Identity based signatures

Ilko Müller

23. November 2005

- Einführung
- 2 Schema von J.Cha und J.Cheon
- 3 Schema von Prof. Hess
- 4 Schema von Prof. Hess (allgemeine Version)

• Alice signiert eine Nachricht mit ihrem geheimen Schlüssel

- Alice signiert eine Nachricht mit ihrem geheimen Schlüssel
- Bob verifiziert mit Alices öffentlichem Schlüssel

- Alice signiert eine Nachricht mit ihrem geheimen Schlüssel
- Bob verifiziert mit Alices öffentlichem Schlüssel
- vorher muss geklärt werden, dass der öffentliche Schlüssel zur Person Alice gehört

- Alice signiert eine Nachricht mit ihrem geheimen Schlüssel
- Bob verifiziert mit Alices öffentlichem Schlüssel
- vorher muss geklärt werden, dass der öffentliche Schlüssel zur Person Alice gehört
- mittels digitalem Zertifikat

ID-based signatures

- 1984 schrieb Shamir, dass es effizienter wäre, wenn diese Bindung nicht benötigt würde
- Identität des Benutzers → öffentlicher Schlüssel

Angriffe

- Ziele des Angreifers:
 - existentielle Fälschung

Angriffe

- Ziele des Angreifers:
 - existentielle Fälschung
 - universelle Fälschung

Angriffe

- Ziele des Angreifers:
 - existentielle Fälschung
 - universelle Fälschung
 - total break

Fähigkeiten

- Fähigkeiten des Angreifers
 - key-only Angriff

Fähigkeiten

- Fähigkeiten des Angreifers
 - key-only Angriff
 - known-signature Angriff

Fähigkeiten

- Fähigkeiten des Angreifers
 - key-only Angriff
 - known-signature Angriff
 - chosen-message Angriff

- Setup:
 - $p:(G,+) \to (V,\cdot)$ sei Einwegmonomorphismus und ord(G) = I mit $I \in \mathbb{P}$ (z. Bsp.: $p:\mathbb{Z}$ $/I\mathbb{Z} \to V, x \mapsto g^x$)
 - ullet H sei ein Hashfkt. nach $\mathbb{Z}/I\mathbb{Z}$

- Setup:
 - $p:(G,+) \to (V,\cdot)$ sei Einwegmonomorphismus und ord(G) = I mit $I \in \mathbb{P}$ (z. Bsp.: $p: \mathbb{Z} / I\mathbb{Z} \to V, x \mapsto g^x$)
 - H sei ein Hashfkt. nach $\mathbb{Z}/I\mathbb{Z}$
- Schlüsselerzeugung:
 - sei $x \in G$ zufällig, y := p(x) (z. Bsp.: $y = g^x$)
 - y öffentlicher Schlüssel, x geheimer Schlüssel

- Setup:
 - $p:(G,+) \to (V,\cdot)$ sei Einwegmonomorphismus und ord(G) = I mit $I \in \mathbb{P}$ (z. Bsp.: $p:\mathbb{Z}$ $/I\mathbb{Z} \to V, x \mapsto g^x$)
 - H sei ein Hashfkt. nach $\mathbb{Z}/I\mathbb{Z}$
- Schlüsselerzeugung:
 - sei $x \in G$ zufällig, y := p(x) (z. Bsp.: $y = g^x$)
 - y öffentlicher Schlüssel, x geheimer Schlüssel
- Sign(*M*):
 - sei $k \in G$ zufällig, r := p(k) (z. Bsp.: $r = g^k$)
 - $h := H(M \parallel r), u := hx + k$
 - Signatur ist dann: $\sigma(u, r)$

