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Overview

The Unit Group of a number field is one of the most important invariants. Computation

of the unit group has a long and interesting history - which I mainly ignore here.

The computation of the full unit group naturally has two parts:

• Computation of a large group U ≤ UK of units

– Generation of Units

– Find dependencies to compute U

• Show that we have the full group

– Derive a lower bound on the regulator to derive b > (UK : U).

– Show that for all p < b that p 6 |(UK : U)



Notation

Let K be a number field of degree n := (K : Q) over Q.

Fix embeddings (.)(i) : K → R (1 ≤ i ≤ r1) or C (r1 < i ≤ n = r1 +2r2) and

sort them in the usual way. Then T2 : K → R : x 7→ ∑n
i=1 |x(i)|2 is a quadratic

form.

Define a logarithmic map L : K∗ → Rr1+r2 : x 7→ (log(|x(i)|))1≤i≤r1+r2.

And define the unit rank r := r1 + r2 − 1.



Dirichlet

We have the Dirichlet unit theorem:

UK/〈ζ〉 =
r×

i=1
〈εi〉 ∼= Zr

Computing UK means the computation of a so called set of Fundamental Units

{ε1, . . . , εr}.

Part I: Given a (finite) set of units S, find the sub-group U of UK generated by them.

Part II: Decide if we have the full group.



Part I

Suppose ε1, . . ., εs are independent units and ε is arbitrary.

Decide if ε is independent

If ε is dependent, find a relation between the units.

In theory, all is trivial: the units are Z-independent if and only if their images under

L are R-linearly independent. So, to solve problem 1, we only need to solve a linear

system over R.



Zero

How do we decide if a real number is zero (on a computer)?

In general we cannot possible decide by looking at a finite approximation of a real

number if it is zero, but if we restrict to algebraic integers we can:

Let x be an algebraic integer. Then either x is a torsion unit or there is at least one

embedding i such that |x(i)| ≥ 1 + 1
6
log n
n2

Alternatively, for a non-torsion unit we have:

‖L(x)‖2 ≥ 21

128

log n

n2



A Quadratic Form

Given s (independent) units, we can define a quadratic form on Zs:

(x1, . . . , xs) 7→ ‖L(
s∏

i=1

ε
xi
i )‖2

2

Using a variant of the Cholesky Decomposition (quadratic supplement), we can com-

pute qi,j ∈ R such that

Q(x1, . . . , xs) =
s∑

i=1

qi,i(xi +
s∑

j=i+1

qi,jxj)
2



A Quadratic Form

Q(x1, . . . , xs) =
s∑

i=1

qi,i(xi +
s∑

j=i+1

qi,jxj)
2

We can easily check that

d(Q) =
s∏

i=1

qi,i

Since Q is tied to the units, we see that Q(x1, . . . , xs) ≥ M1(Q) ≥ ( 21
128

log n
n2 )2



A Quadratic Form

Q(x1, . . . , xs) =
s∑

i=1

qi,i(xi +
s∑

j=i+1

qi,jxj)
2

Using a suitable permutation of the xi, we can achieve

• A numerically stable algorithm with rigorous error bounds to compute the qi,j

• A sorting of the diagonal elements: q1,1 ≥ . . . ≥ qs,s

If we combine this with the lower bound for M1(Q), we have a lower bound on the

discriminant d(Q). Since d(Q) 6= 0 ⇐⇒ ε1, . . ., εs are independent, we can use

this to detect independence.



Finding Dependencies

We are in the following situation:

• A system of independent units ε1, . . ., εs

• A unit ε such that there exists a dependency

Problem: How do we find the dependency?



Finding Dependencies

Solutions:

• Compute a dependency over R, normalize it, compute a “bound” and use conti-

nued fractions to find a rational dependency.

• Compute dependencies in suitable residue class fields, use Chinese Remaindering,

and finally, find a rational dependency using rational reconstruction.

