Hard Instances of the Constrained Discrete Logarithm Problem

Ilya MironovMicrosoft ResearchAnton MityaginUCSDKobbi NissimBen Gurion University

Speaker: Ramarathnam Venkatesan (Microsoft Research)

DLP

Discrete Logarithm Problem:

Given g^x find x

Believed to be hard in some groups:

- \mathbb{Z}_{p}^{*} - elliptic curves

Hardness of DLP

Hardness of the DLP:

- specialized algorithms (index-calculus)
 complexity: depends on the algorithm
- generic algorithms (rho, lambda, baby-step giant-step...)

complexity: \sqrt{p} if group has order p

Constrained DLP

Constrained Discrete Logarithm Problem:

Given g^x find x, when $x \in S$

Example: S consists of exponents with short addition chains.

Hardness of the Constrained DLP

Bad sets (DLP is relatively easy): x with low Hamming weight $x \in [a, b]$ $\{x^2 \mid x < \sqrt{p}\}$

Good sets (DLP is hard) - ?

Generic Group Model [Nec94, Sho97]

Group G, random encoding $\sigma: G \to \Sigma$ Group operations oracle: $\sigma(g), \sigma(h), a, b \to \sigma(g^a h^b)$

Formally, DLP: given $\sigma(g)$ and $\sigma(g^x)$, find x

Assume order of g = p is prime

DLP is hard [Nec94, Sho97]

Suppose there is an algorithm that solves the DLP in the generic group model:

- 1. The algorithm makes *n* queries $\sigma(g), \sigma(g^{x}), \sigma(g^{a_1x+b_1}), \sigma(g^{a_2x+b_2}), \dots, \sigma(g^{a_nx+b_n})$
- 2. The simulator answers randomly but consistently, treating x as a formal variable.
- 3. The algorithm outputs its guess y

-x = y.

- 4. The simulator chooses x at random.
- 5. The simulator loses if there is: $Pr < n^2/p$
 - inconsistency: $g^{a_ix+b_i} = g^{a_jx+b_j}$ for some *i*, *j*;

Pr = 1/p

DLP is hard [Nec94, Sho97]

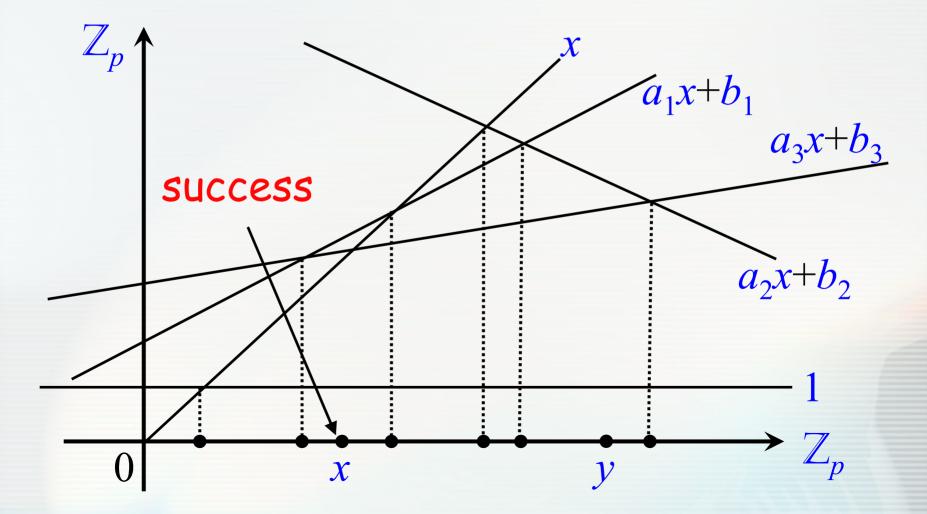
Probability of success of any algorithm for the DLP in the generic group model is at most:

 $n^{2}/p + 1/p$,

where n is the number of group operations.

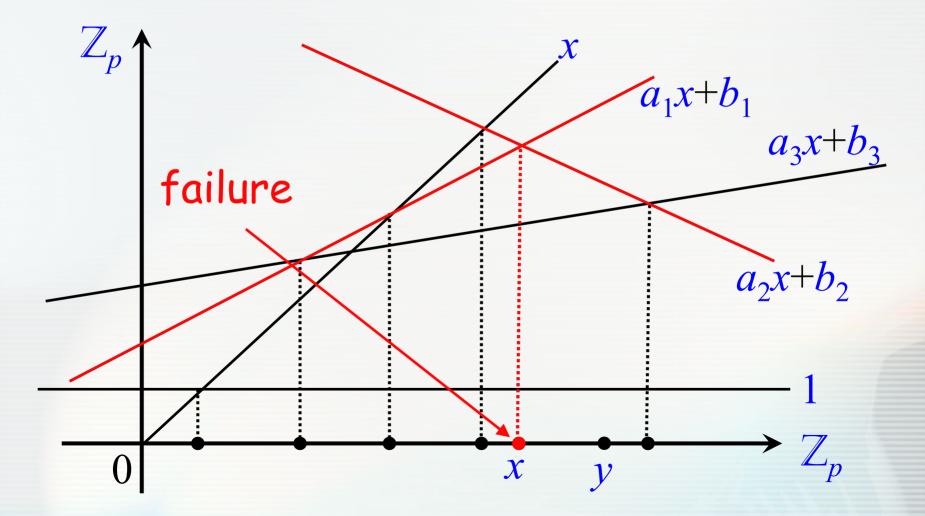
Graphical representation

Queries: $\sigma(g), \sigma(g^x), \sigma(g^{a_1x+b_1}), \sigma(g^{a_2x+b_2}), \dots, \sigma(g^{a_nx+b_n})$



Graphical representation

Queries: $\sigma(g), \sigma(g^x), \sigma(g^{a_1x+b_1})$, $\sigma(g^{a_2x+b_2}), \dots, \sigma(g^{a_nx+b_n})$

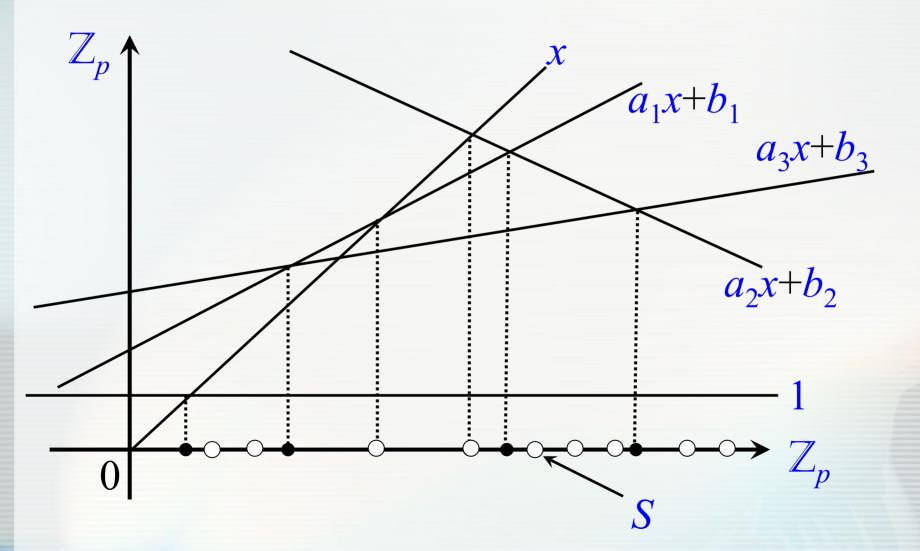


Attack

The argument is tight: if for some $\sigma(g^{a_i x+b_i}) = \sigma(g^{a_j x+b_j})$, computing x is easy

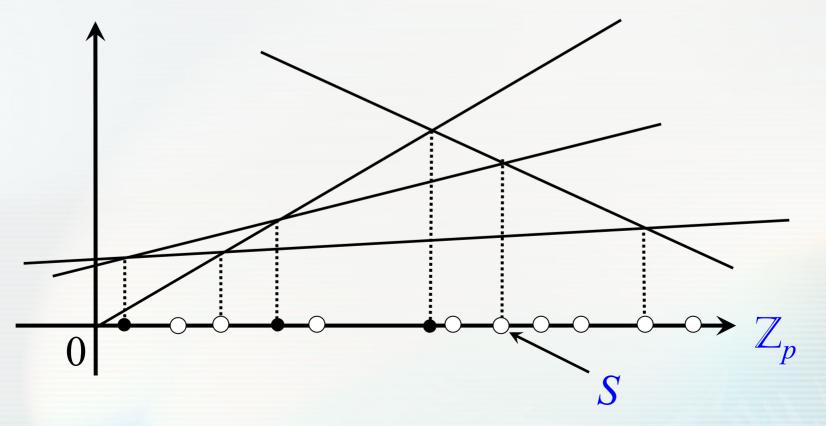
Constrained DLP

given $\sigma(g)$ and $\sigma(g^x)$, find $x \in S$



Generic complexity of S

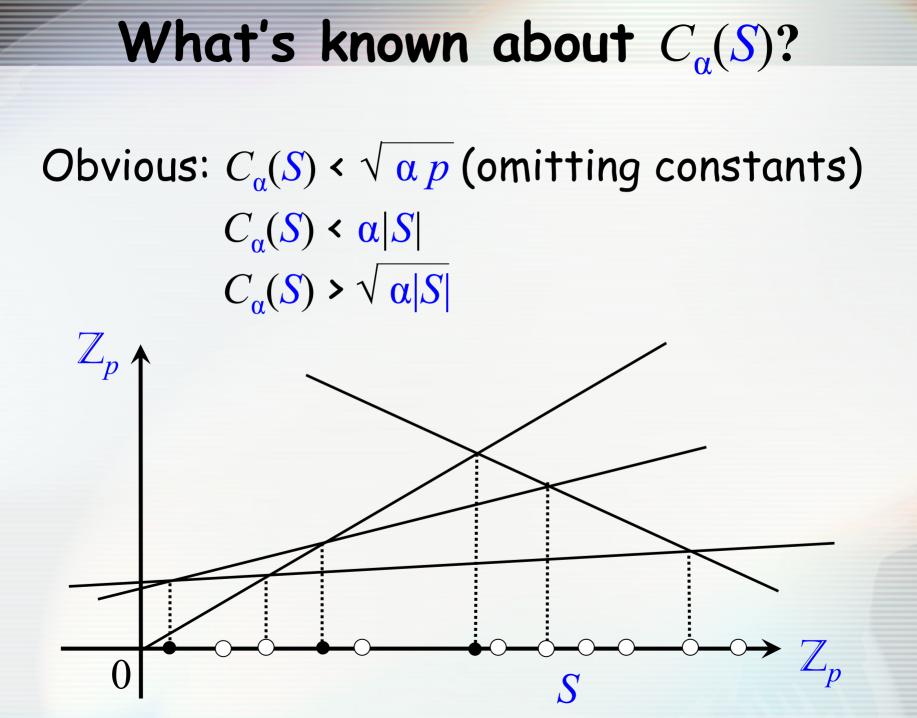
 $C_{\alpha}(S)$ = generic α -complexity of $S \subseteq \mathbb{Z}_p$ is the smallest number of lines such that their intersection set covers an α -fraction of S.

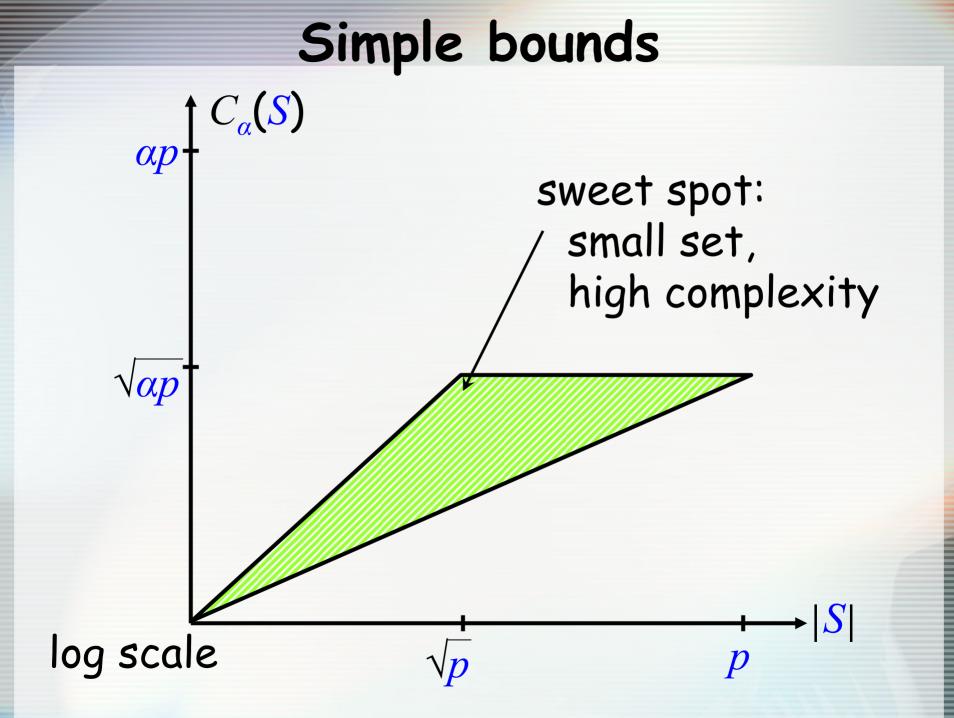


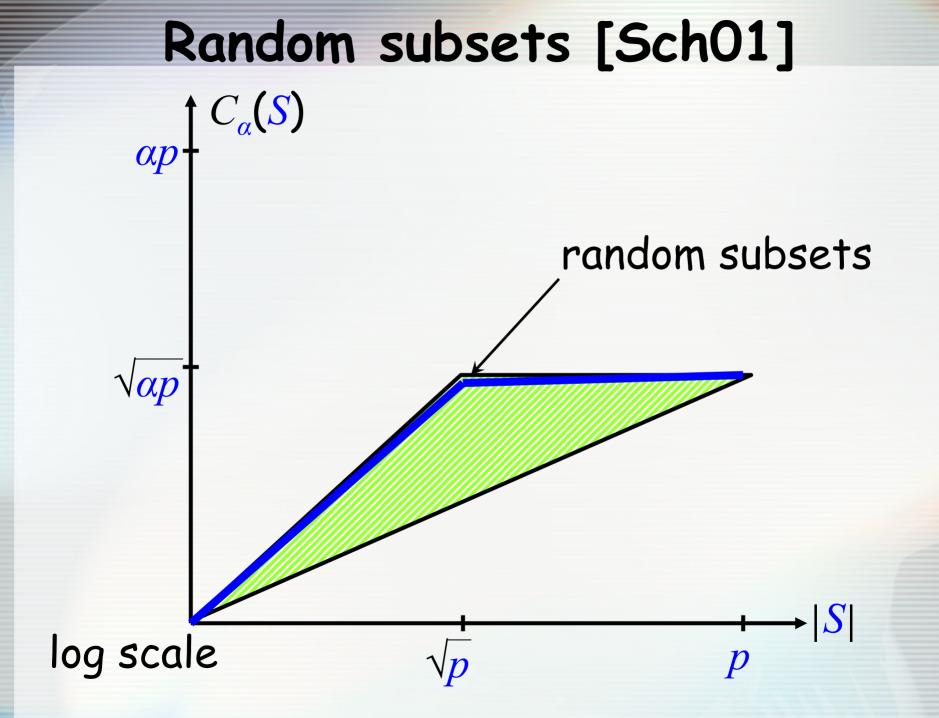
Bound

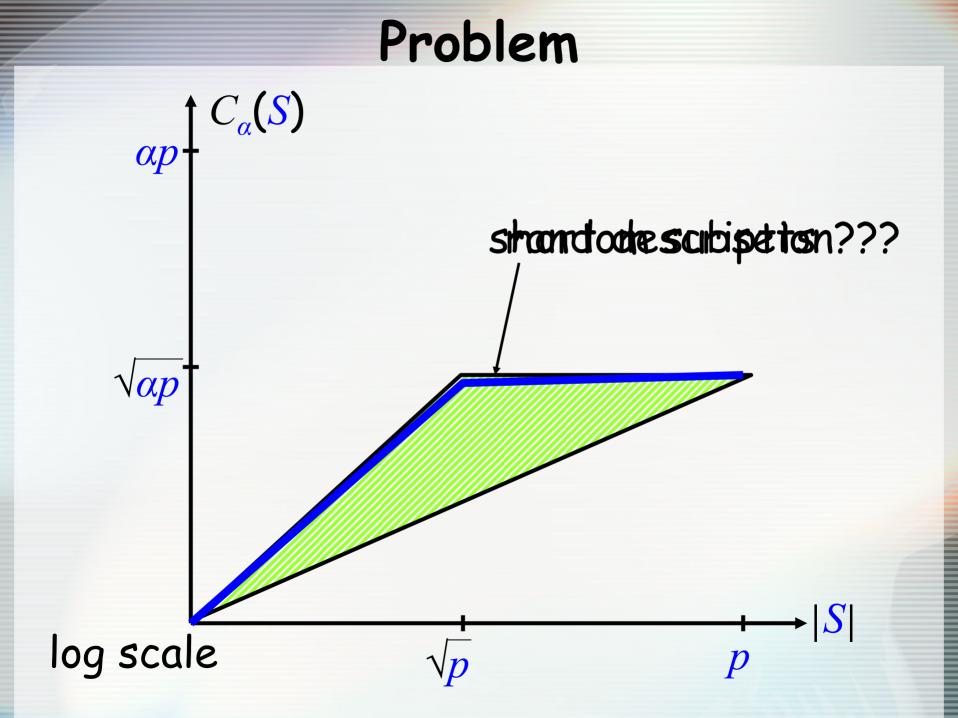
Adversary who is making at most *n* queries succeeds in solving DLP: with probability at most $n^2/p + 1/p$

DLP constrained to set S: If $n < C_{\alpha}(S)$, probability is at most $\alpha + 1/|S|$

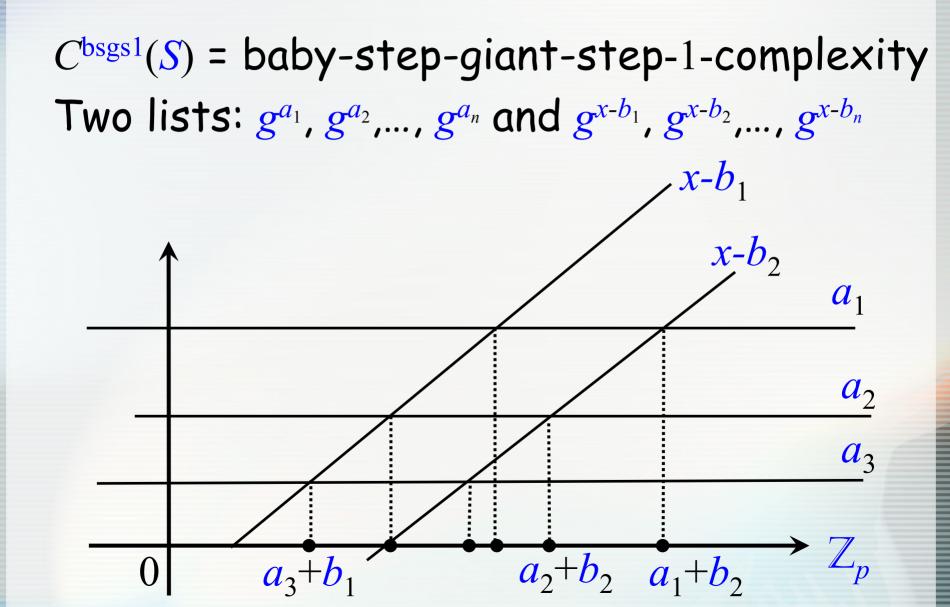




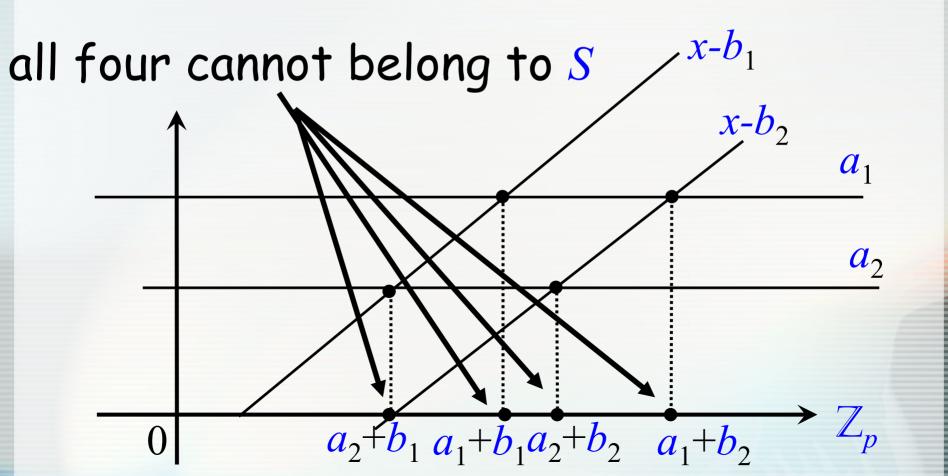




Relaxing the problem: C^{bsgs1}

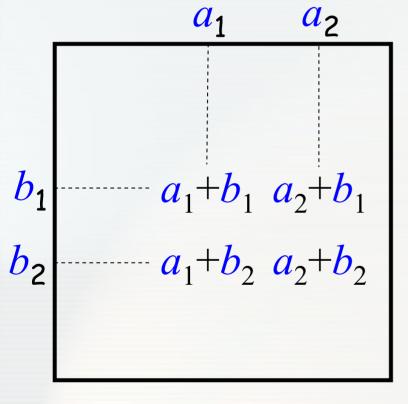


Modular weak Sidon set [EN77] S is such that for any distinct $s_1, s_2, s_3, s_4 \in S$ $s_1 + s_2 \neq s_3 + s_4 \pmod{p}$



Zarankiewicz bound

S is such that for any distinct $s_1, s_2, s_3, s_4 \in S$ $s_1 + s_2 \neq s_3 + s_4 \pmod{p}$



How many elements of S can be in the table?

Zarankiewicz bound: at most $n^{3/2}$

 $C^{\text{bsgs1}}(S) > |S|^{2/3}$

Weak modular Sidon sets

S is such that for any distinct $s_1, s_2, s_3, s_4 \in S$ $s_1 + s_2 \neq s_3 + s_4 \pmod{p}$ Explicit constructions for such sets exist of size $O(p^{1/2})$.

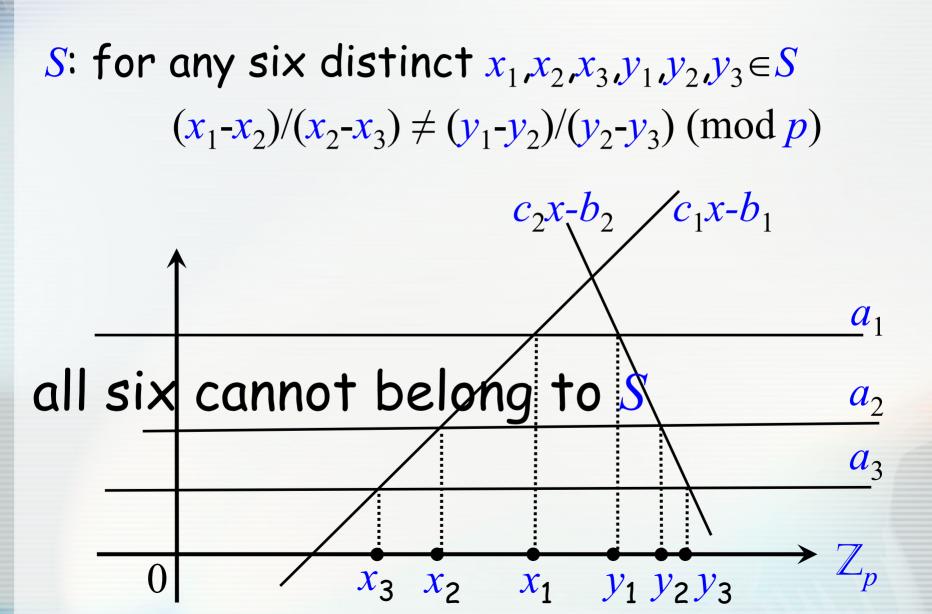
Higher order Sidon sets : $s_1 + s_2 + s_3 \neq s_4 + s_5 + s_6 \pmod{p}$ Turan-type bound:

 $C^{\mathrm{bsgs1}}(S) < |S|^{3/4}$

A harder problem: C^{bsgs}

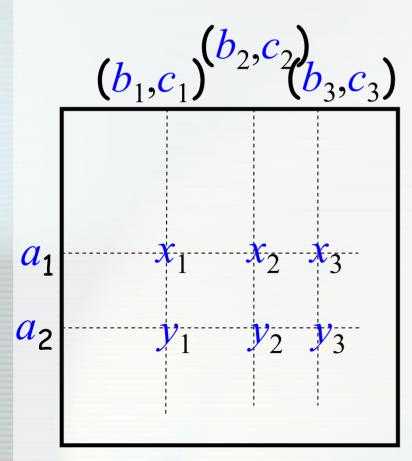
 $C^{\text{bsgs}}(S) = \text{baby-step-giant-step-complexity}$ Two lists: g^{a_1} , g^{a_2} ,..., g^{a_n} and $g^{c_1x-b_1}$, $g^{c_2x-b_2}$,..., $g^{c_nx-b_n}$ $c_2 x_1 b_2 / c_1 x_1 b_1$ a_1 a_2 a_3 \boldsymbol{x}_3 \boldsymbol{x}_1 $\boldsymbol{x_2}$ Y1 Y2 Y3

Harder the problem: C^{bsgs}



Zarankiewicz bound

S: for any six distinct $x_1, x_2, x_3, y_1, y_2, y_3 \in S$ $(x_1-x_2)/(x_2-x_3) \neq (y_1-y_2)/(y_2-y_3) \pmod{p}$



How many elements of S can be in the table?

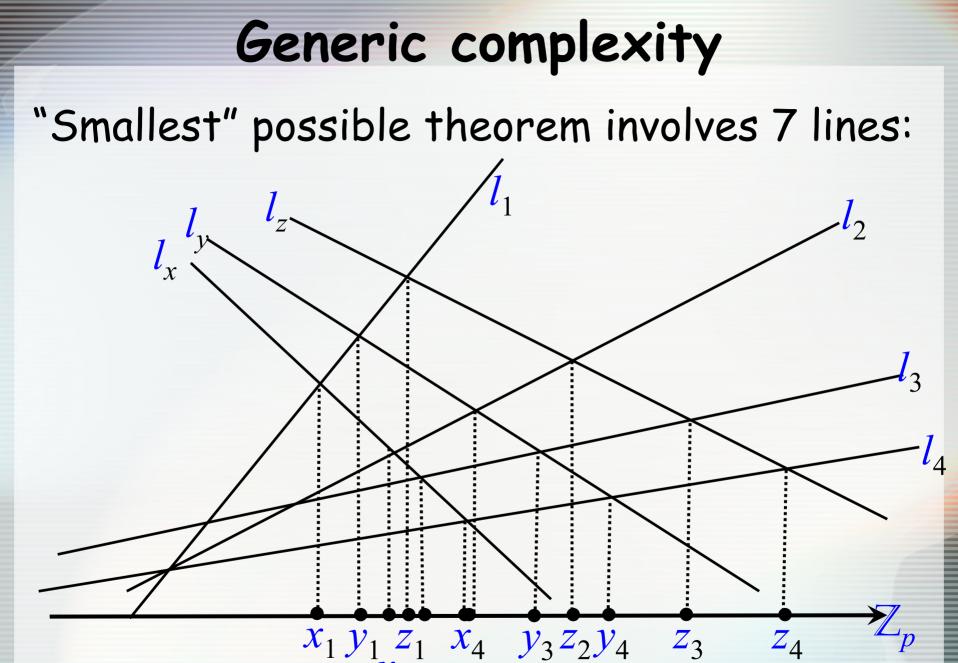
Zarankiewicz bound: still at most n^{3/2}

 $C^{\mathrm{bsgs}}(S) > |S|^{2/3}$

How to construct?

S: for any six distinct $x_1, x_2, x_3, y_1, y_2, y_3 \in S$ $(x_1-x_2)/(x_2-x_3) \neq (y_1-y_2)/(y_2-y_3) \pmod{p}$

"Six-wise independent set" of size $p^{1/6}$



 $x_{2} x_{3} y_{2}$

Bipartite Menelaus theorem

S: for any twelve distinct $x_1, x_2, x_3, x_4, y_1, y_2, y_3, y_4, z_1, z_2, z_3, z_4 \in S$

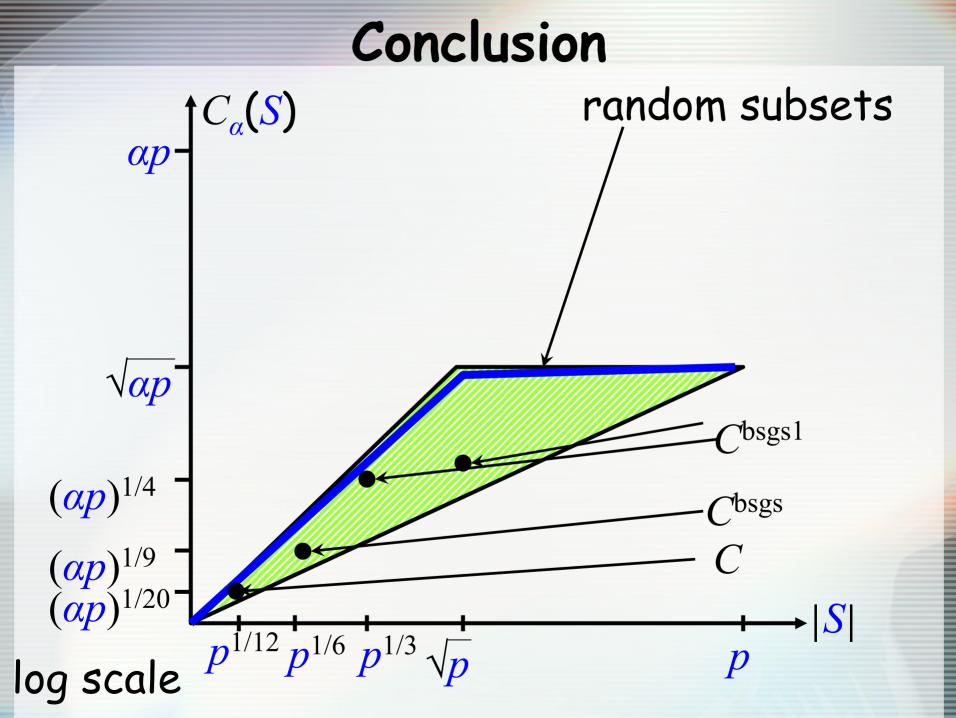
$$\det \begin{vmatrix} x_1 - y_1 & x_1 - z_1 & z_1(x_1 - y_1) & y_1(x_1 - z_1) \\ x_2 - y_2 & x_2 - z_2 & z_2(x_2 - y_2) & y_2(x_2 - z_2) \\ x_3 - y_3 & x_3 - z_3 & z_3(x_3 - y_3) & y_3(x_3 - z_3) \\ x_4 - y_4 & x_4 - z_4 & z_4(x_4 - y_4) & y_4(x_4 - z_4) \end{vmatrix} \neq 0$$

degree 6 polynomial

How to construct?

"12-wise independent set" of size $p^{1/12}$

 $C(S) > |S|^{3/5}$



Open problems

Better constructions: - stronger bounds

- explicit

Constrained DLP for natural sets:

- short addition chains
- compressible binary representation
- three-way products xyz