Polynomial Time Recognition of Uniform Cocircuit Graphs

Ricardo Gómez Aiza, Juan José Montellano Ballesteros, Ricardo Strausz

Instituto de Matemáticas
Universidad Nacional Autónoma de México
México D.F., Mexico

Kolja Knauer

Institut für Mathematik
Technische Universität Berlin
Berlin, Germany

Abstract
We present an algorithm which takes a graph as input and decides in polynomial time if the graph is the cocircuit graph of a uniform oriented matroid. In the affirmative case the algorithm returns the set of signed cocircuits of the oriented matroid.

Keywords: Oriented matroid, cocircuit graph, recognition algorithm, polynomial algorithm.

1 Supported by the Research Training Group Methods for Discrete Structures (DFG-GRK 1408). Part of this work was done during visits to the Departments of Mathematics of UNAM and CINVESTAV, Mexico City.

2 Email: knauer@math.tu-berlin.de
1 Introduction

The cocircuit graph is a natural combinatorial construction associated with oriented matroids. In the case of pseudoline-arrangements, i.e., uniform rank 3 oriented matroids, its vertices are the intersection points of the lines and two points share an edge if they are connected by a line segment which does not intersect other lines. More generally, the Topological Representation Theorem of Folkman and Lawrence [4] says that every oriented matroid can be represented as an arrangement of pseudospheres. The cocircuit graph is the 1-skeleton of this arrangement.

For the uniform case, Montellano-Ballesteros and Strausz [6] provide a graph theoretical characterization of cocircuit graphs. Cordovil, Fukuda and Guedes de Oliveira [2] show that a uniform oriented matroid is basically determined by its cocircuit graph (up to isomorphism and reorientation).

After introducing basic notions of oriented matroids we provide an algorithm inspired by [2] which given a graph G decides in polynomial time if G is the cocircuit graph of a uniform oriented matroid. In the affirmative case the algorithm returns the set of signed cocircuits of the oriented matroid.

Given a finite ground set E we define a signed set $X \subseteq E$ as an underlying set X with a bipartition (X^+, X^-) into a positive and a negative part. The parts may be empty. By X^0 we refer to the zero-support $E \setminus X$. Reorienting X on $A \subseteq E$ yields the signed set $A \cdot X := ((X^+ \setminus A) \cup (X^- \cap A), (X^- \setminus A) \cup (X^+ \cap A))$. By $-X$ we refer to $E \setminus X$. Given signed sets X,Y we denote by $S(X,Y) := (X^+ \cap Y^-) \cup (X^- \cap Y^+)$ their separator.

We define an oriented matroid as a pair $M = (E, C^*)$ of a ground set E and a multiset C^* of signed sets called cocircuits satisfying the following axioms:

(C1) $\emptyset \notin C^*$
(C2) $X \in C^* \Rightarrow -X \in C^*$
(C3) $X,Y \in C^*$ and $X = Y \Rightarrow X = \pm Y$
(C4) $X,Y \in C^*$ and $X \neq Y$ and $e \in S(X,Y) \Rightarrow$ there is $Z \in C^*$ with $Z^+ \subseteq X^+ \cup Y^+$ and $Z^- \subseteq X^- \cup Y^-$ and $e \in Z^0$.

The cocircuit graph G_M of an oriented matroid $M = (E, C^*)$ has as vertex set C^* and $X,Y \in C^*$ share an edge if and only if $S(X,Y) = \emptyset$ and the symmetric difference $|X^0 \Delta Y^0| = 2$.

A uniform oriented matroid $M = (E, C^*)$ of order n and rank r is an oriented matroid with $|E| = n$ and C^* having exactly the subsets of size $n - r + 1$ as underlying sets. For more about oriented matroids, see [1].
2 The Algorithm

We are given a (simple, connected) graph $G = (V, A)$ and want to test in polynomial time whether G is the cocircuit graph of a uniform oriented matroid. In the affirmative case we assign a signed set $X(v)$ to every vertex v such that $X(V)$ is the set of cocircuits of \mathcal{M} with $G = G_\mathcal{M}$. The algorithm has the following structure:

(A) Determine the parameters n and r
(B) Construct the set of great cycles \mathcal{G} (defined below)
(C) Assign zero-supports X^0 to vertices and great cycles
(D) Assign signed sets $X(v) = (X^+(v), X^-(v))$ to vertices
(E) Check the cocircuit axioms

Each of these steps works if G is the cocircuit graph of a uniform oriented matroid and outputs that G is not, otherwise. The main idea of step (C) is contained in [2].

