# Überblick Kryptographie

Ulrich Kühn

Deutsche Telekom Laboratories, TU Berlin

Seminar Kryptographie

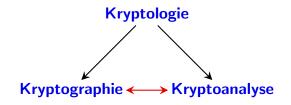
19. Oktober 2005

### Übersicht

Was ist Kryptographie?

Symmetrische Kryptographie

Asymmetrische Kryptographie


Beispiele für asymmetrische Verfahren

PKI

Identitätsbasierte Kryptographie

### Was ist Kryptographie?

#### Zwei Seiten einer Medallie:



Häufig Kryptographie := Kryptologie.

**Wichtig:** Interaktion Kryptographie – Kryptoanalyse.

3

#### Geschichte

Seit der Antike: Unsystematischer Einsatz (u.a. Cäsar). Mehr "Black Art", weniger Wissenschaft,

ab Ende 19. Jh: Systematisierung

2. Weltkrieg: Brechen der deutschen und japanische

Chiffriermaschinen durch polnische, britische,

amerikanische Wissenschaftler, massiver

Maschineneinsatz.

70er Jahre: DES, Public-Key Kryptographie

Seitdem: "Öffentliche" Wissenschaft, breiter Einsatz:

Mobiltelefonie, Banken / Geldautomaten, Internet,

e-Commerce, ...

4

### Ziele beim Einsatz von Kryptographie

- ► Geheimhaltung von Information
  - "Ich sehe was, was Du nicht siehst"
  - Klassisches Einsatzgebiet der Kryptographie, meist bei Militär, Diplomaten, Geheimdiensten
- ► Integrität von Daten
  - "Ich bin sicher, dass die Daten nicht verändert wurden"
  - ► Eingesetzt z.B. im Bankenbereich
- Authentizität von Kommunikationspartnern
  - "Ich weiss, dass Du es bist"
- ...

### Konzepte in der Kryptographie

- ► Bedrohungsmodelle
  - → Welche Angreifer, welche Möglichkeiten / Freiheiten?
- ► Kryptographische Primitive: Symmetrisch / Asymmetrisch
  - → Blockchiffren, Stromchiffren, MACs, ...
  - → Public-key Verschlüsselung, Signaturverfahren, . . .
  - → Kryptographische Hashfunktionen
- Kryptographische Protokolle:
  - → Zero-Knowledge Protokolle
  - $\rightarrow \ Multiparty \ Computation$

### Prinzip von Kerckhoffs

**Auguste Kerckhoffs** (1835–1903) zur Sicherheit von Kryptoverfahren:

- ▶ Das System muss praktisch, wenn nicht gar mathematisch, unbrechbar sein.
- ▶ Das System selbst darf nicht geheim sein, darf keine Probleme verursachen, wenn es dem Feind bekannt wird.
- ► Es muß einfach sein, den Schlüssel ohne Aufzeichnungen zu übertragen [...], sowie bei verschiedenen Parteien zu ändern.
- **▶** [...]

Claude Shannon (1916–2001) "Der Feind kennt das System".

### Symmetrische Verschlüsselungsverfahren

#### **Definition:**

- $\blacktriangleright$  Klartextmenge M, Chiffretextmenge C, Schlüsselmenge K
- ► Effizient berechenbare (randomisierte) Algorithmen

(Schüsselgenerator  $\mathcal{G}: ... \to K$ ,) Verschlüsselungsalgorithmus  $\mathcal{E}: K \times M \to C$ ,

Entschlüsselungalgorithmus  $\mathcal{D}: K \times C \rightarrow M$ 

und Konsistenzbedingung

$$\forall m \in M, k \leftarrow \mathcal{G}() : m = \mathcal{D}(k, \mathcal{E}(k, m)).$$

8

# Beispiele für Symmetrische Primitive

#### **Blockchiffren:**

- ▶ DES,  $M = C = \{0, 1\}^{64}, K = \{0, 1\}^{56}$
- ► AES,  $M = C = \{0, 1\}^{128}, \log_2(|K|) \in \{128, 192, 256\}$

#### Stromchiffren:

- ► RC4,  $M = C = (\{0,1\}^8)^*$ ,  $K = \bigcup_{N=1}^{256} \{0,1\}^{8N}$
- ► GSM-Verschlüsselung (Luftschnittstelle)
- ► (Blockchiffre mit Betriebsmodus)

9

# Symmetrisch vs. Asymmetrisch

### Symmetrische Kryptographie:

- ► Ein Schlüssel zum Ver- und Entschlüsseln
- ▶ Jeder Teilnehmer einer Kommunikationsbeziehung kennt diesen einen Schlüssel
- Schlüsselverteilung schwierig, Geheimhaltung!

