

Seminar – Kryptographie

TU-Berlin WS 05/06

Prof. Heß, Dr. Kühn, Prof. Pohst

Secure Delegation of Elliptic-Curve pairing

Ein Verfahren von

B. Chevallier-Mames, J. Coron,

N. McCullagh, D. Naccache, M. Scott

Vortrag: Bernd Hein bernd.hein@gmx.de

Überblick

Einführung Grundlagen Allgemeines Protokoll

- Einführung
- Grundlagen
- Allgemeines Protokoll
- Effiziente Protokolle

Einführung

Einführung
Grundlagen
Allgemeines Protokoll
Effiziente Protokolle

- Rechenschwaches Gerät (Smart Card) lässt sich von rechenstärkerem Terminal (PC) indirekt eine Paarung e(A,B) berechnen
- Terminal erfährt nichts über A, B
- Terminal erkennt falsches e(A,B)

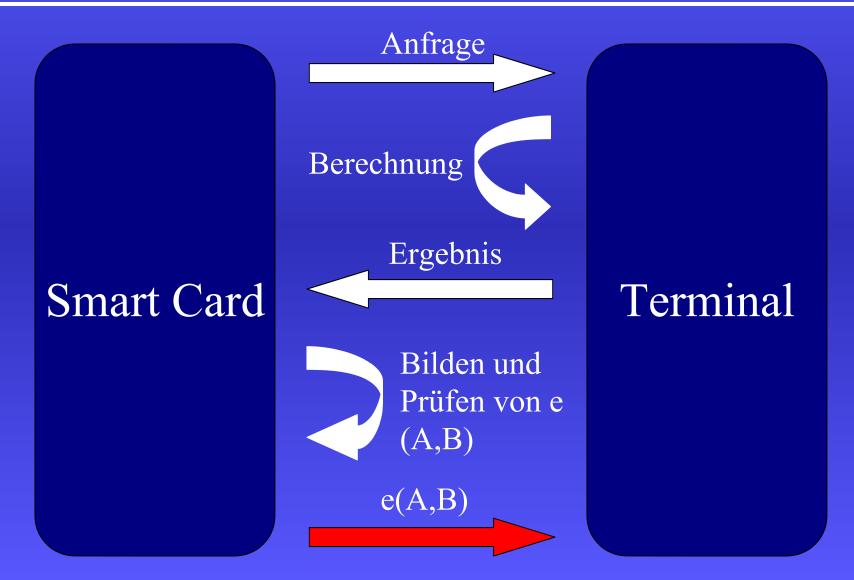
 Möglicher Einsatz in Kryptografieverfahren die mit Pairing arbeiten

Einführung

Einführung

Grundlagen

Allgemeines Protokoll



Grundlagen

Einführung **Grundlagen**Allgemeines Protokoll

- Bilineare Abbildungen
- Computational Indistinguishability
- Secure Pairing Delegation

Bilineare Abbildungen

Einführung **Grundlagen**Allgemeines Protokoll

- G1, G2 additive zyklische Gruppen von primer Ordnung p
- G1 ist Erzeuger von G1, G2 ist Erzeuger von G2
- GT- multiplikative zyklische Gruppe von primer Ordnung p
- bilineare Abbildung e : $\mathcal{G}1 \times \mathcal{G}2 \longrightarrow \mathcal{G}T$
- $e(a \cdot U,b \cdot V) = e(U,V)^{(ab)},$ $\forall U \in G1, V \in G2 \text{ und } a,b \in \mathbb{Z}$

Computational Indistinguishability

- Unter computational indistinguishability versteht man, daß kein Algorithmus A existiert der in polynomial Zeit entscheiden kann, welche von zwei Ansichten (Wertepaare) welche ist
- Genauer, es nur mit beliebig kleiner Wahrscheinlichkeit kann

Einführung **Grundlagen**Allgemeines Protokoll

Effiziente Protokolle

Ein Protokoll ist sicher wenn folgende Bedingungen gelten:

- Completeness
- Secrecy
- Correctness

Annahmen:

- Terminal hat kein Geheimnis
- Nur das Terminal kann korrupt sein

Einführung **Grundlagen**Allgemeines Protokoll

Effiziente Protokolle

Ein Protokoll ist sicher wenn folgende Bedingungen gelten:

- Vollständigkeit (Completeness)
 - Smart Card erhält stets ein korrektes e(A,B),
 wenn das Terminal nicht korrupt ist
- Geheimhaltung
- Korrektheit

Einführung **Grundlagen**Allgemeines Protokoll

Effiziente Protokolle

Ein Protokoll ist sicher wenn folgende Bedingungen gelten:

- Vollständigkeit
- Geheimhaltung (Secrecy)
 - Terminal erfährt nichts über A,B,
 auch wenn es korrupt ist
 - S ≡ ViewT(A,B), die Sicht vom Terminal auf A, B ist nicht von dem eines Simulators mit rein zufälligen Werten unterscheidbar
- Korrektheit

Einführung **Grundlagen**Allgemeines Protokoll

Effiziente Protokolle

Ein Protokoll ist sicher wenn folgende Bedingungen gelten:

- Vollständigkeit
- Geheimhaltung
- Korrektheit (Correctness)
 - Die Smart Card erkennt ein (gewollt) falsches e
 (A,B), außer mit vernachlässigbarer
 Wahrscheinlichkeit, auch wenn das Terminal
 korrupt ist

Protocol for Secure Delegation of EC pairing Allgemeines Protokolle

Einführung

Grundlagen

Allgemeines Protokoll

- Einfaches Beispiel mit Fehlannahme
- Verfahrensprotokoll
- Aufwand
- Beweis

Einfaches Beispiel

- Smart Card generiert $x,y \in \mathbb{R}$ zufällig
- Terminal soll $\alpha = e(x \cdot A, y \cdot B)$ berechnen
- Smart Card errechnet $eAB = \alpha^{(1/(x \cdot y))},$ $da \alpha^{(1/(x \cdot y))} = e(x \cdot A, y \cdot B)^{(1/(x \cdot y))}$ $= e(A,B)^{((x \cdot y)/(x \cdot y))} = e(A,B)$

Fehlannahme

Einführung
Grundlagen
Allgemeines Protokoll
Effiziente Protokolle

- Terminal erfährt nichts über A oder B
- Aber wenn Terminal statt e(A,B) nun e(A,B)^r zurückliefert, kann die Smart Card dies nicht entdecken

 Somit ist zwar die Completeness und Secrecy Bedingung erfüllt, nicht aber die Correctness Bedingung für ein Secure Pairing Delegation Protokoll

Verfahrensprotokoll

Einführung
Grundlagen
Allgemeines Protokoll

- Vorgaben
- Anfrage erzeugen
- Anfrage behandeln
- Anfrage überprüfen

Vorgaben

- Smart Card und Terminal kennen beide:
 - *G*1, *G*2 additive zyklische Gruppen der Ordnung p
 - G1, G2 Erzeuger der Gruppen
 - *G*T multiplikative zyklische Gruppe der Ordnung p
 - bilineare Abbildung e : $G1 \times G2 \longrightarrow GT$
 - e(G1,G2) als Konstante

Anfrage erzeugen

- 0. Smart Card erhält die Punkte A,B
- 1. Smart Card erzeugt zufällig ein g1 und g2 $\in \mathbb{Z}p$ / $p\mathbb{Z}$
- 2. Stellt dann Anfrage nach
 α1 = e(A + g1•G1, G2),
 α2 = e(G1, B + g2•G2),
 α3 = e(A + g1•G1, B + g2•G2),
 indem A+g1•G1 und B+g2•G2 auf der Smart Card
 berechnet werden und an das Terminal gesandt
 werden