• Use MLLL in the real-lattice

• Use (M)LLL in a derived integral-lattice

Problem in most cases are numerical: one needs to control all numerical errors, the

last possibility is theoretically unproven (Leopold-conjecture) and untried.



Karim’s approach

Karim Belabas suggested the following approach:

Let M ∈ Rs×s ∈ Gl(s,R) be arbitrary. One can compute an integer λ such that

A := bλMebλM te is a symmetric, positive definite integral matrix.

If λ is large enough, then the LLL applied to A should behave similar to the LLL

applied to MM t. in particular, a short vector can be obtained this way.



Scaling and Rounding

Our approach is slightly different. We start by the following: Let M ∈ Rs×s be

symmetric and positive definite, then Mλ := bλMe + ds
2
eIs ∈ Zs×s is also

symmetric and positive definite for all λ > 0.

It is then easy to see that if xtMx = 0 for some x ∈ Zs we get xtMλx ≤ s
2
‖x‖2

- independent of λ.

On the other hand, if xtMx > 0 then obviously, xtMλx ∼= λxtMx.

Therefore, if λ is large enough, the first basis vector of an integral LLL reduced basis

for Mλ will correspond to our dependency.



Part II

We assume that somehow we have a maximal system of independent units and thus

a subgroup U ≤ UK of finite index.

We suspect that U = UK and we want to show this.

We know (UK : U) = Reg U
Reg UK

- but we don’t know Reg UK.

Aim: Find a “good” lower bound R ≤ Reg UK

Then one needs to show that for all primes p ≤ Reg U
R

our candidate U is p-maximal

in UK.



Remak

The strategy is to find a “good” lower bound on the size of the smallest non-torsion

unit. This is attempted through a mixture of explicitly searching for small units and

by solving a global minimization problem:

Suppose T2(ε) > K and T2(ε
−1) > K for some K. Find a “good” q(K) such

that Q(ε) ≥ q(K).

By combining the explicit results for all units ε such that T2(ε) ≤ K and the bound

q(K) for all others, we derive a lower bound on d(Q) = Reg UK via Minkowski’s

theorem on successive minima.



An extremal Problem

Consider the minimization problem: Minimize
n∑

i=1

x2
i

under the constraints

• ∑n
i=1 xi = 0

• ∑n
i=1 exp(2xi) ≥ K

• ∑n
i=1 exp(−2xi) ≥ K

Interpretation: xi := log |ε(i)|



Reduction

It is immediately clear, that

• A solution has positive and negative coordinates

• A solution has at most three different coordinates

• The solution becomes at most smaller if we omit for example the last constraint.

Pohst showed that under the additional assumption that we have at least n/2 positive

coordinates, no zero coordinates and without the last constraint, the minimum is

bounded from below by

MK,0 :=
n

4
arcosh2 K

n

In case n even, this corresponds to a vector (x, . . . , x, −x, . . . , −x)



Last Case

The remaining case of zero coordinates is handled by “reduction”: If a coordinate is

zero, we reduce n and K and use the last step again.

It remains to find the minimum of

MK,j :=
n − j

4
arcosh2 K − j

n − j

for j ∈ [0..n − 2].

By computing partial derivatives we can show that this function is decreasing in j for

K > n(1 +
√

2) and the minimum is thus in j = n − 2.



Improvements

To improve the bound we need to exclude the possibility of zero coordinates. Translated

into the field, this means simply that we need to exclude units that have conjugates

of absolute value 1.

In general, as we will see next, we cannot exclude this. However, it is clear that real

conjugates cannot be of absolute value 1, so that n − j ≥ r1 and j = 0 for totally

real fields.



Special Units

Let K be a totally real field of degree n. Using Minkowski’s lattice theorem, we can

easily find an algebraic integer x such that x(1) > 2 and |x(i)| ≤ 2 for all i > 1.

Then L := K(y) for y2 + xy + 1 has a unit y such that the 2n − 2 complex

conjugates are of absolute value 1.


