1 Lucas–Lehmer Theorem

Let n be a natural number and $M_n := 2^n - 1$. The primality of M_n implies the primality of n.

Hence, for a given prime number n we set

$$s_0 := 4$$

$$s_{k+1} := s_k^2 - 2 \qquad k = 0, 1, 2, \dots, n-2$$
(1)

The series s is called the LL-series.

Now M_n is prime $\iff M_n \mid s_n - 2$.

1.1 Proof.

Let $n \ge 3$ and $M_n = 2^n - 1$ be primes. Let $T := \mathbb{Z}[\sqrt{3}]$, then $T \ni \psi := 2 + \sqrt{3}$ and $T \ni \overline{\psi} := 2 - \sqrt{3}$. One easily sees

$$\psi\psi = 1 \tag{2}$$

Especially we see $M_n \equiv 7 \mod 8$. From the quadratic reciprocity theorem we know 3 is not a quadratic remainder of M_n .

By induction it can easily be seen that the elements of the LL-series suffice:

$$s_{n-2} = \psi^{2^{n-2}} + \bar{\psi}^{2^{n-2}} = \bar{\psi}^{2^{n-2}} (1 + \psi^{2^{n-1}})$$
(3)

" \Rightarrow " To show $M_n \mid s_{n-2}$, it is enough to show

$$\psi^{2^{n-1}} \equiv -1 \bmod M_n \tag{4}$$

(with equation (3)).

Using

$$2^{n-1} = (M_n + 1)/2$$

and

$$2^{(M_n-1)/2} \equiv 1 \mod M_n$$

we get

$$\psi^{2^{n-1}} \equiv 2^{(M_n-1)/2} \left(\frac{1+\sqrt{3}}{x}\right)^{M_n+1} \\ \equiv \frac{1+\sqrt{3}}{2} (1+\sqrt{3})^{M_n} \\ \equiv \frac{1+\sqrt{3}}{2} (1-\sqrt{3}) \\ \equiv -1 \mod M_n$$
(5)

"⇐" Suppose
$$M_n | s_{n-2}$$
 (in \mathbb{Z}).
Then also $M_n | \psi^{2^{n-2}} s_{n-2}$ (in T).
Hence $1 + \psi^{2^{n-1}} \equiv 0 \mod M_n$, thus

$$\psi^{2^n} \equiv 1 \bmod M_n \tag{6}$$

Let q be an arbitrary prime factor of M_n . (note $q \neq 2$ and $q \neq 3$)

Then from equation (6) it follows that $\psi^{2^n} \equiv 1 \mod q$.

Note $2^n = \operatorname{ord} \psi$ in the multiplicative group $T_q := \{a + b\sqrt{3} : 0 \leq a, b < q, a + b > 0\}$. From k being an exponent of ψ in T_q (i.e. $\psi^k \equiv 1 \mod q$) it follows that $2^n \mid k$.

Now we use this result to show that M_n equals the chosen prime q.

From the quadratic reciprocity theorem we know that we have two cases to consider:

1. $\sqrt{3}$ is a square in T_q :

$$\psi^{q-1} \equiv (2 - \sqrt{3})(2 + \sqrt{3})^q \quad \text{see equation (2)}$$
$$\equiv ((2 - \sqrt{3})(2 + \sqrt{3}) \quad \text{see quad. reci. thm.} \qquad (7)$$
$$\equiv 1 \mod q$$

From the preliminaries we see $2^n \mid q-1$, thus let $2^n h = q-1$ with $h \ge 1$. But then it follows

$$q = 2^n h + 1 > 2^n - 1 = M_n \tag{8}$$

contradicting the fact $q \mid M_n$. Thus this case does not occur.

2. $\sqrt{3}$ is not a square in T_q :

$$\psi^{q+1} \equiv (2+\sqrt{3})(2+\sqrt{3})^q$$

$$\equiv (2+\sqrt{3})(2-\sqrt{3}) \quad \text{see quad. reci. thm.} \qquad (9)$$

$$\equiv 1$$

From the preliminaries we see now that q + 1 is a multiple of 2^n , thus let $2^n h = q + 1$ with $h \ge 1$.

Now it results in

$$q = 2^n h - 1 \ge 2^n - 1 = M_n \tag{10}$$

Since q was chosen as divisor of M_n , it follows h = 1 and thus $q = M_n$. As q is prime, so is M_n .