ALGORITHMIC DISCRETE MATHEMATICS III: EXERCISES 1

MICHAEL JOSWIG

The convex hull of finitely many points with 0/1-coordinates is a 0/1-*polytope*.

Exercise 1. Give bounds for the vertex and facet complexities of the 0/1-polytopes in dimension n.

Two polytopes are *combinatorially isomorphic* if their face posets are isomorphic (as posets).

Exercise 2. Enumerate the 3-dimensional 0/1-polytopes up to combinatorial automorphisms. Can you make polymake visualize them all in one picture?

Exercise 3. Let P and Q be convex polytope. Describe an algorithm for deciding whether P and Q are combinatorially isomorphic. Do some examples with polymake.

A Schlegel diagram of a polytope is a central projection onto one of its facets, say F, yielding a polyhedral subdivision of F by coning with the center of the projection over all facets other than F (and intersecting with F).

Exercise 4. Construct a 4-dimensional polytope which is not combinatorially isomorphic to any 0/1-polytope. Let polymake draw a Schlegel diagram. Generalize this to arbitrary dimension.

A polyhedron is *pointed* if it does not contain any affine subspace of positive dimension.

Exercise 5. Let $P \subset \mathbb{R}^n$ be a polyhedron. Show that P is pointed if and only if there is an affine transformation T such that $T \cdot P$ is contained in the nonnegative orthant $\mathbb{R}^n_{\geq 0}$. What can you say about projective transformations?

Exercise 6 (Recap). Phase II of the simplex method for linear programming requires to start with one known vertex of the feasible region. Describe a method for phase I, i.e., an algorithm which takes $A \in \mathbb{Q}^{m \times n}$ and $b \in \mathbb{Q}^m$ as input and produces one vertex of $P(A, b) = \{x \in \mathbb{Q}^m \mid Ax \leq b\}$. You may assume that P(A, b) is pointed.

Date: November 8, 2018.