Vorlesung Variationsrechnung und optimale Steuerung

5. Foliensatz, Version vom 8.7.2014

Michael Karow

Steuerbarkeit 1: Motivation

Problem mit festen Endunkten: Minimiere

$$J(x,u) = \frac{1}{2} \int_0^{t_*} \begin{bmatrix} u(s) \\ x(s) \end{bmatrix}^{\top} \underbrace{\begin{bmatrix} P & R \\ R^{\top} & Q \end{bmatrix}}_{\text{pos. semidef.}} \begin{bmatrix} u(s) \\ x(s) \end{bmatrix} ds \quad \text{wobei} \quad \dot{x} = Ax + Bu, \ x(0) = x_0, \ x(t_*) = x_1$$

Grundsätzliches Vorgehen analog zum freien Endwertproblem. Definiere:

$$J^{\lambda}(x,u) := \int_{0}^{t_{*}} \frac{1}{2} \begin{bmatrix} u \\ x \end{bmatrix}^{\top} \begin{bmatrix} P & R \\ R^{\top} & Q \end{bmatrix} \begin{bmatrix} u \\ x \end{bmatrix} + \lambda^{\top} (Ax + Bu - \dot{x}) ds$$

$$= \int_{0}^{t_{*}} \frac{1}{2} \begin{bmatrix} u \\ x \end{bmatrix}^{\top} \begin{bmatrix} P & R \\ R^{\top} & Q \end{bmatrix} \begin{bmatrix} u \\ x \end{bmatrix} + \lambda^{\top} (Ax + Bu) + \dot{\lambda}^{\top} x ds - \lambda(s)^{\top} x(s) \Big|_{s=0}^{s=t_{*}}$$

Seien $v \in \mathcal{PC}([0,t],\mathbb{R}^m)$, $h \in \mathcal{PC}([0,t],\mathbb{R}^n)$ mit $h(0) = h(t_*) = 0$.

Taylorentwicklung(exakt): $J^{\lambda}(x+h,u+v) = J^{\lambda}(x,u) + L(h,v) + J(h,v),$

wobei

$$L(h,v) = \int_0^{t_*} \underbrace{(A^\top \lambda + R^\top u + Qx + \dot{\lambda})^\top}_{(a)} h + \underbrace{(Pu + Rx + B^\top \lambda)^\top}_{(b)} v \, ds - \underbrace{\lambda(s)^\top h(s)\big|_{s=0}^{s=t}}_{s=0}$$

Folgerungen: (x, u) minimiert $J^{\lambda} \Leftrightarrow (a)=0$, (b)=0. (x, u) minimiert $J \Leftrightarrow (a)=0$, (b)=0 und $\dot{x}=Ax+Bu$, $x(0)=x_0$, $x(t_*)=x_1$.

Problem: gibt es überhaupt eine Steuerung, so dass $x(t_*) = x_1$?

(Wenn z.B. B = 0, dann kann überhaupt nicht gesteuert werden)

Fragestellung: Seien $x_0, x_1 \in \mathbb{R}^n$ und t > 0 gegeben. Gibt es $u \in \mathcal{PC}([0, t], \mathbb{R}^m)$, so dass

$$x_1 = e^{At} x_0 + \int_0^t e^{A(t-s)} B u(s) ds$$
 ?

(Steuerbarkeit des Systems (A, B) von x_0 nach x_1 im Zeitintervall [0, t].)

Umformulierung: Ist $x_1 - e^{At}x_0$ im Bild des Operators

$$\mathcal{PC}([0,t],\mathbb{R}^m)
ightarrow u \longmapsto \int_0^t e^{A(t-s)} B\, u(s)\, ds \in \mathbb{R}^n$$
 ?

Falls diese Frage stets mit 'ja' beantwortet werden kann, heisst das durch (A,B) definierte System **vollständig steuerbar**.

Ein Lemma über semidefinite Matrizen

Zur Beantwortung der Steuerbarkeitsfrage brauchen wir folgende Tatsache.

Lemma: Sei $M \in \mathbb{R}^{n \times n}$ symmetrisch and positiv semidefinit.

Dann sind folgende Aussagen über $z \in \mathbb{R}^n$ äquivalent.

- (a) $z \in (\operatorname{range} M)^{\perp}$,
- (b) $z^{\top}Mz = 0$,
- (c) Mz = 0.

