TECHNISCHE UNIVERSITÄT BERLIN

WS08/09

Fakultät II – Institut für Mathematik

Dozent: Prof. Dr. F. Heß Assistent: G. Möhlmann Abgabe: 11.11.08

www.math.tu-berlin.de/~hess/krypto-ws2008

3. Übung Kryptographie

1. Aufgabe

Gegeben seien folgende Schlüsselströme:

Unter diesen 3 Schlüsselfolgen wurde eine mittels LFSR, eine andere mittels linearer Kongruenzgeneratoren und die verbleibende zufällig erzeugt.

- (a) Die mittels LFSR konstruierte Folge hat die minimale Länge l. Bestimmen Sie welche der oben gegebenen Folgen mittels LFSR konstruiert ist. Ferner finden Sie die geeigneten a_1, \ldots, a_l mit kleinstem l, wobei die Notation wie im Skript ist.
- (b) Die mittels linearer Kongruenzgeneratoren konstruierte Folge wurde im Ring $\mathbb{Z}/8\mathbb{Z}$ erzeugt, und entsprechende Werte werden in binärer Darstellung geschrieben, das heißt $0 \to 000, 1 \to 001, \cdots, 7 \to 111$. Bestimmen welche der oben gegebenen Folgen mittels linearer Kongruenzgeneratoren konstruiert ist. Ferner Finden Sie die in der Vorlesung eingeführten Parameter a und b.

(5 Punkte)

2. Aufgabe

Sei $p \in \mathbb{N}$ und $f: \{0, \dots, p-1\} \longrightarrow \{0, \dots, p-1\}$ eine beliebige Funktion. Wir definieren eine Folge x_0, x_1, \dots wie folgt: Wähle $x_0 \in \{0, \dots, p-1\}$ zufällig und $x_{i+1} = f(x_i)$ für $i \geq 0$.

- (a) Begründen Sie, warum es $l,t\in\mathbb{N}$ mit $l+t\leq p+1$ gibt, so dass $x_i=x_{i+l}$ für alle $i\geq t$ gilt.
- (b) Gilt die Aussage auch für $l + t \le p$?
- (c) Sei $(y_i)_{i\in\mathbb{N}}$ eine weitere Folge, für die gilt: $y_0=x_0$ und $y_{i+1}=f(f(y_i))$ für $i\geq 0$. Zeigen Sie, dass es $1\leq i_0\leq t+l$ gibt, so dass $x_{i_0}=y_{i_0}$ gilt.

(5 Punkte)

3. Aufgabe

Betrachten Sie die Folgen, die ein linearer Kongruenzgenerator durch $x_{i+1}=ax_i+b \mod m$ fuer einen Startwert $0 \le x_0 \le m-1$ erzeugt.Bezeichne r_{x_0} die Periodenlänge der Folge zum Startwert x_0 . Beweisen oder widerlegen Sie:

- (a) Gilt $r_{x_0} = m$ für einen speziellen Startwert x_0 , so auch für alle anderen Startwerte.
- (b) Sind b und m nicht teilerfremd, so gilt $r_{x_0} < m$ für alle Startwerte x_0 .
- (c) Sind b und m teilerfremd, so gilt $r_{x_0}=m$ für alle Startwerte x_0 .

(5 Punkte)

4. Aufgabe

Implementieren Sie AES. Dazu können Sie die vorgegebenen Funktionen aus AES.k verwenden.

(5 Punkte)