Vorlesung: Analysis 2 für Ingenieure

Wintersemester 09/10

Michael Karow

Thema: Numerische Optimierung

Problemstellung:

Wie findet man den minimalen Wert einer differenzierbaren Funktion

$$f: \mathbb{R}^n \supset G \to \mathbb{R}$$

Lösungsverfahren:

- 1) Bestimme die Stellen $\vec{x} \in G$ für die grad $\vec{x}f = \vec{0}$ ist.
- 2) Berechne die Funktionswerte $f(\vec{x})$ an den gefundenen Stellen \vec{x} . Sei $f(\vec{x_*})$ der kleinste dieser Werte.
- 3) Wenn G kompakt, ist und f auf dem Rand von G keine kleineren Werte als $f(\vec{x_*})$ annimmt, dann ist $f(\vec{x_*})$ das globale Minimum. Falls G nicht kompakt ist, muss man noch prüfen, wie sich f in der Nähe des Randes verhält (vielleicht gibt es dann gar kein Minimum. Beispiel: f(x) = -1/x, $G = \{x \in \mathbb{R} | x > 0\}$).

Schon Schritt 1 ist durch Handrechnung nicht immer durchführbar. Wenn dies der Fall ist, braucht man **Numerische Methoden**.

Das Nullstellenproblem für vektorwertige Funktionen

Angenommen, wir wollen das Minimum der Funktion

$$(x,y) \longmapsto f(x,y) = \sin^2(x^2 + y) + \cos(xy) + x^2$$

finden, indem wir zunächst die Nullstellen des Gradienten berechnen. Dann müssen wir die Gleichung

$$\vec{F}(x,y) := \operatorname{grad}_{(x,y)} f = \begin{bmatrix} 4 \sin(x^2 + y) \cos(x^2 + y) x - \sin(xy)y + 2x \\ 2 \sin(x^2 + y) \cos(x^2 + y) - \sin(xy)y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

lösen. Dies ist durch Umformen nicht machbar.

Verallgemeinerung des Problems: Sei $\vec{F}: \mathbb{R}^n \supset G \to \mathbb{R}^n$. Finde \vec{x} , so dass

$$\vec{F}(\vec{x}) = \vec{0}.$$

Wir suchen also Nullstellen einer vektorwertigen Funktion \vec{F} .

Das Newton-Verfahren zur Berechnung einer Nullstelle

Angenommen, die Funktion $\vec{F}: \mathbb{R}^n \supset G \to \mathbb{R}^n$ hat die Nullstelle $\vec{x}_* \in G$, d.h. es ist $\vec{F}(\vec{x}_*) = \vec{0}$. Wie können wir \vec{x}_* finden, wenn eine Näherung \vec{x}_0 für \vec{x}_* bekannt ist?

Herleitung des Newton-Verfahrens:

- (1) Es ist $\vec{x}_* = \vec{x}_0 + \Delta \vec{x}$ mit $\Delta \vec{x} = \vec{x}_* \vec{x}_0$.
- (2) Taylor-Entwicklung um \vec{x}_0 : $\vec{0} = \vec{F}(\vec{x}_*) = \vec{F}(\vec{x}_0) + \vec{F}'(\vec{x}_0) \Delta \vec{x} + \vec{R}(\Delta \vec{x})$ (*)
- (3) Wenn wir (*) nach $\Delta \vec{x}$ auflösen (umstellen) könnten, dann könnten wir mit (1) die Nullstelle \vec{x}_* berechnen. Wegen des unbekannten Restglieds $\vec{R}(\Delta \vec{x})$. ist dies aber nicht möglich. Wir hoffen, dass das Restglied klein ist und bestimmen eine Näherung \vec{x}_1 durch Lösen der Gleichung

$$\vec{0} = \vec{F}(\vec{x}_1) = \vec{F}(\vec{x}_0) + \vec{F}'(\vec{x}_0) \Delta \vec{x}$$
 wobei $\vec{x}_1 = \vec{x}_0 + \Delta \vec{x}$.

Es ist

$$\vec{x}_1 = \vec{x}_0 - \vec{F}'(\vec{x}_0)^{-1} F(\vec{x}_0).$$

 \vec{x}_1 ist hoffentlich eine bessere Näherung als \vec{x}_0 .