Beweis:

- (a) \Rightarrow (b): $z^{\top}(Mz) = 0$, weil $Mz \in \text{range } M$.
- (c) \Rightarrow (a): Wenn Mz = 0 dann ist $0 = (Mz)^{\top}x = z^{\top}(Mx)$ für alle $x \in \mathbb{R}^n$.
- (b)⇒(c): Betrachte die Funktion

$$f(t) = (z - tMz)^{\top} M(z - tMz), \qquad t \in \mathbb{R}$$

mit Ableitung

$$\dot{f}(t) = -(Mz)^{\top} M(z - tMz) - (z - tMz)^{\top} M(Mz).$$

Da M positiv semidefinit ist, hat man $f(t) \ge 0$ für alle t.

Wenn zusätzlich $z^{\top}Mz=0$, dann nimmt f das Minimum 0 bei t=0 an. Also,

$$0 = \dot{f}(0) = -(Mz)^{\top} Mz - z^{\top} M(Mz) = -2||Mz||_{2}^{2} \quad \Rightarrow \quad Mz = 0.$$

Folgerung aus (c) \Rightarrow (b): M ist invertierbar $\Leftrightarrow M$ ist positiv definit.

Wir betrachten: $G(s) := e^{A(t-s)}B$, $\Gamma(t) := \int_0^t G(s)G(s)^{\top} ds = \int_0^t e^{A(t-s)} BB^{\top} e^{A^{\top}(t-s)} ds$.

 $\Gamma(t)$ ist positiv semidefinit, weil $G(s)G(s)^{\top}$ positiv semidefinit ist.

Satz 1. Die folgenden Aussagen sind aquivalent für $x \in \mathbb{R}^n$.

- (a) Es gibt $u \in \mathcal{PC}([0,t],\mathbb{R}^m)$ so dass $x = \int_0^t G(s)u(s) ds$.
- (b) Es gibt $z \in \mathbb{R}^n$ so dass $x = \Gamma(t)z$.

Angenommen, (b) ist erfüllt. Dann sind alle Lösungen von (a) von der Form

$$u(s) = u_0(s) + h(s),$$
 wobei $u_0(s) := G(s)^{\top} z,$ $\int_0^t G(s)h(s) ds = 0.$

Es ist

$$\int_0^t \|u(s)\|_2^2 ds = \int_0^t \|u_0(s)\|_2^2 ds + \int_0^t \|h(s)\|_2^2 ds \ge \int_0^t \|u_0(s)\|_2^2 ds = z^\top \Gamma(t)z = z^\top x.$$

Beweis: nächste Seite.

Folgerungen:

Die linearen Operatoren $u\mapsto \int_0^t G(s)\,u(s)\,ds$ und $z\mapsto \Gamma(t)z$ haben dasselbe Bild. Das durch (A,B) definierte System ist genau dann vollständig steuerbar, wenn $\Gamma(t)$ invertierbar ist. In diesem Fall ist

$$u_0(s) = B^{\top} e^{A^{\top}(t-s)} \Gamma(t)^{-1} x$$
 mit $x := x_1 - e^{At} x_0$

die eindeutige Steuerung mit minimalen Normquadrat $\int_0^t ||u_0(s)||_2^2 ds = x^\top \Gamma(t)^{-1} x$, welche x_0 im Zeitintervall [0,t] nach x_1 steuert.

Terminologie: $\Gamma(t)$ heißt Gramsche Matrix der Steuerbarkeit.

Beweis von Satz 1. $(b) \Rightarrow (a)$: Aus $\Gamma(t)z = x$ und $u_0(s) = G(s)^{\top}z$ folgt

$$\int_0^t G(s)u_0(s) \, ds = \int_0^t G(s)G(s)^{\top} z \, ds = \Gamma(t)z = x.$$

Wir haben dann auch

$$\int_0^t \|u_0(s)\|_2^2 ds = \int_0^t u_0(s)^\top u_0(s) ds = z^\top \int_0^t G(s) G(s)^\top ds \ z = z^\top \Gamma(z) z = z^\top x.$$

Sei u so dass $x = \int_0^t G(s)u(s)\,ds$ und $h(s) = u(s) - u_0(s)$. Dann ist $\int_0^t G(s)h(s)\,ds = 0$. Wenn die letzte Gleichung für irgendein h erfüllt ist, dann $\int_0^t G(s)(u_0(s) + h(s))\,ds = x$,

 $\|u(s)\|_2^2 = (u_0(s) + h(s))^\top (u_0(s) + h(s)) = \|u_0(s)\|_2^2 + 2u_0(s)^\top h(s) + \|h(s)\|_2^2,$ und $\int_0^t u_0(s)^\top h(s) \, ds = z^\top \int_0^t G(s) h(s) \, ds = 0.$ Somit,

$$\int_0^t ||u(s)||_2^2 ds = \int_0^t ||u_0(s)||_2^2 ds + \int_0^t ||h(s)||_2^2 ds.$$