- Setup:
 - $p:(G,+) \to (V,\cdot)$ sei Einwegmonomorphismus und ord(G) = I mit $I \in \mathbb{P}$ (z. Bsp.: $p:\mathbb{Z}$ $/I\mathbb{Z} \to V, x \mapsto g^x)$
 - H sei ein Hashfkt. nach $\mathbb{Z}/I\mathbb{Z}$
- Schlüsselerzeugung:
 - sei $x \in G$ zufällig, y := p(x) (z. Bsp.: $y = g^x$)
 - y öffentlicher Schlüssel, x geheimer Schlüssel
- Sign(*M*):
 - sei $k \in G$ zufällig, r := p(k) (z. Bsp.: $r = g^k$)
 - $h := H(M \parallel r), u := hx + k$
 - Signatur ist dann: $\sigma(u, r)$
- Verify:
 - Signatur akzeptieren $\Leftrightarrow p(u) = y^{H(M||r)}r$

Sicherheit der Schnorr-Signatur

 sicher im RO bzgl. existentieller Fälschung unter adaptive-chosen-message Angriff

Sicherheit der Schnorr-Signatur

- sicher im RO bzgl. existentieller Fälschung unter adaptive-chosen-message Angriff
- denn: erfolgreicher Angriff ⇒ DLP lösbar

Gap Diffie-Hellman Gruppen das Schema Sicherheit Zusammenhang mit BF-IDE

Schema von J.Cha und J.Cheon

Schema von J.Cha und J.Cheon

Computation Diffie-Hellman Problem

- setting: (G, +) sei Gruppe mit ord(G) = I, $I \in \mathbb{P}$
- setting: sei P Erzeuger und $a,b,c\in\mathbb{Z}/I\mathbb{Z}$
- geg. sei (P, aP, bP)
- berechne abP

Decisional Diffie-Hellman Problem

- setting: wie oben
- geg. sei (*P*, *aP*, *bP*, *cP*)
- entscheide, ob c = ab in $\mathbb{Z}/I\mathbb{Z}$
- falls ja: (P, aP, bP, cP) ist gültiges DH Tupel

Gap Diffie-Hellman Gruppe

- G heisst Gap Diffie-Hellman Gruppe, falls
 - DDHP lösbar
 - CDHP hart
- Bsp.: (hyper)elliptische Kurven mit Weil- oder Tate-pairing

• G sei Gruppe mit $ord(G) = I, I \in \mathbb{P}$

- G sei Gruppe mit $ord(G) = I, I \in \mathbb{P}$
- wähle Erzeuger P von G sowie $s \in \mathbb{Z}/I\mathbb{Z}$

- G sei Gruppe mit $ord(G) = I, I \in \mathbb{P}$
- wähle Erzeuger P von G sowie $s \in \mathbb{Z}/I\mathbb{Z}$
- setze $P_{Pub} := sP$

- G sei Gruppe mit ord(G) = I, $I \in \mathbb{P}$
- wähle Erzeuger P von G sowie $s \in \mathbb{Z}/I\mathbb{Z}$
- setze $P_{Pub} := sP$
- wähle Hashfkt. $H_1:\{0,1\}^* imes G o \mathbb{Z}/I\mathbb{Z}$ und $H_2:\{0,1\}^* o G$

Gap Diffie-Hellman Gruppen das Schema Sicherheit Zusammenhang mit BF-IDE

Extract

• gegeben sei Identität ID

Extract

- gegeben sei Identität ID
- berechne $D_{ID} = sH_2(ID)$

Extract

- gegeben sei Identität ID
- berechne $D_{ID} = sH_2(ID)$
- D_{ID} privater Schlüssel

Extract

- gegeben sei Identität *ID*
- berechne $D_{ID} = sH_2(ID)$
- D_{ID} privater Schlüssel
- $Q_{ID} = H_2(ID)$ öffentlicher Schlüssel

Sign

• um Nachricht m zu signieren, wähle $r \in \mathbb{Z}/I\mathbb{Z}$ zufällig

Sign

- um Nachricht m zu signieren, wähle $r \in \mathbb{Z}/I\mathbb{Z}$ zufällig
- berechne $U = rQ_{ID}$, $h = H_1(m, U)$ und $V = (r + h)D_{ID}$

Sign

- um Nachricht m zu signieren, wähle $r \in \mathbb{Z}/I\mathbb{Z}$ zufällig
- berechne $U = rQ_{ID}$, $h = H_1(m, U)$ und $V = (r + h)D_{ID}$
- Signatur: $\sigma = (U, V)$

