Message Authentication Codes

Entspricht Hashfunktionen mit geheimen Schlüsseln.

 $h: K \times M \rightarrow H$, $MAC = h_k(m)$.

- h parametrisierte Hashfunktion.
- m Nachricht.
- k geheimer Schlüssel.

Mit der Nachricht m wird $h_k(m)$ übertragen. Der Empfänger berechnet $h_k(m)$ aus m und k und vergleicht mit dem gesendeten MAC.

Liefert Datenintegrität und Authentizität.

7. November 2008

Sicherheitsmodell

Der ideale MAC ist wieder eine Zufallsfunktion, für jedes $k \in K$ soll h_k nicht von einer "zufällig" gewählten Funktion $M \to H$ unterscheidbar sein.

Spezieller betrachten wir auch folgendes (schwächeres) Sicherheitsmodell (*):

- Ein Angreifer darf $h_k(m_i)$ für beliebig von ihm vorgegebene Nachrichten m_i erhalten (Orakelanfragen).
- Der Angreifer gewinnt (erzeugt eine Fälschung), wenn er ein m und y mit $y = h_k(m)$ berechnet.
- MAC ist sicher, wenn es keinen effizienten Angreifer gibt, der mit signifikanter Wahrscheinlichkeit gewinnt.

Sicherheit eines idealen MAC ist gleich der Anzahl $\log_2(\#H)$ der Bits der MAC-Werte (d.h. Raten ist bereits die beste Strategie).

Konstruktion von MACs

Folgende Konstruktionstypen können unterschieden werden:

- MACs aus Blockchiffren im CBC Modus.
- MACs aus MDCs.
- Spezielle Konstruktionen.

CBC-MACs sind sehr weit verbreitet.

Standardisiert z.B. in FIPS-113 von 1985.

Erhalten in der Regel Sicherheit von nur $log_2(\#H)/2$ Bits.

7. November 2008

Hash-then-Encrypt

Naheliegend, hat aber keine guten Eigenschaften.

h Hashfunktion und E_k Blockchiffre.

MAC-Wert von x ist $\mathcal{E}_k(h(x))$.

Nachteile:

- Kollisionen können ohne k bestimmt werden.
- Kollisionen haben gleichen MAC für verschiedene k.
- \mathcal{E}_k darf kein Stromchiffre sein (für bekanntes x kann man nach dem Schlüsselstrom auflösen).

7. November 2008 4 7. November 2008

CBC-MAC

Verwendet eine Blockchiffre $E: K \times \{0,1\}^b \rightarrow \{0,1\}^b$.

CBC-MAC von Nachricht $M \in \{0,1\}^*$ unter Schlüssel k:

- Schreibe $M = M_1 | \dots | | M_n \text{ mit } M_i \in \{0, 1\}^b \text{ (und Padding)}.$
- $v_0 \leftarrow IV \leftarrow 0^b$.
- Für $i \leftarrow 1, ..., n$: $y_i \leftarrow \mathcal{E}(k, y_{i-1} \oplus m_i)$.
- Ausgabe y_n .

In anderen Worten: Der CBC-MAC ist der letzte Chiffretextblock der Verschlüsselung von m mit \mathcal{E} im CBC Modus, unter Verwendung des konstanten $IV = 0^b$.

Vorteil: Leicht aus bestehenden Teilen programmiert.

7. November 2008

CBC-MAC Padding und Postprocessing

In den Standards sind drei Padding Varianten vorgesehen:

- Nullen anhängen.
- Eine Eins und Nullen anhängen.
- Nullen anhängen und zusätzlichen Block mit Nachrichtenlänge.

Man kann ein optionales Postprocessing vornehmen:

- Wähle Schlüssel k_1 . Dann MAC-Wert $\mathcal{L}(k, \mathcal{D}(k_1, y_n))$. Entspricht EDE-Verschlüsselung im letzten Schritt.
- Wähle Schlüssel k_1 . Dann MAC-Wert $\mathcal{E}(k_1, y_n)$. Entspricht EE-Verschlüsselung (nicht besonders gut).

Erschwert exhaustive Key-search.

CBC-MAC Sicherheit

Gilt als sicher.

- wenn Blockchiffre sicher ist und
- wenn die Nachrichtenlänge konstant ist.

Man kann zeigen: Ist die Blockchiffre eine pseudozufällige Funktion, so auch der CBC-MAC. Nur durch mindestens ungefähr $2^{b/2}$ Anfragen an die Blockchiffre kann der CBC-MAC von einer zufälligen Funktion unterschieden werden.