 $(a)\Rightarrow (b)$: Die Menge $V=\{\int_0^tG(s)u(s)\,ds\mid u\in\mathcal{PC}([0,t],\mathbb{R}^m)\}$ ist ein Vektorraum. Sei $v\in(\mathsf{range}\,\Gamma(t))^\perp$. Dann

$$0 = v^{\top} \Gamma(t) v = \int_0^t v^{\top} G(s) G(s)^{\top} v \, ds = \int_0^t \|v^{\top} G(s)\|_2^2 \, ds \quad \Rightarrow \quad v^{\top} G(s) = 0 \text{ für alle } s \in [0, t].$$

Letzteres impliziert $v^{\top}x = 0$ für alle $x \in V$.

Also, $V^{\perp} \subseteq (\operatorname{range} \Gamma(t))^{\perp} \subseteq V$. Also, $V \subseteq \operatorname{range} \Gamma(t)$ Also folgt (a) aus (b).

Wir bestimmen nun das Bild von $\Gamma(t)$. Notation:

 $\mathcal{C}(A,B) = \text{kleinster } A\text{-invarianter Unterraum, der range } B \text{ enthält.}$

Kalman-Matrix: $C_{A,B} := [B \ AB \ A^2B \dots A^{n-1}B] \in \mathbb{C}^{n \times nm}$.

Satz: Es ist $C(A, B) = \operatorname{range} C_{A,B} = \operatorname{range} \Gamma(t)$ für alle t > 0.

Beweis: C(A, B) is die Menge aller v der Form

$$v = \sum_{j=0}^{p} A^{j}Bz_{j}, \quad p \in \mathbb{N}, \quad z_{j} \in \mathbb{C}^{m}.$$

Konsequenz des Cayley-Hamilton Theorems: A^n is a Linearkombination der Potenzen A^k , $k=0,\ldots,n-1$. Also ist auch jedes A^j Linearkombination von A^k , $k=0,\ldots,n-1$. Folgerung:

$$v = \sum_{k=0}^{n-1} A^k B \widetilde{z}_k = \begin{bmatrix} B & AB & A^2B & \dots & A^{n-1}B \end{bmatrix} \begin{bmatrix} \widetilde{z}_0 \\ \widetilde{z}_1 \\ \vdots \\ \widetilde{z}_{n-1} \end{bmatrix},$$

Das beweist die erste Gleichung des Satzes.

Fortsetzung auf der nächsten Seite.

Fortsetzung des Beweises. Zu zeigen: range $\Gamma(t) = \text{range} \left[B \ AB \ A^2B \dots A^{n-1}B \right]$

Wir haben

$$z \in (\operatorname{range} \Gamma(t))^{\perp} \Leftrightarrow 0 = z^{\top} \Gamma(t) z = \int_0^t \|z^{\top} e^{A(t-s)} B\|_2^2 ds \tag{1}$$

$$\Leftrightarrow 0 = z^{\mathsf{T}} e^{A(t-s)} B = \sum_{k=0}^{\infty} \frac{z^{\mathsf{T}} A^k B}{k!} (t-s)^k \quad \text{for all } s \in [0,t]$$
 (2)

$$\Leftrightarrow z^{\top} A^k B = 0 \quad \text{for all } k = 0, 1, \dots$$
 (3)

$$\Leftrightarrow z \in \mathcal{C}(A,B)^{\perp} \tag{4}$$

- (1) gilt, weil $\Gamma(t)$ positiv semidefinit ist, siehe Lemma.
- (3) gilt, weil eine Potenzreihe genau dann die Nullfunktion ist, wenn alle Koeffizienten 0 sind.

Wir haben gezeigt, dass (range $\Gamma(t)$) $^{\perp} = \mathcal{C}(A,B)^{\perp}$. Folglich, range $\Gamma(t) = \mathcal{C}(A,B)$. \square .

Zusammenfassung: Seien t > 0 und $x_0, x_1 \in \mathbb{C}^n$.

Es gibt eine Steuerung $u(\cdot) \in \mathcal{PC}([0,t],\mathbb{C}^m)$ so dass

$$x_1 = e^{At}x_0 + \int_0^t e^{A(t-s)}Bu(s) ds$$
 (5)

genau dann, wenn $x_1 - e^{At}x_0 \in \operatorname{range}\Gamma(t) = \mathcal{C}(A,B) = \operatorname{range}[B \ AB \ A^2B \ \dots \ A^{n-1}B].$

Angenommen diese Bedingung ist erfüllt mit $x_1 - e^{At}x_0 = \Gamma(t)z$, $z \in \mathbb{C}^n$.