Verify

- geg. m, $\sigma = (U, V)$ und ID
- Signatur ok \Leftrightarrow $(P, P_{Pub}, U + hQ_{ID}, V)$ ist gültiges DH Tupel

Konsistenz

- sei $\sigma(U, V)$ gültige Signatur für Nachricht m der Identität ID \Rightarrow
- $(P, P_{Pub}, U + hQ_{ID}, V) = (P, P_{Pub}, (r + h)Q_{ID}, V)$ = $(P, sP, (r + h)Q_{ID}, s(r + h)Q_{ID})$

• Identity Hash Oracle: gibt für jede ID den Hashwert $H_2(ID)$ aus

- Identity Hash Oracle: gibt für jede ID den Hashwert $H_2(ID)$ aus
- Message Hash Oracle: gibt für jedes m und $U \in G$ den Hashwert $H_1(m, U)$ aus

- Identity Hash Oracle: gibt für jede ID den Hashwert $H_2(ID)$ aus
- Message Hash Oracle: gibt für jedes m und $U \in G$ den Hashwert $H_1(m, U)$ aus
- Extraction Oracle: gibt für jede ID den den privaten Schlüssel D_{ID} aus

- Identity Hash Oracle: gibt für jede ID den Hashwert $H_2(ID)$ aus
- Message Hash Oracle: gibt für jedes m und $U \in G$ den Hashwert $H_1(m, U)$ aus
- Extraction Oracle: gibt für jede ID den den privaten Schlüssel D_{ID} aus
- Signature Oracle: gibt für jede ID und m die Signatur aus

Theorem

Theorem: Seien q_{H_1} , q_{H_2} , q_S und q_E die maximale Anzahl von Anfragen an die Orakel. Wenn es einen Algorithmus A_0 für einen adaptive-chosen-message und ID Angriff für dieses Schema gibt, mit Laufzeit t_0 und Vorteil $\epsilon_0 \geq \frac{10(q_S+1)(q_S+q_{H_1})q_{H_2}}{(I-1)}$, dann kann CDHP in der Zeit $t \leq \frac{120686q_{H_1}q_{H_2}t_0}{\epsilon_0(1-\frac{1}{I})}$ gelöst werden.

Fazit

• Schema ist sicher, wenn CDHP schwer ist, bzw. wenn *G* eine Gap Diffie-Hellman Gruppe ist

Gap Diffie-Hellman Gruppen das Schema Sicherheit Zusammenhang mit BF-IDE

Zusammenhangmit BF-IDE

 das Setup des ID Encryption Schemas kann für dieses Schema genutzt werden

das Schema Sicherheit Vergleich der Schemata key escrow

Schema von Prof. Hess

Schema von Prof. Hess

• (G, +) und (V, \cdot) seien zyklische Gruppen mit primer Ordnung I

- (G,+) und (V,·) seien zyklische Gruppen mit primer Ordnung I
- $P \in G$ sei Erzeuger von G

- (G,+) und (V,·) seien zyklische Gruppen mit primer Ordnung I
- $P \in G$ sei Erzeuger von G
- $e: G \times G \rightarrow V$ sei pairing mit folgenden Eigenschaften:
 - **1** Bilinear: $e(x_1 + x_2, y) = e(x_1, y)e(x_2, y)$ und $e(x, y_1 + y_2) = e(x, y_1)e(x, y_2)$
 - ② nicht-degeneriert: $\exists x, y \in G$ so dass $e(x, y) \neq 1$

- (G,+) und (V,·) seien zyklische Gruppen mit primer Ordnung I
- $P \in G$ sei Erzeuger von G
- $e: G \times G \rightarrow V$ sei pairing mit folgenden Eigenschaften:
 - **1** Bilinear: $e(x_1 + x_2, y) = e(x_1, y)e(x_2, y)$ und $e(x, y_1 + y_2) = e(x, y_1)e(x, y_2)$
 - 2 nicht-degeneriert: $\exists x, y \in G$ so dass $e(x, y) \neq 1$
- ullet Hashfunktionen $h:\{0,1\}^* imes V o (\mathbb{Z}/I\mathbb{Z})^{ imes}$, $H:\{0,1\}^* o G^*$

das Schema Sicherheit Vergleich der Schemata key escrow

Setup

• trust authority (*TA*) wählt zufälliges $t \in (\mathbb{Z}/I\mathbb{Z})^{\times}$