(4) Wiederhole das Verfahren mit \vec{x}_1 statt mit \vec{x}_0 . Fahre so fort. Das ergibt die rekursiv definierte Folge

$$\vec{x}_{k+1} = \vec{x}_k - \vec{F}'(\vec{x}_k)^{-1} F(\vec{x}_k).$$

Die Methode des steilsten Abstiegs (Gradientenverfahren)

Sei $f: \mathbb{R}^n \supset G \to \mathbb{R}$ eine stetig differenzierbare Funktion.

Wir wissen:

 $\operatorname{grad}_{\vec{x}} f$ zeigt in die Richtung des stärksten Anstiegs von f.

 $-\operatorname{grad}_{\vec{x}} f$ zeigt in die Richtung des stärksten Abstiegs von f.

Eine Methode zur Bestimmung eines relativen Minimums von f ist die Methode des steilsten Abstiegs:

Gehe in jedem Schritt ein Stück in Richtung $-\operatorname{grad}_{\vec{x}}f$. Definiere also eine eine Folge

$$\vec{x}_{k+1} = \vec{x}_k - t_k \operatorname{grad}_{\vec{x}} f, \qquad t_k > 0.$$

Dabei muss t_k so klein gewählt werden, dass $f(\vec{x}_{k+1}) < f(\vec{x}_k)$. Dies ist stets möglich.

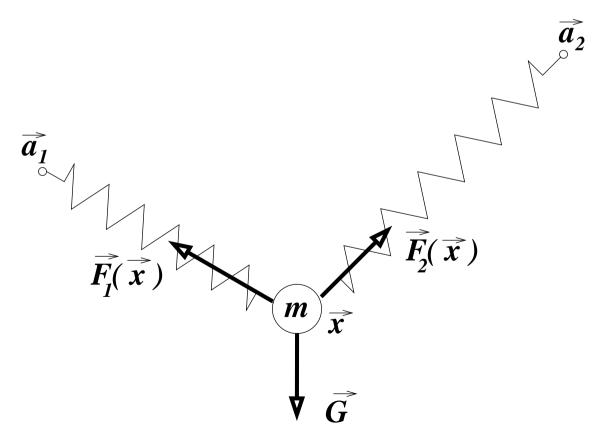
Beispielproblem: Gleichgewichtspunkt in einem Kraftfeld

Situation: Eine Masse m hängt an 2 Federn.

Auf diese Masse wirken dann die Federkräfte und die Gravitation.

Die Summe dieser Kräfte \vec{F} hängt vom Ort \vec{x} ab, an dem die Masse sich gerade befindet: $\vec{F} = \vec{F}(\vec{x})$.

Gesucht: Ein Punkt \vec{x} mit $\vec{F}(\vec{x}) = \vec{0}$.



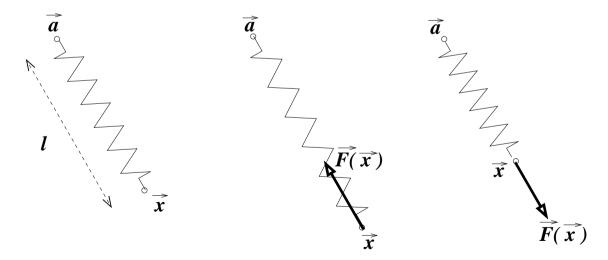
Die Federkraft

Die Feder mit (entspannter) Länge ℓ und Steifigkeit s sei am Punkt \vec{a} frei drehbar aufgehängt. Dann übt die Feder auf ihren zweiten Endpunkt \vec{x} folgende Kraft aus:

$$\vec{F}(\vec{x}) = -s(|\vec{x} - \vec{a}| - \ell)\frac{\vec{x} - \vec{a}}{|\vec{x} - \vec{a}|}.$$
 (Hooksches Gesetz)

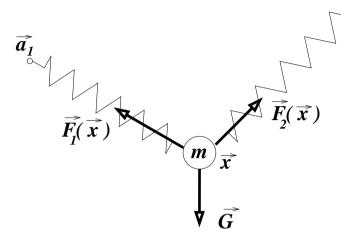
Es ist

$$\vec{F}(\vec{x}) = -\operatorname{grad}_{\vec{x}} E_{el}$$
 mit $E_{el}(\vec{x}) = \frac{s}{2} (|\vec{x} - \vec{a}| - \ell)^2$ (elastische Energie).



