. Finally, the *folded covering number* underlies a different, but related, concept of covering. It has been investigated w.r.t. interval graphs and planar graphs as template class. In the former case the folded covering number is known as the interval-number [31], in the latter case as the splitting-number [34] of a graph.

While some covering numbers, like arboricities, are of mainly theoretical interest, others, like thickness, interval-number and track-number have wide applications in VLSI design [1], network design [48], scheduling and resource allocation [9, 12], and bioinformatics [38, 36]. The three covering numbers presented here not only unify some notions in the literature, they as well seem interesting in their own right, e.g., provide new approaches to attack or support classical open problems.

<table>
<thead>
<tr>
<th></th>
<th>star forests</th>
<th>caterpillar forests</th>
<th>interval graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g</td>
<td>$\ell = f$</td>
<td>g</td>
</tr>
<tr>
<td>outer-planar</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>planar + bipartite</td>
<td>4 (C2)</td>
<td>3 (C2)</td>
<td>4 (C2)</td>
</tr>
<tr>
<td>planar stw $\leq k$</td>
<td>$k+1$</td>
<td>$k+1$</td>
<td>$k+1$</td>
</tr>
<tr>
<td>planar tw $\leq k$</td>
<td>$k+1$</td>
<td>$k+1$</td>
<td>$k+1$</td>
</tr>
<tr>
<td>planar dgn $\leq k$</td>
<td>2 (C1)</td>
<td>$k+1$</td>
<td>$k+1$</td>
</tr>
</tbody>
</table>

Table 1. Overview of results. Each row of the table corresponds to a host class G, each column to a template class T. Every cell contains the maximum covering number of all graphs $G \in G$ w.r.t. the template class T, where the columns labeled g, ℓ, f stand for the global, local and folded covering number, respectively. Grey entries follow by Proposition 1 from other stronger results in the table. Letters T and C stand for Theorem and Corollary in the present paper, respectively.
In this paper we moreover present new lower and upper bounds for several covering numbers, in particular w.r.t. the template classes: interval graphs, star forests, linear forests, and caterpillar forests, and host classes: graphs of bounded degeneracy or bounded (simple) tree-width, as well as outerplanar, planar bipartite, planar, and regular graphs. We provide an overview over some of our new results in Table 1. Indeed all the entries in Table 1 are exact, i.e., matching upper and lower bounds. Note that besides results which we prove as new theorems as indicated, many values in the table (written in gray) follow from the point of view offered by our general approach (Proposition 1).

This paper is structured as follows: In order to give a motivating example before the general definition, we start by discussing in Section 2 the linear arboricity and its local and folded variants. In Section 3 the three covering numbers are formally introduced and some general properties are established. In Section 4 we introduce the template classes star forests, caterpillar forests, and interval graphs, and in Section 5 we present our results claimed in Table 1. In Section 6 we briefly discuss the computational complexity of some covering numbers, giving a polynomial time algorithm for the local star arboricity. Moreover, we discuss by how much global, local and folded covering numbers can differ.

2 Folded and Local Linear Arboricity

We give the general definitions of covers and covering numbers in Section 3 below. In this section we motivate and illustrate these concepts on the basis of one fixed template class: the class \mathcal{L} of linear forests, i.e., every graph $L \in \mathcal{L}$ is the disjoint union of simple paths. We want to cover a host graph $G = (V,E)$ by several linear forests $L_1, \ldots, L_k \in \mathcal{L}$, i.e., every edge $e \in E$ shall be contained in at least 3 one L_i and no non-edge of G shall be contained in any L_i. If G is covered by L_1, \ldots, L_k we denote this by $G = \bigcup_{i \in [k]} L_i$.

The linear arboricity of G, denoted by $la(G)$, is the minimum k such that $G = \bigcup_{i \in [k]} L_i$ and $L_i \in \mathcal{L}$ for $i \in [k]$. One easily sees that every graph G of maximum degree Δ has $la(G) \geq \lceil \frac{\Delta}{2} \rceil$, and every Δ-regular graph has $la(G) \geq \lceil \frac{\Delta+1}{2} \rceil$. In 1980, Akiyama et. al. [3] stated the Linear Arboricity Conjecture (LAC). It says that the linear arboricity of any simple graph of maximum degree Δ is either $\lceil \frac{\Delta}{2} \rceil$ or $\lceil \frac{\Delta+1}{2} \rceil$. LAC is confirmed for planar graphs by Wu and Wu [56, 57] and asymptotically for general graphs by Alon and Spencer [7]. The general conjecture remains open. The best-known upper bound for $la(G)$ is $\lceil \frac{3\Delta+2}{5} \rceil$, due to Guldan [26].

We define the local linear arboricity of G, denoted by $la_l(G)$, as the minimum j such that $G = \bigcup_{i \in [k]} L_i$ and every vertex v in G is contained in at most j different L_i. Again if G has maximum degree Δ then $la_l(G) \geq \lceil \frac{\Delta}{2} \rceil$, and if G is Δ-regular then $la_l(G) \geq \lceil \frac{\Delta+1}{2} \rceil$. Note that $la_l(G)$ is at most $la(G)$ and hence the following statement must necessarily hold for LAC to be true.

\[3 \text{ Since linear forests are closed under taking subgraphs, we can indeed assume that } e \in L_i \text{ for exactly one } i \in [k].\]
Conjecture 1. Local Linear Arboricity Conjecture (LLAC): The local linear arboricity of any simple graph with maximum degree Δ is either $\left\lceil \frac{\Delta}{2} \right\rceil$ or $\left\lceil \frac{\Delta+1}{2} \right\rceil$.

Observation 1 To prove LAC or LLAC it would suffice to consider Δ-regular graphs with Δ odd: Regularity is obtained by considering a Δ-regular supergraph of G. If Δ is even, say $\Delta = 2k$, one can find a spanning linear forest L_{k+1} in G [26], remove it from the graph, and complement L_{k+1} by a cover L_1, \ldots, L_k in the remaining graph on maximum degree $\Delta - 1 = 2k - 1$.

If G is Δ-regular with Δ odd, then LLAC states that $G = \bigcup_{i \in [k]} L_i$ with every vertex being an endpoint of exactly one path. While LAC additionally requires that the paths can be colored with $\left\lceil \frac{\Delta}{2} \right\rceil$ colors such that no two paths that share a vertex receive the same color. We will see in later sections that sometimes the coloring is the crucial and difficult task.

Next we propose a second way to cover the host graph G with linear forests. A walk in G is a not necessarily edge-disjoint path. As before, a set W_1, \ldots, W_k of walks covers G, denoted by $G = \bigcup_{i \in [k]} W_i$, if the edge-set E of G is the union of the edge-sets of the walks. We are now interested in how often a vertex v in G appears in the walks W_1, \ldots, W_k in total. The folded linear arboricity of G, denoted by $la_f(G)$, is the minimum j such that $G = \bigcup_{i \in [k]} W_i$ and every vertex v in G appears in total at most j times in the walks W_1, \ldots, W_k. Again if G has maximum degree Δ then $la_f(G) \geq \left\lceil \frac{\Delta}{2} \right\rceil$, and if G is Δ-regular then $la_f(G) \geq \left\lceil \frac{\Delta+1}{2} \right\rceil$. Clearly, $la_f(G) \leq la_l(G)$. The next theorem follows directly from a theorem of West [54] (where it is stated in terms of the interval-number $i(G)$). It is a weakening of LLAC above.