Setup

- trust authority (*TA*) wählt zufälliges $t \in (\mathbb{Z}/I\mathbb{Z})^{\times}$
- TA berechnet $Q_{TA} = tP$

Setup

- trust authority (*TA*) wählt zufälliges $t \in (\mathbb{Z}/I\mathbb{Z})^{\times}$
- TA berechnet $Q_{TA} = tP$
- Q_{TA} öffentlich, t ist master secret

Extract

• wenn Signierer seinen geheimen Schlüssel will, berechnet TA $S_{ID} = tH(ID)$

Extract

- wenn Signierer seinen geheimen Schlüssel will, berechnet TA $S_{ID} = tH(ID)$
- wird normalerweise einmal pro ID gemacht

Extract

- wenn Signierer seinen geheimen Schlüssel will, berechnet TA $S_{ID} = tH(ID)$
- wird normalerweise einmal pro ID gemacht
- TA benutzt die gleichen Setup-Daten für viele verschiedene IDs

Sign

• um Nachricht m zu signieren, wähle beliebiges $P_1 \in G^*$ und zufälliges $k \in (\mathbb{Z}/I\mathbb{Z})^{\times}$

Sign

- um Nachricht m zu signieren, wähle beliebiges $P_1 \in G^*$ und zufälliges $k \in (\mathbb{Z}/I\mathbb{Z})^{\times}$
- berechne:

Sign

- um Nachricht m zu signieren, wähle beliebiges $P_1 \in G^*$ und zufälliges $k \in (\mathbb{Z}/I\mathbb{Z})^{\times}$
- berechne:

$$1 r = e(P_1, P)^k$$

$$v = h(m,r)$$

$$u = vS_{ID} + kP_1$$

• die Signatur ist dann $(u, v) \in (G, (\mathbb{Z}/I\mathbb{Z})^{\times})$

das Schema Sicherheit Vergleich der Schemata key escrow

Verify

• geg. Nachricht m, Signatur (u, v)

Verify

- geg. Nachricht m, Signatur (u, v)
- berechne:

2 Signatur ok
$$\Leftrightarrow v = h(m, r)$$

Konsistenz

• für gültige Signatur (u, v) gilt: $r = e(u, P)e(H(ID), -Q_{TA})^v \Leftrightarrow$

•
$$e(P_1, P)^k = e(vtH(ID) + kP_1, P) \cdot e(H(ID), -tP)^v$$

= $e(vtH(ID), P) \cdot e(kP_1, P) \cdot e(H(ID), -tP)^v$
= $e(vtH(ID), P) \cdot e(-vtH(ID), P) \cdot e(P_1, P)^k$
= $e(0, P) \cdot e(P_1, P)^k$

Sicherheit

Theorem: Wenn im RO Modell ein Angreifer A existiert, der höchstens $n_1 \geq 1$ Anfragen an die Identity Hash und Extraction Oracle, sowie höchstens $n_2 \geq 1$ Anfragen an die Message Hash und Signature Oracle macht und innerhalb der Zeit T_A eine existentielle Fälschung mit W'keit $\epsilon_A \geq \frac{an_1n_2^2}{I}$ für eine Konstante $a \in \mathbb{Z}^{\geq 1}$ erzeugt, dann existiert ein anderer Algorithmus C und eine Konstante $c \in \mathbb{Z}^{\geq 1}$, so dass C das DHP bzgl. (P, Q_{TA}, R) für beliebige $R \in G^*$ in der Zeit $T_C \leq \frac{cn_1n_2T_A}{\epsilon_A}$ löst.