Ist aber unsicher, wenn die Nachrichtenlänge nicht konstant ist:

- Erfrage $y_1 \leftarrow h_k(m_1)$.
- Erfrage $y_2 \leftarrow h_k(y_1||m_2)$.
- Nun gilt $y_2 = h_k(m_1||0^b||m_2)$. Liefert eine Fälschung.

Abhilfe: $h_{h'(|m|)}(m)$ oder $h_k(|m|||m)$ (also Padding) verwenden.

7. November 2008

CBC-MAC Sicherheit

Geburtstagsangriff auf CBC-MAC mit fester Nachrichtenlänge *d*:

- Wähle $1.18 \cdot 2^{b/2}$ Nachrichten $m_i = m_{1,i} || m_{2,i} || m_3$ mit $m_{1,i} \in \{0,1\}^b$ paarweise verschieden, $m_{2,i} \in \{0,1\}^b$ zufällig und $m_3 \in \{0,1\}^{d-2b}$ beliebig.
- Erfrage alle $h_k(m_i)$. Es ergibt sich eine Kollision $h_k(m_i) = h_k(m_j)$ für $i \neq j$ mit Wahrscheinlichkeit $\geq 1/2$.
- Daraus folgt $E(k, m_{1,i}) \oplus m_{2,i} = E(k, m_{1,j}) \oplus m_{2,j}$.
- Wähle beliebiges $m_{\delta} \in \{0,1\}^b$ und erfrage $y \leftarrow h_k(m_{1,i}||(m_{2,i} \oplus m_{\delta})||m_3)$.
- Nun gilt $y = h_k(m_{1,j}||(m_{2,j} \oplus m_{\delta})||m_3)$. Liefert eine Fälschung.

Folgerung: $2^{b/2}$ bestmögliche Sicherheit bem CBC-MAC, $2^{b/2}$ Schritte genügen, um CBC-MAC von zufälliger Funktion zu unterscheiden.

7. November 2008 8 7. November 2008

MACs aus MDCs

Gegeben eine Hashfunktion $h: \{0,1\}^* \rightarrow \{0,1\}^b$.

Drei einfache Varianten:

- 1. MAC = h(k||m)
- 2. MAC = h(m||k)
- 3. MAC = $h(k_1||m||k_2)$

Liefern für ideale Hashfunktion idealen MAC. Für iterierte Hashfunktionen aber nicht besonders sicher:

Annahme: h iteriert, also $h_0 = IV$, $h_{i+1} = f(h_i, m_i)$, ...

zu 1. Aus h(k||m) kann leicht h(k||m||m') bzw. h(k||m||p||m') ausgerechnet werden, wobei p das Padding der Hashfunktion ist.

7. November 2008

MACs aus MDCs

- zu 2. Finde Kollision h(m) = h(m') ("offline" möglich). Erfrage $y \leftarrow h(m||k)$. Dann ist y = h(m'||k) eine Fälschung. (Ist im Prinzip ein Hash-then-encrypt Ansatz, auf den ein analoger Angriff möglich ist.)
- zu 3. Durch Erfragen der MACs findet man eine Kollision $h(k_1||m_i||k_2) = h(k_1||m_j||k_2)$. Dann gilt auch $h(k_1||m_i) = h(k_1||m_j)$ mit nicht zu geringer Wahrscheinlichkeit $(h \mapsto f(h,k_2))$ sollte im wesentlichen injektiv sein). Man sucht nun einfach in K nach k_1 und dann nach k_2 .

Man sucht nun einfach in K nach k_1 und dann nach k_2 Der Aufwand ist damit 2#K statt $\#K^2$...

Die Konstruktionen 1-3 werden daher so nicht verwendet.

Geschachtelte MACs

Seien $g: K_1 \times \{0,1\}^* \to \{0,1\}^m$ und $h: K_2 \times \{0,1\}^m \to \{0,1\}^n$ mit $m \ge n$.

Wir zeigen: Ist g_{k_1} kollisionsresistent bei unbekanntem Schlüssel und h_{k_2} ein sicherer (*) MAC, so ist $h_{k_3} \circ g_{k_1}$ ein sicherer (*) MAC.

Wir betrachten dazu folgende Angreifer:

- 1. Kollisionsangriff bei unbekanntem Schlüssel: k_1 ist geheim, der Angreifer erhält trotzdem die Werte $g_{k_1}(m)$ für m seiner Wahl. Er versucht eine Kollision $g_{k_1}(m_i) = g_{k_1}(m_i)$ mit $m_i \neq m_j$ zu finden.
- 2. Kleiner MAC Angreifer: Angreifer gegen h_{k_2} .
- 3. Großer MAC Angreifer: Angreifer gegen $h_{k_2} \circ g_{k_1}$.