Theorem 2. If G has maximum degree Δ then $la_f(G) \in \{ \left\lceil \frac{\Delta}{2} \right\rceil, \left\lceil \frac{\Delta+1}{2} \right\rceil \}$.

Proof. If G is not Eulerian, then add a vertex x to G and connect it to every vertex in G of odd degree. Consider any Eulerian tour in $G \cup x$ (or G) and (if necessary) split it into shorter walks by removing x from it.

Remark 1. Besides LLAC, there are several more weakenings of LAC that are still open. For example, it is open whether the caterpillar arboricity of maximum degree Δ graphs is at most $\left\lceil \frac{\Delta+1}{2} \right\rceil$. Yet a weaker, but still open, question asks whether the track-number of these graphs is at most $\left\lceil \frac{\Delta+1}{2} \right\rceil$.

3 Covers and Covering Numbers

We formalize the concepts from Section 2 w.r.t. general template classes. This is needed to formulate our generalized approach. Though if possible, when treating concrete template classes in the following sections we will return to already established notation.

4 See Section 4.3 and 4.4 for the definition of caterpillar arboricity and track-number, respectively.
A homomorphism from a graph H to a graph G is an edge-preserving mapping φ between the vertex sets, i.e., $\varphi: V(H) \to V(G)$ such that $\{v, w\} \in E(H)$ implies $\{\varphi(v), \varphi(w)\} \in E(G)$. We call a homomorphism edge-surjective if for all $\{v', w'\} \in E(G)$ there is $\{v, w\} \in E(H)$ such that $\varphi(v) = v'$ and $\varphi(w) = w'$.

For a host graph G and a template class \mathcal{T}, we define a cover of G w.r.t. \mathcal{T} as an edge-surjective homomorphism $\varphi: T_1 \sqcup T_2 \sqcup \cdots \sqcup T_k \to G$, where $T_i \in \mathcal{T}$ for $i \in [k]$. The size of a cover is the number of template graphs in the disjoint union. A cover φ is called injective if $\varphi|_{T_i}$, that is, φ restricted to T_i, is injective for every $i \in [k]$.

Definition 1. For a template class \mathcal{T} and a host graph $G = (V, E)$ define the (global) covering number $c^\mathcal{T}_g(G)$, the local covering number $c^\mathcal{T}_l(G)$, and the folded covering number $c^\mathcal{T}_f(G)$ as follows:

$$
\begin{align*}
 c^\mathcal{T}_g(G) &= \min \{ \text{size of } \varphi : \varphi \text{ injective cover of } G \text{ w.r.t. } \mathcal{T} \} \\
 c^\mathcal{T}_l(G) &= \min \{ \max_{v \in V} |\varphi^{-1}(v)| : \varphi \text{ injective cover of } G \text{ w.r.t. } \mathcal{T} \} \\
 c^\mathcal{T}_f(G) &= \min \{ \max_{v \in V} |\varphi^{-1}(v)| : \varphi \text{ cover of } G \text{ w.r.t. } \mathcal{T} \text{ of size 1} \}
\end{align*}
$$

Let us rephrase $c^\mathcal{T}_g(G)$, $c^\mathcal{T}_l(G)$, and $c^\mathcal{T}_f(G)$: The covering number is the minimum number of template graphs needed to cover the host graph, where covering means identifying subgraphs in G that are template graphs, such that every edge of G is contained in some template graph. In the local covering number the number of template graphs in such a cover is not restricted; Instead the number of template graphs at every vertex should be small. We will see later (and already indicated in Section 2) that these two numbers can differ significantly. The folded covering number is the minimum k such that every vertex v of G can be split into at most k vertices, distributing the incident edges at v arbitrarily (even repeatedly) among them, such that the resulting graph belongs to the template class.

Within the scope of this paper we only consider template classes that are closed under disjoint union even without explicitly saying so. E.g., when considering, say stars or cliques, as template graphs we actually mean star forests and collections of cliques, respectively. If the template class \mathcal{T} is closed under disjoint union, then the restriction to covers of size 1 in the definition of $c^\mathcal{T}_f(G)$ is unnecessary. This property is also needed to prove the inequality $c^\mathcal{T}_l(G) \geq c^\mathcal{T}_f(G)$ in the upcoming proposition.

Remark 2. It is still interesting to consider template classes that are not closed under disjoint union. Hajóss’ Conjecture [41] states that the edges of any n-vertex Eulerian graph G may be partitioned into $\lfloor \frac{n}{2} \rfloor$ cycles. Hajóss’ Conjecture being widely open one may consider coverings with cycles. If $c^\mathcal{G}_f$ denotes the class of all simple cycles and G an n-vertex Eulerian graph, then Fan [19] shows $c^{\mathcal{G}}_f(G) \leq \lfloor \frac{n-1}{2} \rfloor$.

For any graph parameter one is usually interested in its maximum (or minimum) value within certain graph classes. For $i = g, l, f$, a template class \mathcal{T} and a graph class \mathcal{G}, called the host class, we define $c^\mathcal{T}_i(\mathcal{G}) = \sup \{ c^\mathcal{T}_i(G) \mid G \in \mathcal{G} \}$. We close this section with a list of inequalities, most of which are elementary applications of Definition 1 and homomorphisms.
Proposition 1. For template classes \(\mathcal{T}, \mathcal{T}' \), host classes \(\mathcal{G}, \mathcal{G}' \) and any host graph \(G \) we have the following:

(i) \(c_\mathcal{T}^g(G) \geq c_{\mathcal{T}'}^g(G) \) and if \(\mathcal{T} \) is closed under disjoint union then \(c_\mathcal{T}^\ell(G) \geq c_{\mathcal{T}'}^\ell(G) \)

(ii) If \(\mathcal{T} \) is closed under merging vertices within connected components (and afterwards deleting loops and multiple edges) then \(c_\mathcal{T}^\ell(G) \geq c_{\mathcal{T}'}^f(G) \).

(iii) If \(\mathcal{G} \subseteq \mathcal{G}' \) then \(c_i^\mathcal{G}(G) \leq c_i^\mathcal{G}'(G) \) for \(i = g, \ell, f \).

(iv) If \(G_\mathcal{T} \) and \(G_{\mathcal{T}'} \) denote the set of subgraphs of \(G \) that are homomorphic images of graphs in \(\mathcal{T} \) and \(\mathcal{T}' \), respectively, then \(G_\mathcal{T} \subseteq G_{\mathcal{T}'} \) implies \(c_i^\mathcal{T}(G) \geq c_i^{\mathcal{T}'}(G) \) for \(i = g, \ell, f \).

(v) If \(\bar{\mathcal{G}} \) denotes the set of all subgraphs of \(G \) and we have \(\mathcal{T} \cap \bar{\mathcal{G}} \subseteq \mathcal{T}' \cap \bar{\mathcal{G}} \), then \(c_i^\mathcal{T}(G) \geq c_i^{\mathcal{T}'}(G) \) for \(i = g, \ell \).

Proof. The first inequality in (i) follows from the definition, the second one comes by viewing an injective cover \(T_1 \cup T_2 \cup \cdots \cup T_k \) of size \(k \) as one of size 1.