Vergleich

	Hess Schema	CC Schema
Signing	1E+1M	2M
Verifying	1E+2P / 1E+1P	1M+2P
Signature	$G imes (\mathbb{Z}/I\mathbb{Z})^{ imes}$	$G \times G$

Tabelle: Effizienzvergleich

- ullet E einmaliges Exponieren in V
- M skalare Multiplikation in G
- P Berechnung eines pairings

das Schema Sicherheit Vergleich der Schemata key escrow

Problem

• Problem: TA kennt geheimen Schlüssel einer Person

Problem

- Problem: TA kennt geheimen Schlüssel einer Person
- TA kann Nachrichten signieren, als ob sie von dieser Person stammt

Problem

- Problem: TA kennt geheimen Schlüssel einer Person
- TA kann Nachrichten signieren, als ob sie von dieser Person stammt
- u.U. für entsprechendes Encryption Schema durchaus gewollt

das Schema Sicherheit Vergleich der Schemata key escrow

key escrow

• es gebe die trust authorities TA_i für $1 \le i \le n$

- es gebe die trust authorities TA_i für $1 \le i \le n$
- master secret t wird auf auf die TA; wie folgt verteilt:
 - jede TA_i erzeugt eigenen privaten Schlüssel t_i unabhängig voneinander und veröffentlicht $Q_{TA_i} = t_i P$
 - master private key ist dann def. als $t = \sum_{i=1}^{n} t_i$

- es gebe die trust authorities TA_i für $1 \le i \le n$
- master secret t wird auf auf die TA; wie folgt verteilt:
 - jede TA_i erzeugt eigenen privaten Schlüssel t_i unabhängig voneinander und veröffentlicht $Q_{TA_i} = t_i P$
 - master private key ist dann def. als $t = \sum_{i=1}^{n} t_i$
- master public key ist dann $Q_{TA} = \sum_{i=1}^{n} Q_{TA_i}$

- es gebe die trust authorities TA_i für $1 \le i \le n$
- master secret t wird auf auf die TA; wie folgt verteilt:
 - jede TA_i erzeugt eigenen privaten Schlüssel t_i unabhängig voneinander und veröffentlicht $Q_{TA_i} = t_i P$
 - master private key ist dann def. als $t = \sum_{i=1}^{n} t_i$
- master public key ist dann $Q_{TA} = \sum_{i=1}^{n} Q_{TA_i}$
- Signierer erhält Teil seines privaten Schlüssels via $S_{ID}^{(i)}=t_iQ_{ID}$

- es gebe die trust authorities TA_i für $1 \le i \le n$
- master secret t wird auf auf die TA; wie folgt verteilt:
 - jede TA_i erzeugt eigenen privaten Schlüssel t_i unabhängig voneinander und veröffentlicht $Q_{TA_i} = t_i P$
 - master private key ist dann def. als $t = \sum_{i=1}^{n} t_i$
- master public key ist dann $Q_{TA} = \sum_{i=1}^{n} Q_{TA_i}$
- Signierer erhält Teil seines privaten Schlüssels via $S_{ID}^{(i)}=t_iQ_{ID}$
- privater Schlüssel des Signierers ist dann $S_{ID} = \sum_{i=1}^{n} S_{ID}^{(i)}$

• eine oder mehrere TA_i geben falsches $S_{ID}^{(i)}$ bzgl. Q_{TA_i} an den Signierer

- eine oder mehrere TA_i geben falsches $S_{ID}^{(i)}$ bzgl. Q_{TA_i} an den Signierer
- erzeugt ungültigen privaten Schlüssel

key escrow

- eine oder mehrere TA_i geben falsches $S_{ID}^{(i)}$ bzgl. Q_{TA_i} an den Signierer
- erzeugt ungültigen privaten Schlüssel
- Signierer kann Daten der einzelnen TA; überprüfen, indem er eine Nachricht nur mit den Werten der einzelnen TA; signiert und verifiziert

Schema von Prof. Hess (allgemeine Version)

Schema von Prof. Hess (allgemeine Version)