Anfrage behandeln

- 3. Terminal berechnet α1, α2, α3 anhand der übermittelten Parameter gemäß der bilinearen Abbildung e
- 4. Terminal sendet $\alpha 1$, $\alpha 2$, $\alpha 3$ and die Smart Card

Anfrage überprüfen

- 5. Smart Card prüft ob $\alpha 1$, $\alpha 2$, $\alpha 3 \in \mathcal{G}$ T, indem $\alpha_i p = 1$ für i = 1,2,3 gelten muß
- 6. Smart Card berechnet $eAB = \alpha 1^-g2 \cdot \alpha 2^-g1 \cdot \alpha 3 \cdot e(G1,G2)^(g1 \cdot g2)$
- 7. Smart Card generiert zufällig a1,r1,a2,r2 ∈ Zp und fordert vom Terminal die Paarung α4 = e(a1•A + r1•G1, a2•B + r2•G2)
- 8. Smart Card berechnet selbst $\alpha 4'$ mit $\alpha 4' = eAB^{(a1•a2)} \cdot \alpha 1^{(a1r2)} \cdot \alpha 2^{(a2r1)} \cdot e(G1,G2)^{(r1r2-a1g1r2-a2g2r1)}$
- 9. Wenn $\alpha 4' = \alpha 4 \implies eAB$ offenbar korrekt und wird ausgeben, sonst HALT

Aufwand

- One-round protocol
 - Für die Berechnung von eAB reicht eine Anfrage mit allen Parametern
- Benötigte Operationen
 - 4 Skalarmultiplikationen in *G*1 und *G*2
 - -10 Exponentiationen in $\mathcal{G}T$

Beweis

Einführung
Grundlagen
Allgemeines Protokoll
Effiziente Protokolle

• Für den Beweis, daß das Protokoll ein Secure Pairing Delegatio Protokoll ist, müssen einzeln die Bedingungen für solche Protkolle geprüft werden

- Vollständigkeit
- Geheimhaltung
- Korrektheit

Beweis – Vollständigkeit

Einführung
Grundlagen
Allgemeines Protokoll

- Für die Vollständigkeit wird einmal gezeigt das eAB = e(A,B) wirklich gilt
- $eAB = \alpha 1^-g2 \cdot \alpha 2^-g1 \cdot \alpha 3$ • $e(G1,G2)^(g1 \cdot g2)$
- Wird durch Umstellungen und Einsetzung von $\alpha 1, \alpha 2, \alpha 3$ erreicht

Beweis – Vollständigkeit

Einführung
Grundlagen
Allgemeines Protokoll

- Weiterhin wird gezeigt das $\alpha 4 = \alpha 4'$
- Die Formel $\alpha 4$ mit der das Terminal arbeitet kann in $\alpha 4'$ überführt werden
- So daß Smard Card und Terminal, wenn beide korrekt arbeiten den gleichen Wert berechnen

Beweis – Geheimhaltung

Einführung
Grundlagen
Allgemeines Protokoll

- Für die Geheimhaltung muß gezeigt werden, daß S ≡ ViewT(A,B)
- Terminal erhält von Smard Card folgende Tupel: $(\alpha 1, \alpha 2, \alpha 3, \alpha 4) = (A + g1 \cdot G1, B + g2 \cdot G2, a1 \cdot A + r1 \cdot G1, a2 \cdot B + r2 \cdot G2)$
- In allen ist eine zufällige Komponente enthalten, wodurch in der zyklischen Gruppe kein Rückschluß auf A oder B möglich ist
- Die Geheimhaltungseigenschaft ist erfüllt, da das Terminal nur zufällige, unabhängig verteilte Punkte innerhalb der Gruppe erhält

Einführung

Grundlagen

Allgemeines Protokoll

Effiziente Protokolle

• Für die Korrektheit muß gezeigt werden, daß die Wahrscheinlichkeit, daß die Smard Card ein falsches eAB ausgibt, vernachlässigbar gering ist

Einführung
Grundlagen
Allgemeines Protokoll

Effiziente Protokolle

• 4 Fälle:

- eAB korrekt, Ausgabe erfolgt
- eAB korrekt, Ausgabe erfolgt nicht
- eAB falsch, Ausgabe erfolgt
- eAB falsch, Ausgabe erfolgt nicht

Einführung
Grundlagen
Allgemeines Protokoll

Effiziente Protokolle

• 4 Fälle:

- eAB korrekt, Ausgabe erfolgt
- eAB korrekt, Ausgabe erfolgt nicht
- eAB falsch, Ausgabe erfolgt
- eAB falsch, Ausgabe erfolgt nicht
- gesucht P(Ausgabe erfolgt | eAB falsch)

Einführung
Grundlagen
Allgemeines Protokoll

Effiziente Protokolle

• Bedingung das der Fall eintritt:

$$\alpha 4 = \alpha 4$$
,

obwohl Terminal in α1,2,3 geschummelt hat

- Das Terminal kennt aber nicht die Parameter mit denen die Smard Card α4' berechnet
- Die Wahrscheinlichkeit richtig zu raten wäre 1 / p, wobei p die Gruppenordnung ist
- ...(Rest siehe Tafel)

Effizientere Protokollvarianten

Einführung Grundlagen Allgemeines Protokoll

Effiziente Protokolle

• Die Verfahren stellen jeweils Bedingungen an die Parameter A, B und arbeiten alle mit dem Boneh und Franklin Verfahren

- Public B
- Public A und B
- Constant Point
 - Constant A and public A, B
 - Constant A and public B

Boneh und Franklin's IBE

Einführung **Grundlagen**Allgemeines Protokoll

- Pairing, bilineare Abbildung
- Arbeitet mit Punkten auf Elliptischer Kurve
- Sender generiert Session key zum Verschlüsseln $g = e(Q, xP)^r$
 - − Q − ist Public Key
 - P, xP Systemparameter, r zufällig gewählt
- rP wird dem Empfänger geschickt
- Empfänger beantragt vom Private Key Generator seinen Private Key xQ
- \bullet $e(xQ, rP) = e(Q, xP)^r = g$

Public B

- Beim Entschlüsseln mit dem Boneh and Franklin IBE Verfahren, ist der Punkt A der private Schlüssel des Benutzers und B ein Teil des verschlüsselten Textes
- Deshalb muss B nicht geheim sein

Public B

Einführung
Grundlagen
Allgemeines Protokoll
Effiziente Protokolle

• Selbes Protokoll wie im allgemeinen Fall, nur da B nicht geheim bleiben muss, kann g2 = 0 gesetzt werden

$$\alpha 1 = e(A + g1 \cdot G1, G2),$$

$$\alpha 2 = e(G1, B),$$

$$\alpha 3 = e(A + g1 \cdot G1, B)$$

$$\alpha 4 = e(a1 \cdot A + r1 \cdot G1, a2 \cdot B + r2 \cdot G2)$$

Public B

- Terminal berechnet eAB = $\alpha 2^-g1 \cdot \alpha 3$
- $\alpha 4 = \alpha 4' \Longrightarrow eAB \text{ korrekt}$ $\alpha 4' = eAB^{(a1•a2)} \bullet \alpha 1^{(a1r2)} \bullet \alpha 2^{(a2r1)}$ • $e(G1,G2)^{(r1r2-a1g1r2)}$
- Benötigt nur 3 Skalarmultiplikationen in
 G 1 und G 2, sowie 8 Exponentiationen in G T
- Beweis analog zum allgemeinen Fall

Public A und B

- Beim Verschlüsseln mit dem Boneh and Franklin IBE Verfahren, ist der Punkt A der öffentliche identitätsbasierte Schlüssel des Empfängers und B der öffentliche Schlüssel der Trusted-Party
- Da deshalb A und B schon öffentlich bekannt sind, brauchen sie im Verfahren nicht geheim gehalten werden. Dadurch wird die "Secrecy" Eigenschaft nicht mehr benötigt