To see (ii), let \(\varphi : T \to G \) be a cover of \(G \) w.r.t. \(\mathcal{T} \) of size 1 witnessing \(c_\mathcal{T}^\ell(G) \). Now for every \(v \in G \) and a component \(T' \) of \(\mathcal{T} \) merge all \(\varphi^{-1}(v) \cap T' \) into one vertex (and delete loops and multiple edges). Doing this for all components of \(T \) we obtain a new template graph \(\tilde{T} \in \mathcal{T} \) with homomorphism \(\tilde{\varphi} \) being injective on each component. Clearly, \(|\tilde{\varphi}^{-1}(v)| \leq |\varphi^{-1}(v)| \).

Claims (iii) and (iv) follow immediately from the definition. To see (v) note that it follows similarly as (iv), because \(\mathcal{T} \cap \bar{\mathcal{G}} \) and \(\mathcal{T}' \cap \bar{\mathcal{G}} \) are the subgraphs of \(G \) that arise as images of injective covers. \(\Box \)

Example In order to exemplify the notions introduced above consider the template class \(\mathcal{C}_\mathcal{Y} \) of disjoint unions of cycles. As host graph \(G \) we take the Petersen graph.

![Fig. 1. From left to right: A global cover with three unions of cycles, a local cover of size 5 with at most three cycles at each vertex, a folded cover with two preimages per vertex. Note that the local cover does not yield a global cover.](image)

Proposition 2. For the Petersen graph, we have \(3 = c_\mathcal{C}_\mathcal{Y}^g(G) = c_\mathcal{C}^\ell(G) > c_\mathcal{C}^f(G) = 2 \).
Proof. All witnesses for the upper bounds are shown in Figure 1. Clearly, \(c_T^G(G) \geq 2 \) since otherwise \(G \) would have to be a disjoint union of cycles. Now suppose, \(c_T^G(G) = 2 \). Since \(G \) is cubic, at each vertex there is exactly one edge contained in two cycles of the covering. Thus, these edges form a perfect matching \(M \) of \(G \). Moreover, all cycles involved in the cover are alternating cycles with respect to \(M \). In particular they are all even and of length 6 or 8 (as this graph is not Hamiltonian there is no 10-cycle). Since \(M \) is covered twice and the remaining edges of \(G \) once, the sum of sizes of cycles in the cover is 20, which can be obtained only as \(6 + 6 + 8 \). In particular, a 6-cycle \(C \) must be involved. Now \(M \) restricted to \(G \setminus V(C) \) is still a perfect matching, but \(G \setminus V(C) \) is a claw. □

4 Template Classes

In this section we introduce the template classes and covering numbers corresponding to the columns of Table 1. We also include some known results and general observations.

4.1 Forests and Pseudoforests

The arboricity \(a(G) \), introduced by Nash-Williams [44], is the minimum number of forests needed to cover the edges of \(G \). Clearly, \(a(G) = c_T^G(G) \), where \(T \) is the class of forests. It is known [44] that \(a(G) = \max_{S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S|} \right\rceil \).

A pseudoforest is a graph with at most one cycle per component and the pseudoarboricity \(p(G) \) is the minimum number of pseudoforests needed to cover the edges of \(G \). Thus, \(p(G) = c_T^G(G) \), where \(T \) is the class of pseudoforests. Picard and Queyranne [46] notice that \(p(G) \) equals the minimum over all orientations of \(G \) of the maximum out-degree. This quantity equals \(\max_{S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S|} \right\rceil \), see Frank and Gyárfás [22]. Putting things together one obtains \(p(G) \leq a(G) \leq p(G) + 1 \).

Theorem 3. For every graph global, local, and folded (pseudo)-arboricity coincide.

Proof. Take a folded covering \(\varphi \) of \(G \) with a (pseudo)forest, such that for every \(v \in G \) we have \(|\varphi^{-1}(v)| \leq c \). Since (pseudo)forests are closed under taking induced subgraphs this in particular yields a covering for every induced subgraph \(G[S] \) such that every vertex is covered at most \(c \) times. Now, focusing on pseudoforests, we know that the subgraph of the template graph induced by \(\varphi^{-1}(S) \) has at most \(c|S| \) edges and therefore \(c|S| \geq |E[S]| \), i.e., \(c \geq \left\lceil \frac{|E[S]|}{|S|} \right\rceil \).

Now, \(pa(G) = \max_{S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S|} \right\rceil \) yields the result for folded coverings and Proposition 1(i) for the local covering number.

Along the same lines one obtains \(c \geq \left\lceil \frac{|E[S]|+1}{|S|} \right\rceil \) if \(c \) is the number of times a vertex is covered by forests. It is then easy to compute that \(\left\lceil \frac{|E[S]|+1}{|S|} \right\rceil = \left\lceil \frac{|E[S]|}{|S|-1} \right\rceil \), since \(|E[S]| \leq \binom{|S|}{2} \). The result follows as in the case of pseudoarboricity. □
4.2 Star Forests

The star arboricity $sa(G)$ of a graph G, introduced by Akiyama and Kano [4], is the minimum number of star forests, i.e., forests without paths of length 3, into which the edge-set of G can be partitioned. In particular, if S denotes the class of star forests, then $sa(G) = c^S_2(G)$. The star arboricity has been a frequent subject of research. It is known that outerplanar and planar graphs have star arboricity at most 2 and 3, respectively, see Hakimi et. al. [28]. That this is best possible is shown by Algor and Alon [5]. Moreover, denoting by $tw(G)$ the tree-width of G (c.f. Section 5.2) we have $sa(G) \leq tw(G) + 1$, see Ding et. al. [14], which is tight, see Dujmović and Wood [16]. Alon et. al. [6] show that $sa(G) \leq 2a(G)$ is a tight upper bound. For the degeneracy $dgn(G)$ of G (c.f. Section 5.1) it is well-known that $a(G) \leq dgn(G) \leq 2a(G) - 1$ and thus $sa(G) \leq 2dgn(G)$, which is also shown to be tight by Alon et. al. [6]. Since merging any two vertices in a star and omitting loops and double edges yields again a star by Proposition 1 (ii) local and folded star arboricity coincide. Here, we show that in contrast to the global star-arboricity the local star arboricity, denoted by $sa_l(G)$, fits nicely into the inequalities relating arboricity and pseudoarboricity from Section 4.1.

Theorem 4. For any graph G we have $p(G) \leq a(G) \leq sa_l(G) \leq p(G) + 1$, where either inequality can be strict. Moreover, $sa_l(G) = p(G)$ if and only if G has an orientation with maximum out-degree $p(G)$ attained only at vertices of degree $p(G)$.

Proof. Every cover of G w.r.t. stars can be transferred into an orientation of G by orienting every edge towards the center of the corresponding star. If every vertex is contained in at most $sa_l(G)$ stars, then the orientation has maximum out-degree at most $sa_l(G)$, i.e., $p(G) \leq sa_l(G)$.

In the same way every orientation can be transferred into a cover w.r.t. stars by taking at every vertex the star of its incoming edges. If the orientation has maximum out-degree $p(G)$, then each vertex is contained in no more than $p(G) + 1$ stars, i.e., $sa_l(G) \leq p(G) + 1$. Moreover, the maximum out-degree is $sa_l(G)$ if and only if for every vertex v that is contained in $sa_l(G)$ stars with centers different from v there is no star with center v. Equivalently, $sa_l(G) = p(G)$ if and only if the maximum out-degree $p(G)$ is attained only at vertices of degree $p(G)$.

To prove $a(G) \leq sa_l(G)$ assume $sa_l(G) = p(G)$. Otherwise (if $sa_l(G) = p(G) + 1$) the result follows from $a(G) \leq p(G) + 1$. Hence, there is an orientation with maximum out-degree $p(G)$ attained only at vertices with degree $p(G)$. Removing these vertices we obtain a graph G' with $p(G') \leq p(G) - 1$, in particular $a(G') \leq p(G)$. We reinsert the vertices of degree $p(G)$ putting each incident edge into a different of the $p(G)$ forests that partition G'. We obtain a cover of G with $p(G)$ forests, i.e., $a(G) \leq p(G) = sa_l(G)$.

Finally, we show that each inequality can be strict: First $k = p(G) < a(G)$ holds for every $2k$-regular graph. Secondly, we claim that $k = p(G) = sa_l(G)$ holds for the complete bipartite graph $K_{k,n}$ with n large enough. Indeed, $p(K_{k,n}) = $
max_{S \subseteq V(K_{k,n})} \left\lfloor \frac{|E[S]|}{|S|} \right\rfloor = \left\lfloor \frac{kn}{k+n} \right\rfloor = k \text{ and taking all maximal stars with centers in the smaller bipartition class yields } sa_r(K_{k,n}) \leq k.

It remains to present a graph \(G \) with \(k = a(G) < sa_r(G) \). It is known [14] that \(a(G) \leq tw(G) \). In Section 5 we show\(^5\) that for every \(k \) there is a graph \(G \) with \(tw(G) = k \) and \(i(G) \geq k + 1 \). Then we have \(a(G) \leq tw(G) = k < k + 1 \leq i(G) \leq t_\ell(G) \leq sa_r(G) \), where the next-to-last and last inequalities follow by Proposition 1 (i) and (iv), respectively. \(\square \)

We will derive from Theorem 4 tight upper bounds for the local star arboricity in Section 5, as well as a polynomial time algorithm to compute the local star arboricity in Section 6.

4.3 Caterpillar Forests

A graph parameter related to the star arboricity is the \(\text{caterpillar arboricity} \) \(ca(G) \) of \(G \). A \textit{caterpillar} is a tree in which all non-leaf vertices form a path, called the spine. The caterpillar arboricity is the minimum number of caterpillar forests into which the edge-set of \(G \) can be partitioned. It has mainly been considered for outerplanar graphs, see Kostochka and West [40], and for planar graphs by Gonçalves and Ochem [23, 24]. Since caterpillar forests are exactly triangle-free interval graphs, \(ca(G) \) is related to the track-number of \(G \) defined below.

4.4 Interval Graphs

The class \(\mathcal{I} \) of \textit{interval graphs} has already been considered in many ways and remains present in today’s literature. Interval graphs have been generalized to intersection graphs of systems of intervals by several groups of people: Gyárfás and West [27] propose the covering problem w.r.t. the template class \(\mathcal{I} \) and introduce the corresponding global covering number called the \textit{track-number}, denoted by \(t(G) \), i.e., \(t(G) = c_{\mathcal{I}}^T(G) \). It has been shown that outerplanar and planar graphs have track number at most 2 [40] and 4 [24], respectively. Already in 1979 Harary and Trotter [31] introduce the folded covering number w.r.t. interval graphs, called the \textit{interval-number}, denoted by \(i(G) \), i.e., \(i(G) = c_{\mathcal{I}}^I(G) \). It is known that trees have interval number at most 2 [31], outerplanar and planar graphs have interval number at most 2 and 3, respectively, see Scheinermann and West [50]. All these bounds are tight.

The \textit{local track-number} \(t_\ell(G) := c_{\mathcal{I}}^T(G) \) is a natural variation of \(i(G) \) and \(t(G) \), which to our knowledge has not been considered so far.

5 Results

In this section we present all the new results displayed in Table 1. We proceed host class by host class.

\(^5\) \(i(G) \) and \(t_\ell(G) \) are defined in Section 4.4.
5.1 Bounded Degeneracy

The degeneracy $dgn(G)$ of a graph G is the minimum of the maximum out-degree over all acyclic orientations of G. It is one less than the coloring number, introduced in [18], and is a classical measure for the sparsity of G. The next corollary follows directly from the definition of degeneracy and Theorem 4.

Corollary 1. For every G we have $sa_t(G) \leq dgn(G) + 1$.

Let \mathcal{I} be the class of interval graphs and \mathcal{C} be the class of caterpillar forests, i.e., the class of bipartite interval graphs. Since homomorphisms do not decrease the chromatic number if an interval graph has a bipartite homomorphic image then it is a caterpillar. Thus, by Proposition 1 (iv) we have $c_i^G = c_i^\mathcal{C}$ for $i = g, f, t$ and every bipartite graph G. In particular, if G is bipartite then $t(G) = ca(G)$ and $i(G) = ca_f(G)$. In the remainder of this section we present graphs with high (folded) caterpillar arboricity. Since all these graphs are bipartite, we obtain lower bounds on the track-number and interval-number of those graphs. Indeed we always define a super-graph G of the complete bipartite graph $K_{m,n}$ for which track- and interval-number has already been determined: $t(K_{m,n}) = ca(K_{m,n}) = \left\lceil \frac{mn}{m+n} \right\rceil$ and $i(K_{m,n}) = ca_f(K_{m,n}) = \left\lceil \frac{mn+1}{m+n} \right\rceil$.

In order to formulate the following lemma we need to introduce one more notion. For a cover φ of G with $T_1 \cup \ldots \cup T_k$ with $T_i \in \mathcal{T}$ and a subgraph H of G we define the restriction of φ to H as a cover ψ of H by $T'_1 \cup \ldots \cup T'_k$, where T'_i comes from T_i by deleting edges $\{e \in E(T_i) \mid \varphi(e) \notin H\}$ and then isolated vertices. In particular empty graphs are removed from the union. The mapping ψ then is defined to be restriction of φ to $T'_1 \cup \ldots \cup T'_k$. Clearly, if T is closed under taking subgraphs, then ψ is also a cover w.r.t. T.

To increase readability we refer to the bipartition classes in $K_{m,n}$ of size m and n by A and B, respectively.

Lemma 1. Let G be a graph with an induced $K_{m,n}$, φ be a cover of G w.r.t. \mathcal{C} with $s = \max\{|\varphi^{-1}(a)| : a \in A\}$, and ψ be the restriction of φ to the subgraph G' of G after removing all edges in $K_{m,n}$. Then there are at least $n - 2sm$ vertices $b \in B$ such that $|\psi^{-1}(b)| \leq |\varphi^{-1}(b)| - m$.

Proof. Every vertex in a caterpillar C has at most 2 neighbors on the spine of C. In other words, if $\varphi : C_1 \cup \ldots \cup C_k \to G$ and $a \in A$, then at most 2s incident edges at a are covered by spine edges of some C_i. Since a is the image of at most s vertices among $C_1 \cup \ldots \cup C_k$ all other $n - 2s$ edges at a have to be covered under φ by a non-spine edge with b being a leaf. Thus, for at least $n - 2sm$ vertices $b \in B$ this is the case w.r.t. to *every* $a \in A$.

Now if $e = \{a, b\}$ is covered by some edge in C_i with b being a leaf, then in the restriction of φ to $G \setminus e$ the number of preimages of b is one less than in φ. This concludes the proof.

Theorem 5. For every $k \geq 1$ there is a bipartite graph G such that $2dgn(G) \leq 2k \leq ca(G) = t(G)$.

Proof. The graph \(G \) consists of an induced \(K_{k,n} \) with \(|A| = k \) and \(|B| = n \), where \(n > (k-1)(2^{k-1}) + 2k(2k-1) \). Moreover for every \(k \)-subset \(S \) of \(B \) an induced \(K_{k,(k-1)^2+1} \) with smaller and larger bipartition class \(S \) and \(B_{S} \), respectively, is attached. Orienting edges from \(B \) to \(A \) and from \(B_{S} \) to \(S \) for every \(S \) proves \(dgn(G) \leq k \).

Now consider an injective cover \(\varphi : C_{1} \cup \ldots \cup C_{s} \) of \(G \) w.r.t. \(Ca \) and its restriction \(\psi \) to the subgraph of \(G \) after removing all edges in \(K_{k,n} \). Assume for the sake of contradiction that the size \(s \) of \(\varphi \) is at most \(2k-1 \), i.e., \(\max\{|\varphi^{-1}(v)| : v \in V(G)\} \leq s \leq 2k-1 \). Then by Lemma 1 there is a set \(W \subset B \) of at least \(n-2(2k-1)k > (k-1)(2^{k-1}) \) vertices, such that \(|\psi^{-1}(b)| \leq |\varphi^{-1}(b)| - k \leq s - k \leq k - 1 \) for every \(b \in W \). In other words, every \(b \in W \) has a preimage under \(\psi \) in at most \(k - 1 \) of the \(2k - 1 \) caterpillar forests. Since \(|W| > (k-1)(2^{k-1}) \) there is a \(k \)-set \(S \) in \(W \) whose preimages are contained in at most \(k - 1 \) caterpillar forests.

This implies that \(\psi \) restricted to \(G[S \cup B_{S}] \) is an injective cover of \(K_{k,(k-1)^2+1} \) w.r.t. \(Ca \) with size at most \(k - 1 \), which is impossible as \(ca(K_{k,(k-1)^2+1}) = \left\lceil \frac{k(k-1)^2+k}{k+(k-1)^2} \right\rceil = k \). Due to [27].

5.2 Bounded (Simple) Tree-width

A \(k \)-tree is a graph that can be constructed starting with a \((k+1)\)-clique and in every step attaching a new vertex to a \(k \)-clique of the already constructed graph. We use the term stacking for this kind of attaching. The tree-width \(tw(G) \) of a graph \(G \) is the minimum \(k \) such that \(G \) is a partial \(k \)-tree, i.e., \(G \) is a subgraph of some \(k \)-tree [49].

We consider a variation of tree-width, called simple tree-width. A simple \(k \)-tree is a \(k \)-tree with the extra requirement that there is a construction sequence in which no two vertices are stacked onto the same \(k \)-clique. Now, the simple tree-width \(stw(G) \) of \(G \) is the minimum \(k \) such that \(G \) is a partial simple \(k \)-tree, i.e., \(G \) is a subgraph of some simple \(k \)-tree.

For a graph \(G \) with \(stw(G) = k \) or \(tw(G) = k \) we fix any (simple) \(k \)-tree that is a supergraph of \(G \) and denote it by \(G \). Clearly, \(G \) inherits a construction sequence from \(G \), where some edges are omitted.

Lemma 2. For every \(G \) we have \(tw(G) \leq stw(G) \leq tw(G) + 1 \).

Proof. The first inequality is clear. For the second inequality we show that every \((k+1)\)-tree \(H \) of \(G \) is a subgraph of a simple \((k+1)\)-tree \(H \). Whenever in the construction sequence of \(G \) several vertices \(\{v_1, \ldots, v_n\} \) are stacked onto the same \(k \)-clique \(C \) we consider \(C \cup \{v_1\} \) as a \((k+1)\)-clique in the construction sequence for \(H \).

Stacking now \(v_i \) onto \(C \) can be interpreted as stacking \(v_i \) onto \(C \cup \{v_{i-1}\} \) and omitting the edge \(\{v_{i-1}, v_i\} \). This way we can avoid multiple stackings onto \(k \)-cliques by considering \((k+1)\)-cliques.

Simple tree-width endows the notion of tree-width with a more topological flavor. For a graph \(G \) we have the following: \(stw(G) \leq 1 \) iff \(G \) is a linear forest, \(stw(G) \leq 2 \) iff \(G \) is outerplanar, \(stw(G) \leq 3 \) iff \(G \) is planar and \(tw(G) \leq 3 \) [17].
Simple tree-width also has connections to discrete geometry. In [11] a *stacked polytope* is defined to be a polytope that admits a triangulation whose dual graph is a tree. From that paper one easily deduces that a full-dimensional polytope $P \subseteq \mathbb{R}^d$ is stacked if and only if $\text{stw}(G(P)) \leq d$. Here $G(P)$ denotes the 1-skeleton of P. See [32, 39] for more on simple tree-width.

We consider both, graphs with bounded tree-width and graphs with bounded simple tree-width, as host classes since

1. most of the results for outerplanar graphs are implied by the corresponding result for $\text{stw}(G) \leq 2$,
2. lower bound results for $\text{stw}(G) \leq 3$ carry over to planar graphs,
3. our results differ for interval graphs as template class, and
4. when the maximum covering numbers are the same for both classes, the lower bounds are slightly stronger when witnessed by graphs of low simple tree-width.

Theorem 6. For every graph G we have $t_s(G) \leq \text{stw}(G)$.

Proof. If $\text{stw}(G) = 1$, then G is a linear forest and hence an interval graph. If $\text{stw}(G) = 2$, then G is outerplanar, and it even has track-number at most 2 as shown in [40].

So let $\text{stw}(G) = s \geq 3$. We build an injective cover $\varphi : I_1 \cup \cdots \cup I_k \to G$ with $|\varphi^{-1}(v)| \leq s$ for every $v \in V(G)$ and $I_i \in \mathcal{I}$ for $i \in [k]$. We use as I_1, \ldots, I_k only certain interval graphs, which we call *slugs*: A slug is like a caterpillar with a fixed spine, except that the graph I_i^v induced by the leaves at every spine vertex $v \in I_i$ is a linear forest. The end vertices of the spine are called *spine-ends* and vertices of degree at most 1 in I_i^v are called *leaf-ends*; See Figure 2 for an example. Note that slugs are indeed interval graphs.

![Fig. 2. Left: A slug I_i with the spine drawn thick, spine-ends in white, and leaf-ends in gray. Right: How to extend the slug that contains the end $e(C)$ by a new vertex x in Case 1.1 or Case 2.1.](https://example.com/fig2.png)

We define the cover φ along a construction sequence of G that is inherited from a simple k-tree $\tilde{G} \supseteq G$. At every step let H be the subgraph of G that is already constructed (and hence already covered by φ). We maintain the following invariants on φ, which allow us to stack a new vertex onto every k-clique C onto which no vertex has been stacked so far. We call such a clique *stackable*.

6 In a caterpillar I_i^v is an independent set for every spine vertex v.

12
Invariant. At all times the following is satisfied for the current graph H.

1) For every vertex v in H there is a slug $I(v)$ with $I(v) \neq I(w)$ for $v \neq w$, and a spine vertex $s(v)$ of $I(v)$ in $\varphi^{-1}(v)$.