Vorraussetzungen

• (G, +), $(G_1, +)$ und (V, \cdot) seien zyklische Gruppen mit primer Ordnung I

Vorraussetzungen

- (G, +), $(G_1, +)$ und (V, \cdot) seien zyklische Gruppen mit primer Ordnung I
- $p: G \rightarrow V$ sei effizient berechenbarer Monomorphismus

Vorraussetzungen

- (G, +), $(G_1, +)$ und (V, \cdot) seien zyklische Gruppen mit primer Ordnung I
- $p: G \rightarrow V$ sei effizient berechenbarer Monomorphismus
- Hashfunktionen $h: \{0,1\}^* \times V \to (\mathbb{Z}/I\mathbb{Z})^{\times} \times (\mathbb{Z}/I\mathbb{Z})^{\times}$ sowie $H: \{0,1\}^* \to G_1^*$

Setup

• TA wählt effizient berechenbare Monomorphismen $s:G_1\to G$ und $q:G_1\to V$ mit $p(s(x))=q(x)\ \forall x\in G_1$

Setup

- TA wählt effizient berechenbare Monomorphismen $s:G_1 \to G$ und $q:G_1 \to V$ mit $p(s(x))=q(x) \ \forall x \in G_1$
- q öffentlich

Setup

- TA wählt effizient berechenbare Monomorphismen $s:G_1 \to G$ und $q:G_1 \to V$ mit $p(s(x))=q(x) \ \forall x \in G_1$
- q öffentlich
- s bleibt geheim

• wenn Signierer seinen geheimen Schlüssel will, berechnet TA a = s(H(ID))

- wenn Signierer seinen geheimen Schlüssel will, berechnet TA a = s(H(ID))
- a geheimer Schlüssel

- wenn Signierer seinen geheimen Schlüssel will, berechnet TA a = s(H(ID))
- a geheimer Schlüssel
- y = q(H(ID)) öffentlicher Schlüssel

- wenn Signierer seinen geheimen Schlüssel will, berechnet TA a = s(H(ID))
- a geheimer Schlüssel
- y = q(H(ID)) öffentlicher Schlüssel
- wird normalerweise einmal pro ID gemacht

- wenn Signierer seinen geheimen Schlüssel will, berechnet TA a = s(H(ID))
- a geheimer Schlüssel
- y = q(H(ID)) öffentlicher Schlüssel
- wird normalerweise einmal pro ID gemacht
- TA benutzt die gleichen Setup-Daten für viele verschiedene IDs

Sign(m)

• um m zu signieren, wählt Signierer zufälliges $k \in G^*$ und berechnet:

②
$$(v, w) = h(m, r)$$

Sign(m)

• um m zu signieren, wählt Signierer zufälliges $k \in G^*$ und berechnet:

②
$$(v, w) = h(m, r)$$

• Signatur:
$$(u, r) \in G \times V^*$$

Verify

• geg. Nachricht m und Signatur (u, r) berechne:

Verify

• geg. Nachricht m und Signatur (u, r) berechne:

1
$$(v, w) = h(m, r)$$

• Signatur ok
$$\Leftrightarrow p(u) = y^{v} r^{w}$$

Konsistenz

• für gültige Signatur (u, r) gilt:

Konsistenz

• für gültige Signatur (u, r) gilt:

•
$$p(u) = p(va + wk)$$

 $= p(a)^{v} p(k)^{w}$
 $= p(s(H(ID)))^{v} p(k)^{w}$
 $= q(H(ID))^{v} p(k)^{w}$
 $= v^{v} r^{w}$

Sicherheit

Theorem: Wenn im RO Modell ein Angreifer A existiert, der höchstens $n_1 \geq 1$ Anfragen an die Identity Hash und Extraction Oracle, sowie höchstens $n_2 \geq 1$ Anfragen an die Message Hash und Signature Oracle macht und innerhalb der Zeit T_A eine existentielle Fälschung mit W'keit $\epsilon_A \geq \frac{an_1n_2^2}{I}$ für eine Konstante $a \in \mathbb{Z}^{\geq 1}$ erzeugt, dann existiert ein anderer Algorithmus C und eine Konstante $c \in \mathbb{Z}^{\geq 1}$, so dass C für beliebige Eingaben C = c(P) $C \in C(P)$ $C \in C(P)$ berechnet für beliebige C(P) in erwarteter Zeit C(P) C(P) der C(P) berechnet für beliebige C(P) in erwarteter Zeit C(P) expansion C(P) berechnet für beliebige C(P) expansion C(P) ex

