Technische Universität Berlin

Wintersemester 05/06

Prof. Dr. F. Hess M. Wagner

www.math.tu-berlin.de/~hess/algebra2

5. Übung Algebra II

1. Aufgabe Kreisteilungspolynome

(2 Punkte)

Zerlege die folgenden Polynome

- (a) $\Phi_5(t)$ und $\Phi_{12}(t)$ über \mathbb{F}_{11}
- (b) $\Phi_4(t)$ über \mathbb{F}_5 , \mathbb{F}_{13} und \mathbb{F}_{17} .

2. Aufgabe Kreisteilungspolynome

(6 Punkte)

Zeige folgende Aussagen:

- (a) Für jede ungerade Zahl n>1 gilt $\Phi_{2n}(t)=\Phi_n(-t)$.
- (b) Ist p Primzahl und $m \in \mathbb{N}^{>0}$ mit p|m, so gilt $\Phi_{pm}(t) = \Phi_m(t^p)$
- (c) Ist p Primzahl, so gilt

$$\Phi_{p^k}(t) = t^{(p-1)p^{k-1}} + t^{(p-2)p^{k-1}} + \ldots + t^{p^{k-1}} + 1.$$

(d) Für jede Primzahl p und $n \in \mathbb{N}$ mit ggT(p, n) = 1 gilt

$$\Phi_{pn}(t) = \frac{\Phi_n(t^p)}{\Phi_n(t)}.$$

(e) Für alle $n \in \mathbb{N}$ mit n > 1 gilt

$$\Phi_n(t^{-1}) = \Phi_n(t)t^{-\phi(n)}$$

wobei ϕ die Eulersche Phi-Funktion ist.

3. Aufgabe Norm und Spur

(2 Punkte)

Es sei F/K eine endliche Körpererweiterung. Dann ist F ein K-Vektorraum der Dimension n=[F:K]. Für $\alpha\in F$ definieren wir $\phi_\alpha:F\longrightarrow F,\quad x\longmapsto\alpha\cdot x$. Zeige folgende Aussagen:

- (a) Die Abbildung ϕ_{α} ist ein Vektorraumendomorphismus. Für $\alpha \neq 0$ ist diese Abbildung sogar ein Automorphismus.
- (b) Die Abbildung $F \longrightarrow \operatorname{End}(F)$, $\alpha \longmapsto \phi_{\alpha}$ ist K-linear. Ferner gilt $\phi_{\alpha}\phi_{\beta} = \phi_{\alpha\beta}$.
- (c) Es sei m_{α} das Minimalpolynom von α über K, f das charakteristische Polynom von ϕ_{α} und M das Minimalpolynom von ϕ_{α} . Dann gilt $m_{\alpha} = M$ und $f = M^l$ mit $l \in \mathbb{N}$ geeignet.
- (d) Für eine beliebige Basis b_1, \ldots, b_n von F entspreche ϕ_α der Matrix M_α . Dann gilt

$$\det(M_\alpha) = \mathrm{N}_{F/K}(\alpha) \quad \text{ und } \quad \mathrm{Tr}(M_\alpha) = \mathrm{Tr}_{F/K}(\alpha).$$

4. Aufgabe Praktische Aufgabe

(6 Punkte)

Sei p > 2 Primzahl und $q = p^m$ mit $m \in \mathbb{N}$. Schreibe einen Algorithmus, der ein gegebenes normiertes quadratfreies Polynom f vom Grad n aus $\mathbb{F}_q[x]$ faktorisiert. Gehe dazu folgendermassen vor:

- (a) Benutze den vorgegebenen Algorithmus Faktorisierung.g auf der Algebra2-Homepage, welcher ein Polynom f aus $\mathbb{F}_q[x]$ und euren Algorithmus erwartet. Der Algorithmus ruft euren Algorithmus mit dem quadratfreien Anteil von f auf.
- (b) Betrachte den Vektorraum $R:=\mathbb{F}_q[x]/(f)$ der Dimension n über \mathbb{F}_q und die \mathbb{F}_q -lineare Abbildung

$$\beta: R \longrightarrow R, \quad a \longmapsto a^q - a.$$
 (1)

Eine Basis des \mathbb{F}_q -Vektorraumes R ist $1 \mod f, x \mod f, \ldots, x^{n-1} \mod f$. Ist $f = f_1 \cdots f_r$ die Faktorisierung von f in verschiedene irreduzible Faktoren $f_i \in \mathbb{F}_q[x]$, so ist

$$R \cong \mathbb{F}_q[x]/(f_1) \times \cdots \times \mathbb{F}_q[x]/(f_r).$$
 (2)

(c) Nun gilt für $a \in R$:

$$a \in \ker(\beta) \Leftrightarrow \chi(a) = (a_1, \dots, a_r)$$

mit $a_i \in \mathbb{F}_q$, i = 1, ..., r wobei χ der Isomorphismus von (??) ist.

- (d) Berechne nun den Kern von β mittels der Darstellungsmatrix. Ist dann b_1,\ldots,b_r eine Basis des Kern von β , so bilde $a:=\sum_{i=1}^r c_ib_i$ mit $c_i\in\mathbb{F}_q$ zufällig gewählt.
- (e) Berechne nun den ggT(f, a) und ggT(b-1, f) wobei $b := a^{(q-1)/2} \mod f$ ist.

Warum funktioniert dieser Algorithmus?