### Asymmetrische Kryptographie:

- ► Schlüsselpaar (*PK*, *SK*), getrennt für Ver- und Entschlüsselung
- ► *SK* kann aus *PK* nicht effizient berechnet werden
- ightharpoonup PK öffentlich, Verteilung "nur" authentisch ightharpoonup PKI.

### Asymmetrische Kryptographie

- ► Verschlüsselung
  - ► Verschlüsselung mit *PK*
  - ► Entschlüsselung mit *SK*
- ▶ Digitale Signaturen
  - Signatur mit SK
  - Verifikation mit PK
- Nutzbar sind Falltür-Einwegfunktionen:
  - ► Leicht berechenbar
  - Schwer umkehrbar
  - ▶ Leicht umkehrbar mit Zusatzinformation
- Welche Funktionen eignen sich?

# Asymmetrische Kryptographie (2)

#### Kandidaten:

- Zahlentheoretische Probleme
  - ► Faktorisierung vs. Multiplikation in Z
  - Exponentierung vs. DLP
    - in  $(\mathbb{Z}_p^{\times}, *)$  bzw. Untergruppen
    - Punktgruppe von elliptischen Kurven
- Quadratische Gleichungssysteme in vielen Variablen
  - → multivariate Kryptographie
- ► Codes → Code-basierte Kryptographie
- **.**..

### Beispiel: RSA

#### Verfahren von Rivest, Shamir, Adleman:

- ▶ Beruht auf Schwierigkeit, große Zahlen zu faktorisieren ?
- ightharpoonup p, q große Primzahlen

- $\triangleright$  PK = (N, e)
- $\triangleright$  SK = (N, d, p, q, ...)

# Beispiel: RSA (2)

#### **Funktionsweise:**

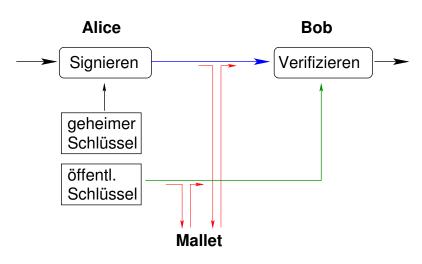
- Verschlüsselungsverfahren:
  - ightharpoonup Verschlüsseln:  $c = m^e \mod N$
  - ► Entschlüsseln:  $m' = c^d \mod N$
- Signaturverfahren:
  - ▶ Paddingverfahren  $\mu(.)$
  - ► Signieren:  $s = \mu(m)^d \mod N$
  - Verifizieren:  $t = s^e \mod N$ ,  $\mu^{-1}(t) \stackrel{?}{=} m$
- Homomorphieeigenschaft
  - → Angriffe, → Anonymität bei E-Cash

### **Beispiel: ElGamal**

#### **ElGamal-Verfahren:**

- Systemparameter  $H=(\mathbb{Z}_p^\times,*)$ ,  $G=< g>\subset H$  mit q=|G| prim
- ►  $SK : x \leftarrow_R \{1, \dots, q-1\}, PK : y = g^x$

#### **Funktionsweise:**


- Verschlüsselungsverfahren:
  - ► Verschlüsseln:  $k \leftarrow_R \{1, \dots, q-1\}, r = g^k, s = y^k m$  $\rightarrow c = (r, s)$
  - ► Entschlüsseln: geg. c = (r, s):  $m' = (r^x)^{-1}s$
  - Padding nötig wg. Multiplikativität
- ► Signaturverfahren existiert, aber unüblich
  - ► Variante Digital Signature Algorithm ►DSA

### Beispiel: ElGamal (2)

#### **Sicherheit**

- Sicherheit beruht auf Diffie-Hellman-Entscheidungsproblem: geg.  $g^a, g^b, g^c$ , gilt  $g^{ab} = g^c$ ?
  - → Computational Diffie-Hellman Problem
  - → Discrete Logarithm Problem
- ► Sicherheit gg. Chosen-Plaintext-Angriff
- ▶ Unsicher in  $(\mathbb{Z}_N, +)$ ,  $G = (\mathbb{Z}_p^{\times}, *)$
- ► Interessant: Punktgruppe elliptischer Kurven über GF(p), GF(2<sup>p</sup>)

# Public Key Infrastructure: Angriffsmodell



Signieren ↔ Entschlüsseln

Verifizieren ↔ Verschlüsseln

# **Public Key Infrastructure**

#### **Problem**

Öffentlicher Schlüssel muss authentisch zum Partner übermittelt werden  $\rightarrow$  Man-in-the-Middle-Angriff Alternative Formulierung: Sicherstellung der authentischen Zuordnung zwischen Identität I und PK<sub>I</sub>.