• sei $h_1: \{0,1\}^* \times V \to (\mathbb{Z}/I\mathbb{Z})^{\times}$ und def. $h(m,r) := (h_1(m,r),1)$

Verbindung zur Schnorr-Signatur

- sei $h_1: \{0,1\}^* \times V \to (\mathbb{Z}/I\mathbb{Z})^{\times}$ und def. $h(m,r):=(h_1(m,r),1)$
- $\Rightarrow w = 1$ und Gleichung der Verifizierung ist $p(u) = y^{v}r$

Verbindung zur Schnorr-Signatur

- sei $h_1: \{0,1\}^* \times V \to (\mathbb{Z}/I\mathbb{Z})^{\times}$ und def. $h(m,r):=(h_1(m,r),1)$
- $\Rightarrow w = 1$ und Gleichung der Verifizierung ist $p(u) = y^{v}r$
- Signatur $(u, v) \Leftrightarrow$ Signatur (u, r)

Verbindung zur Schnorr-Signatur

- sei $h_1: \{0,1\}^* \times V \to (\mathbb{Z}/I\mathbb{Z})^{\times}$ und def. $h(m,r):=(h_1(m,r),1)$
- $\Rightarrow w = 1$ und Gleichung der Verifizierung ist $p(u) = y^{v}r$
- Signatur $(u, v) \Leftrightarrow$ Signatur (u, r)
- mit entsprechender Modifikation des Signing und des Verifying ergibt sich allgemeine Version der Schnorr-Signatur

• hier ist
$$(G_1, +) = (G, +)$$

- hier ist $(G_1, +) = (G, +)$
- def.: $p(x) := e(x, P), q(x) := e(x, Q_{TA}) \text{ und } s(x) := tx$

- hier ist $(G_1, +) = (G, +)$
- def.: $p(x) := e(x, P), q(x) := e(x, Q_{TA}) \text{ und } s(x) := tx$
- P,Q_{TA} öffentlich also auch p(x),q(x)

- hier ist $(G_1, +) = (G, +)$
- def.: $p(x) := e(x, P), q(x) := e(x, Q_{TA}) \text{ und } s(x) := tx$
- P, Q_{TA} öffentlich also auch p(x), q(x)
- t nur der TA bekannt also s(x) auch nur von TA berechenbar

- hier ist $(G_1, +) = (G, +)$
- def.: $p(x) := e(x, P), q(x) := e(x, Q_{TA}) \text{ und } s(x) := tx$
- P, Q_{TA} öffentlich also auch p(x), q(x)
- t nur der TA bekannt also s(x) auch nur von TA berechenbar
- mit $h(m, r) := (h_1(m, r), 1)$ (analog zu Schnorr-Signatur) ergibt sich das zuerst vorgestellte Hess'sche Schema

• sei $(G, +) = (V, \cdot)$ und q die Identität

- sei $(G, +) = (V, \cdot)$ und q die Identität
- TA ist identisch mit Signierer

- sei $(G, +) = (V, \cdot)$ und q die Identität
- TA ist identisch mit Signierer
- Signierer wählt zufälliges $a \in G^*$ und berechnet y = p(a)

- sei $(G, +) = (V, \cdot)$ und q die Identität
- TA ist identisch mit Signierer
- Signierer wählt zufälliges $a \in G^*$ und berechnet y = p(a)
- s ist Inverse zu p

- sei $(G, +) = (V, \cdot)$ und q die Identität
- TA ist identisch mit Signierer
- Signierer wählt zufälliges $a \in G^*$ und berechnet y = p(a)
- s ist Inverse zu p
- Bsp.: $p(x) = g^x$, s ist der diskrete Logarithmus bzgl. g