2) For every stackable k-clique C there is a vertex w_1 in C, a slug $I(C)$ and a spine-end or leaf-end $e(C)$ of $I(C)$ in $\varphi^{-1}(w_1)$, such that:

- If $e(C)$ is a spine-end, then $I(C) \neq I(v)$ for all $v \in V(H)$.
- If $e(C)$ is a leaf-end, then $I(C) = I(w_2)$ for some vertex w_2 in $C \setminus \{w_1\}$ and the vertices $e(C)$ and $s(w_2)$ are adjacent in $I(C)$.

2c) Every leaf-end and spine-end v is $e(C)$ for at most two cliques C, and for exactly two cliques only if v has degree 0 or 1 in the slug.

It is not difficult to satisfy the above invariants for an initial k-clique of \hat{G}. Indeed, this clique can be build up in a very similar way to the stacking procedure that we describe now: In the construction sequence of G we are about to stack a vertex w onto the stackable clique $C = \{w_1, \ldots, w_k\}$ of H. We never change the preimages of vertices in H under φ. In particular, all vertices we add to the existing or new slugs are mapped by φ onto the new vertex w. We will denote these new vertices by x_1, \ldots, x_k to emphasize that no more than k such vertices are introduced. Note that for every $i \in [k]$ the clique $C_i = (C \setminus \{w_1\}) \cup \{w\}$ in \hat{G} is stackable in $H \cup \{w\}$, and that all remaining stackable cliques in $H \cup \{w\}$ are stackable cliques in H, too.

For $i = 3, \ldots, k$ we do the following. If $\{w, w_1\} \in E(G)$ we introduce a new leaf x_i to $I(w)$ at $s(w)$, and if $\{w, w_1\} \notin E(G)$ we introduce a new slug consisting only of x_i. Either way, we set $e(C_{i-1}) = x_i$. Additionally we set $e(C_1) = x_k$.

Note that 2b) is satisfied since $w_i, w \in C_{i-1}$ and $w_k, w \in C_1$.

It remains to cover possible edges between w and w_1, w_2, to find a spine-end or leaf-end $e(C_1)$ for C_1 and to find a slug $I(w)$ for the new vertex w. In doing so we may still introduce two new vertices x_2 and x_1 to our slugs. We distinguish two cases, which are illustrated in Figure 2.

Case 1: If $e(C)$ is a spine-end of $I(C)$, we first proceed with w_2 as with w_1 for $i \geq 3$ above, that is, we introduce a new leaf x_2 at $s(w_2)$ and set $e(C_1) = x_2$.

Case 1.1: If $\{w, w_1\} \in E(G)$ we introduce a new spine vertex x_1 to $I(C)$ adjacent to $e(C)$ and set $I(w) = I(C)$. Note that 1) is satisfied since by 2a) $I(C) \neq I(v)$ for every vertex v in H.

Case 1.2: If $\{w, w_1\} \notin E(G)$ we introduce a new slug I consisting only of x_1 and set $I(w) = I$.

Case 2: If $e(C)$ is a leaf-end of $I(C)$ then by 2b) we have $I(C) = I(w_2)$.

Case 2.1: If $\{w, w_2\} \in E(G)$ we introduce a new leaf x_2 to $I(C)$ adjacent to $s(w_2)$ and a new slug I consisting just of a new vertex x_1. If additionally $\{w, w_1\} \in E(G)$ we also introduce an edge between x_2 and $e(C)$ in $I(C)$.

Either way, we set $e(C_1) = x_2$ and $I(w) = I$.

Case 2.2: If $\{w, w_2\} \notin E(G)$ we introduce a new slug I consisting only of a new vertex x_2, and in case $\{w, w_1\} \in E(G)$ we add a new leaf to $s(w_1)$ in $I(w_1)$. We set $e(C_1) = x_2$ and $I(w) = I$.

13
It is straightforward to check that we obtain a cover of $H \cup \{w\}$ w.r.t. \mathcal{I}, and that the invariants above are satisfied. Note that since G is a simple k-tree, the clique C is no longer stackable and hence 2) need not be satisfied in $H \cup \{w\}$. Finally, every stackable clique in H different from C was not affected by the above procedure, which completes the proof.

We can prove three lower bounds for covering numbers.

Theorem 7. For every $k \geq 1$ there is a bipartite graph G such that $\text{stw}(G) \leq \text{tw}(G) + 1 \leq k + 1 \leq \text{ca}_f(G) = i(G)$.

Proof. Our graph G is $K_{k,n}$ with $n = 2k^2 + 1$ where every vertex in the larger bipartition class B has an additional private neighbor. It is easy to see that $\text{tw}(G) \leq k$ and then Lemma 2 yields $\text{stw}(G) \leq \text{tw}(G) + 1$.

Consider any cover φ of G w.r.t. \mathcal{Ca} with $s = \max \{|\varphi^{-1}(v)| : v \in V(G)\}$ and its restriction ψ to the subgraph of G after removing all edges of $K_{k,n}$. By Lemma 1 there are at least $n - 2sk = 2k(k - s) + 1$ vertices $b \in B$ such that $|\psi^{-1}(b)| \leq |\varphi^{-1}(b)| - k$. Since b has a neighbor in $G \setminus K_{k,n}$ we have $|\psi^{-1}(b)| \geq 1$ and hence $s \geq |\varphi^{-1}(b)| \geq k + 1$, i.e., $\text{ca}_f(G) \geq k + 1$. \Box

Theorem 8. For every $k \geq 3$ there is a bipartite graph G such that $\text{stw}(G) + 1 \leq k + 1 \leq \text{ca}(G) = t(G)$.

Proof. The definition of the graph G starts with a K_{k-1,m_1} with $|B| = m_1 = 2(2k^2 - 2k + 1)$. We denote the vertices in B by $\{u_i, v_i : i \in \left[\frac{m_1}{2}\right]\}$. For every $i \in \left[\frac{m_1}{2}\right]$ the graph G contains an induced $K_{2,5(k-1)}$ with smaller and larger bipartition class $A_i = \{u_i, v_i\}$ and $B_i = \{b_{ij}, \ldots, b_{ij}^{(2)} : j \in [5]\}$. Finally, for every $i \in \left[\frac{m_1}{2}\right]$ and $j \in [5]$ there is an induced K_{k-1,m_2} with bipartition classes $A_{ij} = \{b_{ij}^{(2)}, \ldots, b_{k-1}^{ij}\}$ and B_{ij} with $|B_{ij}| = m_2 = (k - 2)^2 + 1$.