Links: entspannte Feder mit Länge ℓ . Mitte: gedehnte Feder. Rechts: gestauchte Feder.

Die Kraft auf die aufgehängte Masse



Gesamtkraft:
$$\vec{F}(\vec{x}) = -s_1 (|\vec{x} - \vec{a}| - \ell_1) \frac{\vec{x} - \vec{a}}{|\vec{x} - \vec{a}_1|} - s_2 (|\vec{x} - \vec{a}_2| - \ell_2) \frac{\vec{x} - \vec{a}}{|\vec{x} - \vec{a}_2|} - \begin{bmatrix} 0 \\ gm \end{bmatrix}$$
.

Der letzte Summand ist die Gravitionskraft. g = Fallbeschleunigung. Es ist

$$\vec{F}(\vec{x}) = -\operatorname{grad}_{\vec{x}}V$$
 mit $V(\vec{x}) = \frac{s_1}{2}(|\vec{x} - \vec{a}_1| - \ell_1)^2 + \frac{s_2}{2}(|\vec{x} - \vec{a}_2| - \ell_2)^2 + mgy.$

 $V(\vec{x})$ ist die potentielle Energie (**Potential** von \vec{F}).

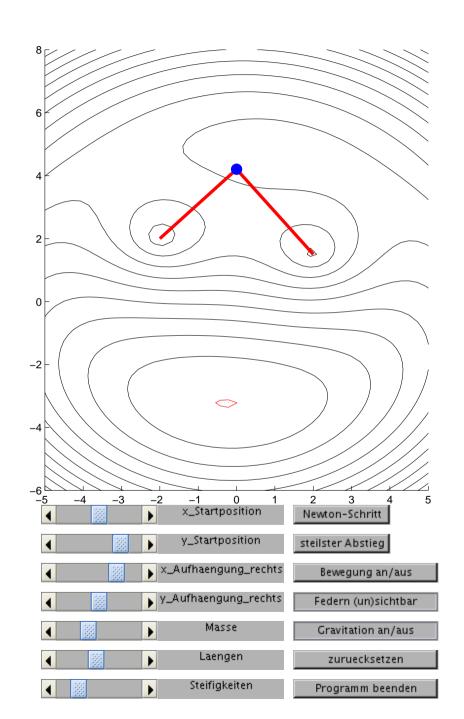
Bewegungsgleichung für die Masse: $m \ddot{\vec{x}}(t) = \vec{F}(\vec{x}(t))$.

Ein Punkt \vec{x} heißt **Gleichgewichtspunkt**, wenn $\vec{0} = \vec{F}(\vec{x}) = -\text{grad}_{\vec{x}}V$.

An einem Gleichgewichtspunkt erfährt die Masse keine Beschleunigung.

Eine Minimalstelle des Potentials $oldsymbol{V}$ ist stets Gleichgewichtspunkt.

Demo-Programm zum Federproblem (siehe Vorlesung)



Ausgleichsprobleme I

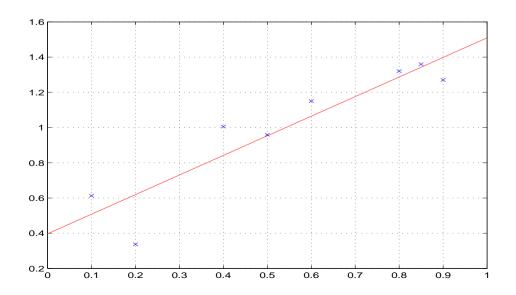
Beispielproblem 1: Zwischen zwei (z.B. physikalischen) Größen t und y wird (z.B. aufgrund theoretischer Überlegungen) ein linearer Zusammenhang der Form

$$y = y_{a,b}(x) = a + bt$$
 (*)

angenommen. Die unbekannten Parameter a,b sollen durch Messungen bestimmt werden. Die Messungen ergeben die Wertepaare

$$(t_1, y_1), (t_2, y_2), (t_3, y_3), \ldots, (t_m, y_m).$$

Aufgrund von Messfehlern oder weil die Ausgangshypothese (*) nicht ganz korrekt ist, liegen die Messpunkte nicht auf einer Geraden. Was sind die besten Werte für a, b, die man in dieser Situation angeben kann?



