Theoretical Analysis of Relations in PPMPQS

Introduction

The multiple polynomial quadratic sieve (MPQS) is one of the algorithms used for factoring large numbers. One of its variations makes use of relations with two large primes (PPMPQS). These two large primes usually have the same upper bound. Lenstra and Manasse¹ mentioned the idea to have two different bounds for these primes, and this variation is implemented in the computer algebra package Magma.

Analysis of relations

In order to improve our understanding of this method we made a theoretical analysis of the densities of the different types of relations occurring in PPMPQS with different bounds for the large primes. For complete, partial and partial-partial relations with the same bound for the two large primes this is already done by Lambert². To give a theoretical estimate for the number of partial-partial relations with different bounds for the two large primes, we derived the following generalization of a result of Lambert. Here $\Psi(x, y_1, y_2, y_3)$ denotes the number of positive integers $\leq x$ with greatest prime factor $\leq y_1$, one but greatest prime factor $\leq y_2$ and all other prime factors $\leq y_3$, and ρ is the Dickman ρ function.

Theorem 1 For $0 < \alpha < \omega < \beta < 1/2$ the limit $\lim_{x\to\infty} \Psi(x, x^{\beta}, x^{\omega}, x^{\alpha})/x$ exists and equals

$$\frac{1}{2} \int_{\alpha}^{\omega} \int_{\alpha}^{\omega} \rho\left(\frac{1-\lambda_1-\lambda_2}{\alpha}\right) \frac{\mathrm{d}\,\lambda_1}{\lambda_1} \frac{\mathrm{d}\,\lambda_2}{\lambda_2} + \int_{\alpha}^{\omega} \int_{\omega}^{\beta} \rho\left(\frac{1-\lambda_1-\lambda_2}{\alpha}\right) \frac{\mathrm{d}\,\lambda_1}{\lambda_1} \frac{\mathrm{d}\,\lambda_2}{\lambda_2} \ .$$

Results

Counts of partial-partial relations (pp) after sieving with 100 096 polynomials, both experimentally and theoretically.

digits	y_2	y_1	pp (exp.)	pp (th.)	$\operatorname{difference}$
80	24979712	24979712	93556	85607	-8.50%
80	$12\ 489\ 854$	$49\ 959\ 435$	123775	113774	-8.08%
91	30000690	30000690	6756	7200	6.57%
91	15000354	60001434	8973	9618	7.19%
101	48223067	48223067	1391	1477	6.18%
101	24111564	$96\ 446\ 162$	1863	1985	6.55%
110	149570695	149570695	557	544	-2.33%
110	74785318	299141028	737	721	-2.17%

Conclusion

Our experiments show good agreement with the theoretical analysis. The study shows that it is advantageous to choose different upper bounds for the large primes. More experiments are necessary to find the optimal choice of y_1 and y_2 .

¹Factoring with Two Large Primes, Math.Comp. 63 (1994) 785-798

²Computational aspects of discrete logarithms, Ph.D. thesis, University of Waterloo (1996)