Assume for the sake of contradiction that φ is an injective cover of G w.r.t. \mathcal{Ca}. Consider the restriction ψ of φ to the subgraph $G' = G \setminus E(K_{1,m_1})$ of G. By Lemma 1 there are at least $m_1 - 2k(k - 1) = 2k^2 - 2k + 2 \geq \frac{m_1}{2}$ vertices in $b \in B$ with $|\psi^{-1}(b)| \leq 1$. In particular there is some $i \in \left[\frac{m_1}{2}\right]$ such that $|\psi^{-1}(u_i)|, |\psi^{-1}(v_i)| \leq 1$, i.e., in G' each of u_i, v_i is covered by only one caterpillar forest, say $\varphi^{-1}(u_i) \in C_u$ and $\varphi^{-1}(v_i) \in C_v$. Since G' contains a 4-cycle through u_i and v_i we have $C_u \neq C_v$. Now consider the restriction ϕ of ψ to the subgraph $G'' = G' \setminus E[A_i \cup B_i]$ of G'. Again by Lemma 1 there are at least $5(k - 1) - 4$ vertices $b \in B_i$ with $|\phi^{-1}(b)| \leq k - 2$; more precisely $C_u, C_v \cap \phi^{-1}(b) = \emptyset$. In particular there is some $j \in [5]$ such that $C_u, C_v \cap \phi^{-1}(b) = \emptyset$ for all $b \in A_{ij}$.

In other words, ϕ restricted to $G[A_{ij} \cup B_{ij}]$ is an injective cover of $K_{k-1,(k-2)^2 + 1}$ w.r.t. \mathcal{Ca} with size at most $k - 2$, which is impossible as $\text{ca}(K_{k-1,(k-2)^2 + 1}) = \left\lceil \frac{(k-1)(k-2)^2 + k-1}{k-1 + (k-2)^2} \right\rceil = k - 1$, due to [27].

It remains to show that $\text{stw}(G) \leq k$. Let $A = \{a_1, \ldots, a_{k-1}\}$ be the small bipartition class of K_{k-1,m_1} and $B_{ij} = \{c_{ij}^{(2)}, \ldots, c_{ij}^{(m_2)}\}$ for all $i \in \left[\frac{m_1}{2}\right], j \in [5]$.

Now construct G starting with $A \cup \{u_1, v_1\}$ and the following stackings (where edges not in $E(G)$ are omitted):

\begin{itemize}
 \item [\text{stw}]:
 \item [\text{tw}]:
 \item [\text{ca}]:
\end{itemize}
Theorem 9. For every $k \geq 2$ there is a graph G such that $\text{stw}(G) + 1 \leq k + 1 \leq \text{ca}_f(G)$.

Proof. Fix $k \geq 2$. We construct G starting with a star with $k - 1$ leaves $\ell_1, \ldots, \ell_{k-1}$ and center c_1, seen as subgraph of a k-clique. For $n := 16k^2 - 16k + 4$ and $i = 2, \ldots, n$ stack a new vertex c_i to $\ell_1, \ldots, \ell_{k-1}, c_{i-1}$. Now stack vertices s_2, \ldots, s_n to $\ell_1, \ldots, \ell_{k-2}, c_{i-1}, c_i$. Finally attach a leaf a_i to each of the s_i. This may be viewed as stacking a_i to a subgraph of a k-clique on $\ell_1, \ldots, \ell_{k-2}, c_{i-1}, s_i$. By construction $\text{stw}(G) \leq k$.

Assume for the sake of contradiction that $\text{ca}_f(G) \leq k$, i.e. there is a cover φ of G w.r.t. c_Λ with $|\varphi^{-1}(v)| \leq k$ for all $v \in V(G)$. We consider three complete bipartite edge-disjoint subgraphs H_1, H_2, H_3 of G induced by:

- $A_1 := \{\ell_1, \ldots, \ell_{k-1}\}$ and $B_1 := \{c_{2i} \mid 1 \leq i \leq n/2\}$
- $A_2 := \{\ell_1, \ldots, \ell_{k-1}\}$ and $B_2 := \{c_{2i-1} \mid 1 \leq i \leq n/2\}$
- $A_3 := \{\ell_1, \ldots, \ell_{k-2}\}$ and $B_3 := \{s_i \mid 2 \leq i \leq n\}$

Note that H_i and H_j are edge-disjoint for $i \neq j$. Denote by ψ the restriction of φ to $G \setminus (E(H_1) \cup E(H_2) \cup E(H_3))$. We apply Lemma 1 three times, once for each H_i, and obtain sets $W_i \subset B_i$ ($i = 1, 2, 3$) with $|W_1|, |W_2| \geq n/2 - 2k(k-1)$ and $|W_3| \geq n - 1 - 2k(k-2)$, and $\psi_i^{-1}(b) \leq k - (k - 1) = 1$ for $b \in W_i$ ($i = 1, 2$) and $\psi_3^{-1}(b) \leq k - (k - 2) = 2$ for $b \in W_3$. From the choice of n follows that there are consecutive $c_i, c_{i+1}, c_{i+2}, c_{i+3} \in W_1 \cup W_2$ such that $s_{i+1}, s_{i+2}, s_{i+3} \in W_3$. Together with the leaves $a_{i+1}, a_{i+2}, a_{i+3}$ these vertices induce a 10-vertex graph G'. It is not difficult to check that there is no cover ψ of G' w.r.t. c_Λ with $|\psi^{-1}(c_{i+j})| \leq 1$ for $j = 0, 1, 2, 3$ and $|\psi^{-1}(s_{i+j})| \leq 2$ for $j = 1, 2, 3$ – a contradiction. \hfill \Box

5.3 Planar and Outerplanar Graphs

Determining maximum covering numbers of (bipartite) planar graphs and outerplanar graphs enjoys a certain popularity as demonstrated by the variety of citations in Table 1. We add three new results to the list.

Corollary 2. The star arboricity of bipartite planar graphs is at most 4. The local star arboricity of planar graphs and bipartite planar graphs is at most 4 and 3, respectively.
Proof. As mentioned in Section 4.2 the arboricity $a(G)$ of every graph G equals $\max_{S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S|} \right\rceil$ [44]. From this easily follows that every planar graph and planar bipartite graph has arboricity at most 3 and 2, respectively. With this, the first part of the statement follows from $sa(G) \leq 2a(G)$. The second part of the statement follows from Theorem 4 and $p(G) \leq a(G)$. \qed

The only question mark in Table 1 concerns the local track-number of planar graphs. Scheinerman and West [50] show that the interval-number of planar graphs is at most 3, but this is verified with a cover that is not injective. On the other hand, there are bipartite planar graphs with track-number 4 [24]. However by Corollary 2 and Theorem 6 every bipartite planar graph and every planar graph of tree-width at most 3 has local track-number at most 3.

Conjecture 2. The local track-number of a planar graph is at most 3.

6 Complexity and Separability

In Table 1 we provide several pairs of a host class G and a template class T for which the global covering number and the local covering number differ, i.e., $c^g_T(G) > c^T_L(G)$. Indeed this difference can be arbitrarily large.

Theorem 10. For the template class Cl of collections of cliques and the host class G of line graphs, we have $c^g_{Cl}(G) = \infty$ and $c^T_{Cl}(G) \leq 2$.

Proof. By a result of Whitney [55] a graph G is a line graph iff $c^T_{Cl}(G) \leq 2$.

To prove $c^g_{Cl}(G) = \infty$, we claim that $c^g_{Cl}(L(K_n)) \in \Omega(\log n)$, i.e., the covering number of the line graph of the complete graph on n vertices is unbounded as n goes to infinity. Assume $L(K_n)$ is covered by k collections of cliques C_1, \ldots, C_k. Every clique in $L(K_n)$ corresponds to a triangle or a star. If we disregard at most $\frac{1}{3}n$ vertices of K_n such that in the induced cover of the smaller line graph no clique in C_1 corresponds to a triangle. Repeating this for every C_i, we end up with a clique cover of $L(K_m)$ with $m \geq (\frac{2}{3})^k n$ that corresponds to a cover of K_m with star forests. Since the star arboricity of K_m is at least $\frac{m-1}{2}$, we get $k \geq \frac{m-1}{2} > (\frac{2}{3})^{k-1} n$, and thus $k \in \Omega(\log n)$. \qed

Remark 3. Milans, Stolee, and West [42] proved a similar result with interval graphs as template class, i.e., $i(L(K_n)) \in \Omega(\log^* n)$, while $i(G) \leq 2$ for every line graph G.