Erwartete (ideale) Sicherheit bei 1. ist m/2 Bits. Erwartete (ideale) Sicherheit bei 2. ist n Bits.

7. November 2008

Geschachtelte MACs

Ein (ε, q, t) -Angreifer gegen 1, 2 oder 3 führt einen erfolgreichen Angriff bei zufälliger und gleichverteilter Schlüsselwahl mit Wahrscheinlichkeit ε und q Orakelanfragen in Zeit t aus.

11

Thm: Gibt es einen (ε, q, t) -Angreifer gegen 3, so gibt es auch einen $(\varepsilon_1, q+1, t)$ -Angreifer gegen 1 und einen (ε_2, q, t) -Angreifer gegen 2 mit $\varepsilon_1 + \varepsilon_2 = \varepsilon$.

Anwendung: Falls es keinen ($\geq \varepsilon, \leq q, \leq t$)-Angreifer gegen 1 oder 2 gibt, so gibt es auch keinen ($\geq 2\varepsilon, \leq q-1, \leq t$)-Angreifer gegen 3.

Bew: Sei A_3 ein (ε, q, t) -Angreifer gegen 3. Seien (m_i, z_i) für $1 \le i \le q$ die Orakelanfragen von A_3 und die Ergebnisse. Es gilt $h_{k_2}(g_{k_1}(m_i)) = z_i$. Mit Wahrscheinlichkeit ε liefert A_3 eine Fälschung (m, z), es gilt also $m \ne m_i$ für alle i und $h_{k_2}(g_{k_1}(m)) = z$.

0 7. November 2008 12 7. November 2008

Geschachtelte MACs

Der Angreifer A_1 gegen 1 wird wie folgt definiert: Er wählt ein zufälliges k_2 und beantwortet die Orakelanfragen von A_3 mit $z_i = h_{k_2}(g_{k_1}(m_i))$, wobei er den Wert $g_{k_1}(m_i)$ durch sein Orakel erhält. Nachdem A_3 den Wert (m,z) ausgegeben hat, berechnet A_1 den Wert $g_{k_1}(m)$ durch Orakelanfrage und gibt m,m_i als Kollision aus, falls es ein i mit $g_{k_1}(m) = g_{k_1}(m_i)$ gibt. Es gilt $m \neq m_i$, so daß A_1 die Spielregeln befolgt.

Der Angreifer A_2 gegen 2 wird wie folgt definiert: Er wählt ein zufälliges k_1 und beantwortet die Orakelanfragen von A_3 mit $h_{k_2}(g_{k_1}(m_i))$ unter Verwendung seines Orakels für h_{k_2} . Nachdem A_3 den Wert (m,z) geliefert hat, gibt A_2 den Wert $(g_{k_1}(m),z)$ als Fälschung aus, falls $g_{k_1}(m) \neq g_{k_1}(m_i)$ für alle i gilt. Das Orakel h_{k_2} wurde dann nicht nach $g_{k_1}(m)$ gefragt, so daß auch A_2 die Spielregeln befolgt.

13 7. November 2008

Geschachtelte MACs

 A_1 und A_2 rufen einmal A_3 auf.

 A_1 : Laufzeit $\approx t$, Orakelanfragen q+1, Erfolgswahrscheinlichkeit =: ε_1 .

 A_2 : Laufzeit $\approx t$, Orakelanfragen q, Erfolgswahrscheinlichkeit =: ε_2 .

Für A_3 macht es keinen Unterschied, ob er von A_1 oder A_2 aufgerufen wird (in beiden Fällen sind k_1 , k_2 zufällig gewählt).

Zufallsquelle von A_3 als Eingabebitstring $\sigma \in \{0,1\}^s$ auffassen, A_1 und A_2 unter Einbeziehung der Orakel zu deterministischen Algorithmen A_1', A_2' machen, die k_1, k_2, σ als Parameter bekommen.

 A_3 hat in A_1 und A_2 für gleiches, zufälliges k_1,k_2,σ die gleiche Erfolgswahrscheinlichkeit, liefert gleiche m_i,m,z . Wenn A_3 für gewählte k_1,k_2,σ Erfolg hat, dann auch entweder A_1' oder A_2' für k_1,k_2,σ . Daraus folgt $\varepsilon=\varepsilon_1+\varepsilon_2$.

HMAC

Als Anwendung des Thm ergeben sich HMACs. Gegeben eine Hashfunktion $h: \{0,1\}^* \to \{0,1\}^b$.

HMAC von Nachricht *m* und Schlüssel *k*:

- HMAC = h(k||opad||h(k||ipad||m)). HMAC = $h(k \oplus opad||h(k \oplus ipad||m))$.
- $opad = 36 \cdots 36$.
- $ipad = 5C \cdots 5C$.