### Lösung

Zertifikat bestätigt Zuordnung: Signierung von  $(I, PK_I)$  durch vertrauenswürdige Einrichtung (CA).

- ► Verlagert Problem eine Ebene höher !?
- ► Aber: Wenige CAs + Schlüssel → Vertrauensanker
- ► "Public Key Infrastructure"

# Public Key Infrastructure: Beispiele

#### Beispiele:

- Signaturgesetz bzw. EU-Richtlinie
  - → Zweistufige Hierarchie
- ▶ Web → Serverzertifikate, (https://...)
- ► Firmeninterne PKI → meist für interne Anwendungen
- ▶ Gesundheitswesen → Heilberufeausweis, eGK, etc.

#### Aber:

- Aufwendige Prozesse
- Certificate Revocation "Ist das Zertifikat noch aktuell?"
  - → Last der Prüfung beim Kommunikationspartner

# Identitätsbasierte Kryptographie

#### Alternativen?

PKI nötig für Zuordnung von Identität und Schlüssel. Geht es auch anders?

### Identitätsbasierte Kryptographie:

- ▶ Identität (z.B. Name, Email-Adresse) direkt als Schlüssel
- ▶ Basiert auf Idee von Shamir (1984)
- ▶ Geheimer Schlüssel hängt von Identität und Systemparametern ab → Private Key Generator nötig

# Identitätsbasierte Kryptographie (2)

#### Identitätsbasierte Kryptosysteme:

- ▶ Setup: Erzeugt Systemparameter P und Master Secret für Private Key Generator PKG
- ► Extract: PKG liefert zu Identität / einen geheimen Schlüssel *SK*<sub>1</sub>.
- ► Encrypt / Verify: Nutzt P und Identität I des Empfängers / Signieres als öffentlichen Schlüssel.
- ► **Decrypt / Sign:** Nutzt *SK*<sub>1</sub> zum Entschlüsseln / Signieren einer Nachricht.

# Identitätsbasierte Kryptographie (3)

#### Beispiele:

- ▶ Boneh-Franklin: Verschlüsselungssystem
  - Weil-Paarung auf elliptischen Kurven als bilineare Abbildung
- ➤ Signaturverfahren: (Shamir), Hess
- Hierarchische Systeme: Gentry-Silverberg

#### Varianten: Paarungs-basierte Verfahren

- Certificate-based Cryptography
- Certificate-less Cryptography

# Weitere Themengebiete in der Kryptologie

- Kryptographische Hashfunktionen
  - → Kollisionsresistenz, (2-te) Urbilder schwer zu finden
  - → Idealisiert als zufällige Funktionen
- Betriebsmodi (Modes of Operation) von Blockchiffren
- Message Authentication Codes
- Kryptographische Protokolle, z.B.
  - Schlüsselaustausch / -transport
  - Zero-Knowledge
  - Multiparty computation
  - Wahlprotokolle
- Kryptoanalyse

# **Appendix**

# **Beispiel: DSA**

### **Digital Signature Algorithm:**

- ightharpoonup q prim, 160 bit, p prim mit p = qz + 1, 1024 bit.
- ▶ Wähle h mit  $g = h^z \mod p \neq 1$
- $\blacktriangleright SK: x \leftarrow_R \mathbb{Z}_q \setminus \{0\}, \ PK: (p,q,g,y=g^x)$

#### **Funktionsweise:**

- Signieren:
  - $k \leftarrow_R \mathbb{Z}_{q-1}^{\times}, r = (g^k \mod p) \mod q$
  - $ightharpoonup s = (k^{-1}(H(m) + xr)) \bmod q.$
  - ightharpoonup Signatur ist (r, s)
- Verifizieren:
  - $w = s^{-1} \mod q$ ,  $u_1 = H(m)w \mod q$ ,  $u_2 = rw \mod q$ .

  - ightharpoonup Gültig, falls v = r.