Public A und B

Einführung
Grundlagen
Allgemeines Protokoll

Effiziente Protokolle

• Protokoll ähnlich zu Public A, nur daß noch g1=0 gesetzt werden kann

$$\alpha 1 = e(A, G2),$$
 $\alpha 2 = e(G1, B),$
 $\alpha 3 = e(A, B)$
 $\alpha 4 = e(a1 \cdot A + r1 \cdot G1, a2 \cdot B + r2 \cdot G2)$

Public A und B

Einführung
Grundlagen
Allgemeines Protokoll

- Terminal setzt $eAB = \alpha 3$
- $\alpha 4 = \alpha 4' \Longrightarrow eAB \text{ korrekt}$ $\alpha 4' = eAB^{(a1•a2)} \bullet \alpha 1^{(a1r2)} \bullet \alpha 2^{(a2r1)}$ • $e(G1,G2)^{(r1r2)}$
- Benötigt nur 2 Skalarmultiplikationen in
 G 1 und G 2, sowie 7 Exponentiationen in G T
- Beweis analog zum allgemeinen Fall

Constant Point

Einführung Grundlagen Allgemeines Protokoll

- Constant, public A und public B
- Constant A und public B

Constant, public A und public B

- Beim Verschlüsseln mit dem Boneh and Franklin IBE Verfahren, ist der Punkt A der öffentliche Schlüssel der Trusted-Party und B der öffentliche identitätsbasierte Schlüssel des Empfängers
- A ist konstant
- A und B sind nicht geheim

Constant, public A und public B

Einführung
Grundlagen
Allgemeines Protokoll
Effiziente Protokolle

• Vorgaben wie im allgemeinen Fall, zusätzlich enthält Smart Card ein $Q \in G2$ und e(A,Q)

Anfrage an Terminal

$$\alpha 1 = e(A, B),$$

$$\alpha 2 = e(A, r \cdot B + Q)$$
 mit zufälligem $r \in \mathbb{Z}p$

Constant, public A und public B

Einführung
Grundlagen
Allgemeines Protokoll
Effiziente Protokolle

• Wenn $\alpha 1^p = 1$ und $(\alpha 1^r)$ • $e(A,Q) = \alpha 2$, dann ist $eAB = \alpha 1 = e(A,B)$

• Benötigt nur 1 Skalarmultiplikation und 2 Exponentiationen in *G* T

Constant A und public B

Einführung
Grundlagen
Allgemeines Protokoll

- Beim Entschlüsseln mit dem Boneh and Franklin IBE Verfahren, ist der Punkt A der private Schlüssel des Benutzers und B Teil des verschlüsselten Textes
- A ist konstant
- B ist nicht geheim

Constant A und public B

Einführung

Grundlagen

Allgemeines Protokoll

Effiziente Protokolle

• Vorgaben wie im allgemeinen Fall, zusätzlich enthält Smart Card ein $Q \in G2$, e(A,Q) und A

Anfrage an Terminal

$$\alpha 1 = e(x \cdot A, B),$$

$$\alpha 2 = e(y \cdot A, z \cdot (B+Q))$$

Constant A und public B

Einführung Grundlagen

Allgemeines Protokoll

Effiziente Protokolle

Smart Card berechnet

$$eAB = \alpha 1^{(1/x)}$$
$$\alpha 3 = \alpha 2^{(1/yz)}$$

• Wenn eAB^p = 1 und eAB • e(A,Q) = α 3 \Longrightarrow eAB korrekt

• Benötigt nur 3 Skalarmultiplikationen, und 3 Exponentiationen in *G* T

Fazit und Ausblick

Einführung
Grundlagen
Allgemeines Protokoll
Effiziente Protokolle

 Protokoll erfüllt bedingungslose Sicherheit

 Verzicht auf bedingungslose Sicherheit und Akzeptanz von berechenbarer Sicherheit würde eine Optimierung hinsichtlich der benötigten Rechenoperationen bringen