Die Benutzung von k anstelle von k_1 und k_2 basiert auf der Annahme, daß der "Unterschied" von einem Angreifer aufgrund der Hashfunktionseigenschaften nicht bemerkt werden kann.

15 7. November 2008

HMAC

Innere Anwendung von h im HMAC:

• Benötigt Sicherheit bezüglich Kollisionen bei unbekanntem *k*.

Äußere Anwendungen von h im HMAC:

- Die Länge des Padding wird so eingestellt, daß eine volle Blocklänge der Kompressionsfunktion von *h* erreicht wird.
- Damit wird bei der zweiten Berechnung von h nicht intern iteriert.
- Benötigt Sicherheit der Kompressionsfunktion als MAC (Pseudozufallsfunktion).

Wegen Geburtstagsangriffen ist die Sicherheit von HMAC bei iterierten Hashfunktionen trotzdem nur $2^{b/2}$ (aber "online" Angriff).

Relativ gutes Beispiel:

• HMAC mit *h* = SHA-256, MAC-Wert bei Bedarf auf 128 Bit kürzen.

7. November 2008 16 7. November 2008

Benutzung von MDCs und MACs

Datenintegrität und -authentizität: $m||MAC_k(m)|$.

Datenintegrität bei authentischem Kanal (Absender bekannt): m, h(m).

- m beliebig schicken, h(m) über integren, authentischen Kanal.
- Beispiel: Cryptohandy, Authentizität durch Stimmerkennung.

Datenintegrität mit Verschlüsselung: $\mathcal{E}_{k_1}(m||MAC_{k_2}(m))$.

- k_1 und k_2 unbedingt unabhängig!
- CBC-MAC und CBC-Verschlüsselung mit $k_1 = k_2$ und gleichem IV liefert letzten Chiffretextblock $\mathcal{E}_k(0)$, weil vorletzter Chiffretextblock $= E_k(m) = \text{letzter Datenblock} = MAC_k(m)$. Ist unabhängig von m!

7 7. November 2008

Sicherer Kanal

Wir nehmen an, ein geheimer 256 Bit Schlüssel *K* sei ausgetauscht. Um einen sicheren (= verschlüsselten und authentifizierten) Kommunikationskanal zu erhalten, kann man grob wie folgt vorgehen:

Für jede Kommunikations- und Authentifizierungsrichtung erzeuge man einen eigenen Schlüssel K_i (also insgesamt 4).

• $K_i \leftarrow SHA-256(K||,Name der Operation").$

Man verwende AES mit 256 Bit Schlüssellänge.

Man verwende HMAC mit SHA-256, also für 256 Bit Schlüssel K_j :

 $MAC = SHA-256((K_i \oplus opad)||SHA-256((K_i \oplus ipad)||m)).$

Man verwende eindeutige Nachrichtennummern.

Man verwende den CTR Modus.

Sicherer Kanal

Verschlüsselt wird die Nachricht zusammen mit dem MAC.

Mit Nachrichtennummern Schlüsselstrom für CTR erzeugen. Nachrichtennummer in Authentifizierung eingehen lassen. Nachrichtennummer in klar im Chiffretext.

Beim Entschlüsseln MAC checken. Wenn falsch, dann Authentifizierungsfehler.

Wenn Nachrichtennummer schon einmal erhalten wurde (kleiner ist als ein mitgeführter Zähler), dann Nachrichten-Ordnungsfehler.

Schnellere Alternativen, Verschlüsselung und Authentifizierung in einem: OCB (patentgeschützt), CCM.

7. November 2008

Paßphrasen und Pseudozufallszahlen

Paßphrasen: Technik, um sich "lange" Schlüssel zu merken.

- Der Schlüssel wird als Hashwert eines langen Satzes definiert.
- Siehe z.B. pgp, gpg.

Pseudozufallszahlen:

- Die Ausgabe einer Hashfunktion sieht sehr zufällig aus.
- Im Betriebssystem werden regelmäßig Zufallsereignisse angezapft: Maus, Tastatur, Interrupts, Netzwerk, Festplatten etc. Ergebnisse werden mit Hashfunktion zusammengemischt: state = h(state.counter++,new input data).
- Extrahieren von Pseudozufallszahlen: r = h(state, counter + +).

Sehr gefährlich, wenn Pseudozufallszahlen vorhersehbar. Dann Programmablauf deterministisch und Angreifer kann alles nachrechnen. Daher genügend Entropie in Pools sammeln.

7. November 2008 20 7. November 2008