(A) Determine the parameters. Cocircuit graphs are regular and antipodal. These properties are checked here.

- Check if G is regular. If so, let δ denote the degree and set $r := \frac{\delta}{2} + 1$.
- Check if for every $v \in V$ there exists a unique $v^- \in V$ with $\text{dist}(v, v^-) = \text{diam}(G)$. In the affirmative case set $n := \text{diam}(G) + r - 1$.
- Check if $|V| = 2 \binom{n}{r-1}$.
- If any of the above tests results negative, G is not a cocircuit graph.

All the checked properties are necessary conditions for G to be a cocircuit graph of some uniform \mathcal{M}. Moreover n and r must be the order and the rank of the oriented matroid of \mathcal{M}, respectively. The runtime here is bounded from above by calculating a shortest path matrix for every starting vertex in the second step. This can be solved in $O(V^3)$ by applying Dijkstra’s Algorithm [3] $|V|$ times.

(B) Construct the set of great cycles A set $C \subseteq C^*$ is called a great cycle with zero-support $X^0(C)$ if it consists of the cocircuits whose zero-support contains the $(r - 1)$-set $X^0(C)$. The set of great cycles is denoted by \mathcal{G}. The following part of the algorithm computes \mathcal{G}.

- For every $v \in V(G)$ and every neighbor $w \in N(v)$, if the edge $\{v, w\}$ is not contained in any $C \in \mathcal{G}$ then
compute a shortest path P from w to v,

- set $C' := (\{v, w\}, P, \{v^-, w^-\}, P^-)$,
- add C' to G.

- If G is no partition of the edge set then G is not a cocircuit graph.

For the correctness of this step we need:

Lemma 2.1 The set of great cycles \mathcal{G} of a cocircuit graph G partitions the edge set. Moreover the edge $\{v, w\}$ is contained in the cycle C' constructed in the algorithm.

The lemma tells us in particular that $|\mathcal{G}| = |A| = \frac{\delta}{2} |V| = 4(r - 1) \left(\begin{array}{c} n \\ r \end{array}\right)$ and that $|C| = 2 \text{diam}(G) = 2(n - r + 1)$. Hence the runtime $|V| \delta |C| |V|^2$ is bounded by $4(r - 1)(n - r + 1)|V|^3 \in O(|V|^4)$.

(C) **Assign zero-supports to vertices and great cycles.** In this part we assign zero supports to great cycles and vertices. We use the incidence structure on G, i.e., let J be the graph with vertex set G where C and C' share an edge if they have a vertex in common in G. Note that J is isomorphic to the Johnson Graph $J(n, n - r + 2)$, see [5] for a definition. During the algorithm we denote by \mathcal{P} the set of cycles with already assigned zero-support. Cycles with all their vertices having a zero-support already are in \mathcal{T}. We assign supports starting from a vertex v, then all cycles containing v. These cycles form a clique in J.

By $G_i, \mathcal{P}_i, \mathcal{T}_i$ we denote the respective sets at distance i from this clique. We write $[k]$ for $\{1, \ldots, k\}$.

- Take any $v \in V$ and set $X^0(v) := [r - 1]$.
- For every C_i in the set $\{C_1, \ldots, C_{r-1}\}$ of great cycles containing v,
 - set $X^0(C_i) := [r - 1] \setminus \{i\}$,
 - add C_i to \mathcal{P}_0.
- Take any $\tilde{C} = (v_1, \ldots, v_{2(n-r+1)})$ from \mathcal{P}_0.
- Set $X^0(v_{(n-r+1)+i}) := X^0(v_i) := X^0(C) \cup \{i\}$ for every $i \in [n - r + 1]$.
- Add \tilde{C} to \mathcal{T}_0 and \mathcal{T}_{-1}.
- Set $i := 0$ and until all V is labelled repeat:
 - T-loop: For every $C \in \mathcal{P}_i$ take $\tilde{C} \in \mathcal{T}_{i-1}$ such that $C \cap \tilde{C} \neq \emptyset$.
 - For every $v \in C$ find a $C' \in \mathcal{G}$ with $v \in C'$ and $C' \cap \tilde{C}$ containing a w:
 - set $X^0(v) := X^0(C) \cup (X^0(w) \setminus X^0(\tilde{C}))$,
 - add C to \mathcal{T}_i.
 - P-loop: For every $\tilde{C} \in \mathcal{T}_i$ and $v \in \tilde{C}$:
 - If there exists an unlabeled great cycle C containing v look for another
\(w \in C \) with known \(X^0(w) \),
set \(X^0(C) := X^0(v) \cap X^0(w) \),
add \(C \) to \(\mathcal{P}_{i+1} \).