Ausgleichsprobleme II

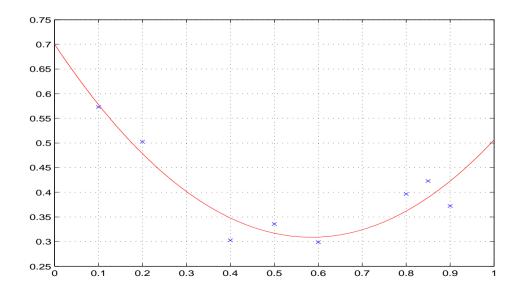
Beispielproblem 2: Zwischen zwei Größen t und y wird ein quadratischer Zusammenhang der Form

$$y = y_{a,b,c}(t) = a + bt + ct^2$$

angenommen. Die unbekannten Parameter a,b,c sollen durch Messungen bestimmt werden. Die Messungen ergeben die Wertepaare

$$(t_1,y_1), (t_2,y_2), (t_3,y_3), \ldots, (t_m,y_m).$$

Was sind die besten Werte für a, b, c?



Ausgleichsprobleme III

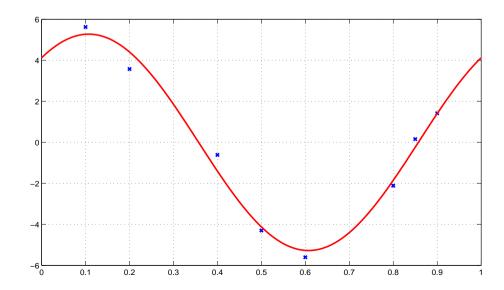
Beispielproblem 3: Zwischen zwei Größen t und y wird ein Zusammenhang der Form

$$y = y_{a,b}(t) = a \sin(t+b)$$

angenommen. Die unbekannten Parameter a,b sollen durch Messungen bestimmt werden. Die Messungen ergeben die Wertepaare

$$(t_1, y_1), (t_2, y_2), (t_3, y_3), \dots (t_m, y_m).$$

Was sind die besten Werte für a, b?



Ausgleichsprobleme IV

Allgemeines Ausgleichsproblem (für 2 Parameter):

Zwischen den Größen t und y wird ein Zusammenhang der Form

$$y = y_{a,b}(t) = y(a, b, t)$$
 (*)

angenommen. Gegeben sind die Daten

$$(t_1,t_1), (t_2,y_2), (t_3,y_3), \ldots (t_m,y_m),$$

wobei $m \ge 2$. Wie muss man die freien Konstanten a, b wählen, so dass die Funktion (*) die Daten optimal approximiert (annähert)?

Frage: Was heißt eigentlich 'optimal approximiert'?

Auf diese Frage kann man verschiedene Antworten geben. In dieser VL besprechen wir die (in der Praxis am häufigsten vorkommende)

Optimalität im Sinne der kleinsten Fehlerquadrate

Ausgleichsprobleme V

Messwert zu t_j : y_j

Funktionswert zu t_j : $y_{a,b}(t_j)$

Fehlerquadrat: $(y_{a,b}(t_j) - y_j)^2$

Summe der Fehlerquadrate:

$$f(a,b) = \sum_{j=1}^{m} (y_{a,b}(t_j) - y_j)^2.$$

Methode der kleinsten Fehlerquadrate (least squares method):

Bestimme die Parameter a, b, so, dass f(a, b) minimal wird.

$$f(a,b) \rightarrow \min$$

Dieses Optimierungsproblem kann z.B. mit der Methode des steilsten Abstiegs (Gradientenverfahren) oder mit dem Newton-Verfahren (für grad f) gelöst werden.

Ausgleichsprobleme VI

Demo-Programm aus der Vorlesung:

