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Abstract
We give a procedure to search for odd prime divisors of class
numbers of real abelian fields, excluding primes dividing the de-
gree of the field. We show an extract of our table of odd primes< 10000 that divide the class numbers of fields of conductor< 2000. Cohen–Lenstra heuristics allow us to conjecture that no
larger prime divisors should exist. Previous computational results
have been mainly limited to prime power conductors.

Introduction�Van der Linden [4] showed that the class number hK = 1
for real fields K of prime conductor < 163 and hK = 4 forK = Q(�163 + ��1163). For composite conductors he presented
results for some fields up to conductor 200. These results are
the best known and it is difficult to go beyond these limits.�Recently Schoof [5] computed class number divisors < 80000
for fields of prime conductor < 10000 and provided heuristics
that predict these divisors to be class numbers.�We apply Leopoldt’s results on the rational decomposition of
the class group and propose a method to compute class num-
ber divisors for fields of arbitrary conductor.

1 Leopoldt’s result
Leopoldt in his thesis [3] presented an arithmetic characteriza-
tion of a real abelian field, continuing work of Hasse. A main
idea was to apply the Wedderburn decomposition of the rational
(and p-adic) Galois group ring to the group of units of an abelian
field. Leopoldt was able to reduce the study of the class groups of
abelian fields with noncyclic Galois group essentially to the cyclic
subfields corresponding to the classes of conjugate characters of
the field.Q[G℄-module: Cl ' � � � � Clee� � � � ����� ����Qp[G℄-module: Cl ' � � � � (Cle�1 � � � � � Cle�s)� � � ����� ����Qp[G℄-module: Cl ' � � � � (Cle� � � � � � Cle�k)� � � �
Figure 1: Different levels of decomposition of the class group Cl
NotationG: the Galois group of Kg: the order of Gf : the conductor of K�: a character of Ke�: a rational conjugacy class of characters (e� = f�k j (k; g�) = 1g)g�: the order of �f�: the conductor of �K�: the subfield of K with character group h�iG�: the Galois group of K��n(x): the nth cyclotomic polynomial

� Let E� be a subgroup of units of K� of norm �1 to any proper
subfield and F� an explicitly given subgroup (the �-cyclotomic
units; see [3]) of E�. Both groups (modulo torsion�1) are cyclicZ[G�℄-modules that only depend on e�.� The class number admits the decompositionhK = QKQGYe� h�
with the product running through the nontrivial rational conju-
gacy classes of characters and h� = [E� : F�℄. The rational
integers QK and QG only contain primes dividing g.

2 The method
The outline of the method is as follows. We first put an upper
bound for the primes p to be tested. We assume p is odd and not
a divisor of the degree of K. We give a necessary but not suffi-
cient condition for the divisibility of the class number and check
the condition for all the primes and all the h�. We are left with a
small set of primes to be checked further.

Then we present an additional technique to sieve out the primes
not dividing the class number. Finally the remaining primes are
proved to be actual class number divisors. This three-part verifi-
cation procedure is necessary in order to preserve efficiency.� This procedure is not capable of testing the divisibility of a

higher pth power. But using similar methods and some elemen-
tary group theory we have given a generalization of the method
to verify this also. We used an idea of G. and M.-N. Gras [1].

2.1 Schwarz’s method

Schwarz [6] provided the following condition to effectively test thep-divisibility. Let �n = e2�i=n.

Proposition 1 (Schwarz) Let� : (Z=f�Z)�! f0; : : : ; g� � 1g
be defined by �(i) = ��(i)g� . If the prime p - 2f�g� divides the h�-
part of the class number of K�, then

GCDFp[x℄� f��1Xi=1(i;f�)=1 aix�(i);�g�(x)
� 6= 1;

where ai are certain rational integers.� This condition is efficient to check. In the computations we did,
for any h�, the condition was satisfied on average for only 0 to2 primes from all the odd primes < 10000 not dividing g�.

2.2 Second condition for p-divisibility

To check the remaining primes and the odd primes p j f�, we
continue as follows. We generalize an idea of van der Linden [4].

The group (E�=F�)p of elements of order p is an Fp[G�℄-module
isomorphic to (Ep� \ F�)=F p�. If nontrivial, it must contain a mini-
mal submodule of F�=F p�. Since the intersection of two minimal
submodules is zero, the p-exponent of h� is at least the number
of minimal submodules Fi=F p� satisfying Fi � Ep�. Denote by �
the generator of F�=f�1g.
Proposition 2 Assume that p � 1 (mod g�). The minimal Fp[G�℄-
submodules of F�=F p� are h��g�(�)=(��i)i, where i runs through all
the zeros of �g�(x) (mod p) and � is a generator of G�.� The proposition generalizes easily to all odd primes p not divid-

ing g�.� To check the condition, we choose a prime q � 1 (mod p f�)
and some b 2 Z satisfying the conditions bf� � 1 (mod q), b 6� 1(mod q). Then �f� � b (mod Q) for some prime ideal Q aboveq in Q(�f�). By writing ��g�(�)=fi(�) as a rational function r(�f�),
we examine whetherr(b)q�1p � 1 (mod q): (1)

If this congruence holds, we choose another pair (q; b) and re-
peat the test. Passing the test for many pairs is a strong evi-
dence for the p-divisibility; failing the test means that p - h�.

2.3 Final verification

We show how to verify that p j h�, following Gras [1]. For some� = ��g�(�)=fi(�) satisfying (1) for many pairs (q; b), we want to
prove that � is a pth power. This is equivalent to showing thatpp� is an element of K�. As a unit of K� the element � has g�
conjugates in K� which we all compute. We are able to calculate
a real approximation of � and its conjugates ��.

If the polynomial mp(x) = Q�(x � pp��) has integral coefficients,
then � is a pth power; by rounding off the coefficients we ob-
tain the minimum polynomial of pp� if the precision is adequate.
By checking whether mp(x) j m(xp), where m(x) is the minimum
polynomial of � we arrive at the final conclusion.

The verification step is practical only for fields of small degree,
but it was sufficient in all the cases we confronted.
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Figure 2: Scheme of computation for primes p < 10000 for any h�

3 Cohen-Lenstra heuristics
Cohen and Lenstra gave conjectural heuristic assumptions on
the properties of finite modules over direct products of Dedekind
domains. Schoof [5] predicted, based on a speculative exten-
sion of the Cohen–Lenstra heuristics, that the class numbers of
real abelian fields of prime conductor most likely are relatively
small. This generalizes to fields of arbitrary conductor without dif-
ficulty. We list some “probabilities” concerning our computations
that arise from this heuristic approach.

� There are a total of 11018 different h� for fields of conductors< 2000. The predicted number of nontrivial h�-parts (excluding
the primes dividing the degree and 2) would be 443. We found231 nontrivial h� in the computations (49 of those were with f�
prime; they can also be found in the tables in [5]).� The “probability” that there are no prime divisors > 10000 of anyh� is at least 91%. Since the largest prime divisor we found is379 and since the prime divisors found were usually of the formp = kg� + 1 with k small, we find it reasonable to believe that
our table is a table of class number parts h� (omitting the prime
divisors p j 2g� from study).

4 Results of the computation
We computed prime divisors 2 < p < 10000, p - g� of any h� for
fields up to conductor 2000. The complete table is in [2]; we pro-
vide here the class number divisors for fields of composite con-
ductor < 1000. The conjugacy classes of characters are repre-
sented by characters of (Z=Zf�)�.

f� � g� p212 !14�1353 4 5316 !14�3979 2 3321 �13�53107 2 3427 �37�1561 4 5469 �37�3367 2 3473 �511�2143 2 3481 �213�437 18 19551 �919�729 4 5556 !14�23139 6 7568 �18�1471 10 11!14�18�3571 2 3629 �817�237 18 19�417�1837 4 5651 �13�37�631 10 11652 !14�9163 18 19676 !14�3169 52 53692 !14�43173 4 5697 �817�2041 2 3703 �919�137 36 37�319�937 12 13728 �18�37�313 4 5753 �13�25251 10 11756 !14�227�17 18 19

f� � g� p763 �37�9109 12 13779 �919�141 40 41785 �25�78157 2 3793 �113�5561 12 37808 !14�18�25101 4 5817 �919�2143 2 5819 �19�17�213 6 7832 !14�164�313 16 72869 �511�179 78 79889 �37�21127 6 7892 !14�111223 2 3916 !14�57229 4 5923 �313�771 20 61928 !14�132�729 8 17935 �15�511�417 4 5940 !14�25�2347 2 3944 !14�116�2959 4 5976 !14�116�1561 4 5980 !14�15�649 28 29985 �25�98197 2 3988 !14�213�319 6 7993 �13�165331 2 3999 �227�1637 9 37

Conclusion
The class numbers of real abelian fields of composite conductor
seem to show statistical behaviour similar to the class numbers
of fields of prime conductor.
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