- If any vertex receives several different labels \(G \) is not a cocircuit graph.
- Increase \(i \) by one.

The runtime is bounded by the T-loop \(|G|(|C|\delta + |C|\delta|C|) \in O(V^3) \).

For the existence of \(C' \) in the T-loop we need:

Lemma 2.2 Let \(C \in \mathcal{G}_i \) and \(C' \in \mathcal{G}_{i-1} \) be intersecting. Then for every \(v \in C \) there is a \(C'' \in \mathcal{G}_i \) that contains \(v \) and intersects with \(C' \).

For the existence of \(w \) in the P-loop we need:

Lemma 2.3 For every \(C \in \mathcal{G}_i \) there are at least two \(C', C'' \in \mathcal{G}_{i-1} \) which intersect with \(C \).

(D) **Assign signed sets to vertices.** We will label the vertices with signed sets. As in (C) we start with cycles \(\mathcal{S}_0 \) which form a clique in \(J \). Then we label cycles at increasing distance of \(\mathcal{S}_0 \). Since we calculated zero-supports in (C) we set \(\overline{X}(v) := E \setminus X^0(v) \) for every \(v \in V \).

- Take any \(v \in V \) and set \(X(v) := (\overline{X}(v), \emptyset) \).
- For all great cycles \(C \ni v \) and \(w, w' \in N(v) \cap C \) set \(X(w) := (X^+(v) \cap \overline{X}(w), X(w) \setminus X^+(v)) \) and \(X(w') := (\overline{X}(w), \emptyset) \).
- Add all \(C \in \mathcal{G} \) containing \(v \) to \(\mathcal{S}_0 \).
- Set \(i := 0 \) and repeat until all \(V \) is signed:
 - For every great cycle \(C \in \mathcal{S}_i \)
 - get two signed non-antipodal vertices \(v, w \in C \) and take \(u \in N(v) \cap C \) such that \(0 < d(u, w) < d(u, w^-) \), i.e., \(u, v, w \) lie on the same half of \(C \),
 - sign \(u \) identically to \(v \) on \(\overline{X}(v) \cap \overline{X}(u) \) and take the signing of \(X(w) \) on \(e = \overline{X}(u) \setminus \overline{X}(v) \).
 - This way we sign all vertices in \(C \).
 - If a vertex receives two different labels \(G \) is not a cocircuit graph.
 - Add all unsigned cycles \(C' \cap C \neq \emptyset \) to \(\mathcal{S}_{i+1} \).
 - Increase \(i \) by one.

The runtime is \(|G||C|^2 \in O(|V|^4) \). We need Lemma 2.3 for the existence of \(v, w \in C \). For the correctness of the signing we have:

Lemma 2.4 Take a great cycle \(C \) of a uniform cocircuit graph, \(X, Y \in C \), \(X \neq Y \) and let \((X = X_0, \ldots, X_k = Y) \) be the shortest \((X, Y)\)-path in \(C \) and \(e \in X \cap Y \). Then \(e \in S(X, Y) \) if and only if there is \(X^0 \ni e \).
(E) Check the cocircuit axioms. Here we check if the signed sets we assigned to the vertices satisfy (C4) of the cocircuit axioms. The other axioms are satisfied by construction.

- For every two non-antipodal vertices \(u, v \in V \) and every element in the separator of their signed labels \(e \in S(X(u), X(v)) \) check if there exists a \(w \in V \) with \(X(w)^+ \subseteq X(u)^+ \cup X(v)^+ \) and \(X(w)^- \subseteq X(u)^- \cup X(v)^- \) and \(e \in X(w)^0 \).

Here the runtime is \(|V|^3(n - r + 1) \in O(|V|^4) \). The correctness is obvious. The last step of the algorithm could also be done by checking whether the constructed \(C^* \) is a certain metrical and antipodal embedding into the \((r - 1)\)-dual of the \(n \)-cube, see [6].

Thus we have the following result:

Theorem 2.5 The preceding algorithm checks if a given graph \(G = (V, A) \) is the cocircuit graph of a uniform oriented matroid \(M \) and constructs such \(M \) in the affirmative case in time \(O(|V|^4) \).

References