Dann ist eine solche Steuerung gegeben durch

$$u_0(s) = B^{\mathsf{T}} e^{A^{\mathsf{T}}(t-s)} z.$$

Diese hat unter allen solchen Steuerungen minimales Normquadrat.

Folgerung: Folgende Aussagen sind äquivalent:

- (i) Das lineare System $\dot{x} = Ax + Bu$ ist vollständig steuerbar.
- (ii) $\mathcal{C}(A,B) = \mathbb{C}^{n\times n}$.
- (iii) Die Matrix $\Gamma(t)$ is positiv definit für ein (und dann alle) t > 0.
- (iv) rang $[B \ AB \ A^2B \ \dots \ A^{n-1}B] = n$ (Kalman-Bedingung).

Die Gramsche Matrix der Steuerbarkeit

$$\Gamma(t) = \int_0^t e^{A(t-s)} B B^{\mathsf{T}} e^{A^{\mathsf{T}}(t-s)} \, ds.$$

löst das Anfangswertproblem

$$\dot{\Gamma} = BB^{\top} + A\Gamma + \Gamma A^{\top}, \qquad \Gamma(0) = 0.$$

(Beweis: Hausaufgabe)

Im Fall der vollständigen Steuerbarkeit existiert $W(s) := \Gamma(s)^{-1}$ für s > 0. Aus $\dot{W} = -\Gamma^{-1}\dot{\Gamma}\Gamma^{-1} = -W\dot{\Gamma}W$ folgt die Riccati-DGL

$$\dot{W} = -(WBB^{\top}W + WA + A^{\top}W).$$

Für die optimale Steuerung $u_0(s) = B^{\top} e^{A^{\top}(t-s)}z$ mit $\Gamma(t)z = x$ hat man dann

$$\int_0^t \|u_0(s)\|_2^2 ds = x^{\top} z = x^{\top} W(t) x.$$

Bemerkung: Vollständige Steuerbarkeit ist eine generische Eigenschaft.

D.h., wenn (A,B) nicht vollständig steuerbar ist, dann kann man Matrizen ΔA , ΔB mit beliebig kleinen Einträgen finden, so dass $(A + \Delta A, B + \Delta B)$ vollständig steuerbar ist. ||W(t)|| ist dann aber groß, d.h. $(A + \Delta A, B + \Delta B)$ ist schwer zu steuern.

Beobachtbarkeit

Wir betrachten 2 Zustandsverläufe bei der gleichen Steuerung u:

$$\dot{x}_1(t) = A x_1(t) + B u(t), \qquad \dot{x}_2(t) = A x_2(t) + B u(t).$$

Ein Beobachter kennt x_k nicht, sondern nur den **Systemausgang**

$$y_k(t) = C x_k(t), \quad C \in \mathbb{R}^{p \times n}.$$

Definition: Das System (A, B, C) heißt beobachtbar, falls aus $y_1 \equiv y_2$ folgt, dass $x_1 \equiv x_2$.

Satz: (A, B, C) ist genau dann beobachtbar, wenn rang $\begin{bmatrix} CA \\ CA^2 \\ \vdots \\ CA^{n-1} \end{bmatrix} = n$ (*)

Beweis: Wir beweisen nur eine Richtung. Sei $x_d = x_2 - x_1$ und $y_d = y_2 - y_1 = Cx_d$. Zu zeigen: aus (*) und $y_d \equiv 0$ folgt $x_d \equiv 0$. Wir haben $\dot{x}_d = A\,x_d$, also $y_d(t) = Cx_d(t) = Ce^{A\,t}x_d(0)$. Differenzieren der letzten Gleichung an der Stelle t = 0 ergibt

$$0 = \begin{vmatrix} y_d(0) \\ \dot{y}_d(0) \\ \ddot{y}_d(0) \\ \vdots \\ y_d^{(n-1)}(0) \end{vmatrix} = \begin{bmatrix} C \\ CA \\ CA^2 \\ \vdots \\ CA^{n-1} \end{bmatrix} x_d(0).$$

Aus (*) folgt $x_d(0) = 0$ und damit $x_d \equiv 0$. \square

Bemerkung: Höhere Ableitungen geben keine zusätzliche Information wegen Cayley-Hamilton.