A case of particular interest to us is the host-class of claw-free graphs – a class containing line graphs. It has been shown that this class has unbounded local clique covering number [35]. We conjecture the following stronger statement:

Conjecture 3. The class of claw-free graphs has unbounded interval-number.
Table 1 suggests that the separation of the local and the folded covering number is more difficult. Indeed we have \(c_f^T(g) = c_f^T(g) \) for every \(T \) and \(g \) in Table 1, except for the local track-number of planar graphs (c.f. Conjecture 2). However, proving upper bounds for \(c_f^T(g) \) can be significantly more elaborate than for \(c_f^T(g) \), even if we suspect that both values are equal; see for example Conjecture 1 and Theorem 2.

Observation 11 For the template class \(Cy \) of collections of cycles and the host class \(g \) of paths, we have \(c_f^T(g) = \infty \) and \(c_f^T(g) \leq 2 \).

Observation 11 may be considered pathological as there is no injective cover of a path \(P \) w.r.t. a cycle and hence \(c_f^T(P) = \infty \). However, the local and folded covering number may differ also if \(c_f^T(G) < \infty \). We have provided one example for this when considering coverings of the Petersen graph with disjoint unions of cycles, see Proposition 2. There is another example: It is known that \(i(K_{m,n}) = \left\lceil \frac{mn+1}{m+n} \right\rceil \) [31] and \(t(K_{m,n}) = \left\lceil \frac{mn}{m+n-1} \right\rceil \) [27]. The lower bound on \(t(K_{m,n}) \) presented in [13] indeed gives \(t_f(K_{m,n}) \geq \left\lceil \frac{mn}{m+n-1} \right\rceil \) and hence we have \(t_f(K_{m,n}) > i(K_{m,n}) \) for appropriate numbers \(m \) and \(n \), e.g., \(n = m^2 - 2m + 2 \). With Proposition 1 this translates into \(ca_f(K_{m,n}) > ca_f(K_{m,n}) \).

Question 1 How much can folded and local covering number differ?

Another interesting aspect concerns the computational complexity of the three covering numbers. Very informally, one might suspect that the computation of \(c_f^T(G) \) is easier than of \(c_f^T(G) \), which in turn is easier than computing \(c_f^T(G) \). For example, if \(M \) is the class of all matchings, then \(c_f^M(G) = \chi'(G) \), the edge-chromatic number of \(G \). Hence deciding \(c_f^M(G) \leq 3 \) is NP-complete even for 3-regular graphs [33], while \(c_f^M(G) \) equals the maximum degree of \(G \). As a second example consider the star arboricity \(sa(G) \) and the caterpillar arboricity \(ca(G) \). Deciding \(sa(G) \leq k \) [28, 24] and deciding \(ca(G) \leq k \) [24, 51] is NP-complete for \(k = 2, 3 \). The complexity for \(k \geq 4 \) is unknown in both cases. On the other hand from Theorem 4 we can derive the following.

Theorem 12. The local star arboricity can be computed in polynomial time.

Proof. In [22] a flow algorithm is used that given a graph \(G \) and \(\alpha : V(G) \to \mathbb{N} \) decides if an orientation \(D \) of \(G \) exists such that the out-degree of \(v \) in \(D \) is at most \(\alpha(v) \). Moreover, they minimize \(\max_{v \in V(G)} \alpha(v) \) such that such \(D \) exists in polynomial time. We may use this algorithm to find \(p(G) \) in polynomial time. Now define \(\alpha(v) := p(G) \) whenever \(v \) has degree \(p(G) \) and \(\alpha(v) := p(G) - 1 \) otherwise. By Theorem 4 we have \(sa_f(G) = p(G) \) if and only if there exists an orientation \(D \) of \(G \) satisfying the out-degree constraints given by \(\alpha \). \(\square \)

Finally, consider interval graphs as the template class. Shmoys and West [52] and Jiang [37] have shown that deciding \(i(G) \leq k \) and \(t(G) \leq k \) is NP-complete for every \(k \geq 2 \), respectively. We claim that the reduction of Jiang also holds for the local track-number.
Question 2: Are there a template and a host class for which the computation of the folded or local covering number is NP-complete while the global covering number can be computed in polynomial time?

7 Further questions

We have presented new ways to cover a graph and given many example template classes. Also, we highlighted some conjectures and questions on the way. Apart from these it is interesting to consider the local and folded variant for more graph covering problems from the literature. For example the covering number w.r.t. (outer)planar graphs is known as the (outer)thickness [10] and the folded covering number w.r.t. planar graphs is called the splitting number [34]. The local covering number in this case seems unexplored. Further interesting template classes include linear forests of bounded length [8], forests of stars and triangles [20], and chordal graphs.

A concept dual to covering is packing. For a host graph G and a template class T, we define a packing of G w.r.t. T to be an edge-injective homomorphism φ from the disjoint union $T_1 \cup T_2 \cup \cdots \cup T_k$ of template graphs, i.e., $T_i \in T$ for $i \in [k]$, to G. The size of a packing is the number of template graphs in the disjoint union. A packing φ is called injective if $\varphi|_{T_i}$, that is, φ restricted to T_i, is injective for every $i \in [k]$.

Definition 2. For a template class T and a host graph $G = (V, E)$ define the (global) packing number $p^g_T(G)$, the local packing number $p^l_T(G)$, and the folded packing number $p^f_T(G)$ as follows:

$$p^g_T(G) = \max \{ \text{size of } \varphi : \varphi \text{ injective packing of } G \text{ w.r.t. } T \}$$

$$p^l_T(G) = \max \{ \min_{v \in V} |\varphi^{-1}(v)| : \varphi \text{ injective packing of } G \text{ w.r.t. } T \}$$

$$p^f_T(G) = \max \{ \min_{v \in V} |\varphi^{-1}(v)| : \varphi \text{ packing of } G \text{ w.r.t. } T \text{ of size 1} \}$$

Let us rephrase $p^g_T(G)$, $p^l_T(G)$, and $p^f_T(G)$: The packing number is the maximum number of template graphs that can be packed into the host graph, where packing means identifying edge-disjoint subgraphs in G that are template graphs. In the local covering number the number of template graphs in such a packing is not measured; instead the number of template graphs at every vertex should be large. The folded packing number is the maximum k such that every vertex v of G can be split into k vertices, distributing the incident edges at v arbitrarily (not repeatedly) among them, such that the resulting graph is in T. A classical packing problem is given by T being the class of non (outer-)planar graphs. In this case the global packing number is called (outer) coarseness [10].

Acknowledgments: We thank Marie Albenque, Daniel Heldt, and Bartosz Walczak for fruitful discussions and two anonymous referees for useful comments.
References

31. Frank Harary and William T. Trotter, Jr., *On double and multiple interval graphs,* J. Graph Theory 3 (1979), no. 3, 205–211.

