
CONVEX GEOMETRY
RELATED TO HAMILTONIAN GROUP ACTIONS

TADEUSZ JANUSZKIEWICZ AND MICHAEL JOSWIG

Abstract. Exercises and descriptions of student projects for a BMS/IMPAN block
course.

1. First Week Exercises

Berlin, November 27 – December 1, 2017.

1.1. TJ: General Strategy and Simple Examples.

Exercise 1.1.1. Review the concept of duality for convex sets in vector spaces. Prove that
a dual of a simplicial convex polytope is a simple convex polytope.

Exercise 1.1.2. Prove that simplicial convex polytopes constitute dense open set in the
space of polytopes (this requires discussion of topology on polytopes).

Exercise 1.1.3. Define “combinatorial type” of a convex polytope. How does the combina-
torial type of a simplicial polytope X relate to the structure of a simplicial complex on the
boundary of X?

Exercise 1.1.4. Review the concept of barycentric subdivision for convex polytopes and
for simplicial complexes (and perhaps more general convex-cell complexes). Show that the
combinatorial types of dual convex polytopes are related by barycentric subdivision duality:
dual cell of a vertex is the star in the barycentric subdivision.

Exercise 1.1.5 (Manifolds with corners). Take a manifold with boundary, and a triangu-
lation of the boundary. Show how barycentric duality can be used to associate with this
data a structure of a manifold with corners. Construct an interesting manifold with corners
which does not arise this way.

Exercise 1.1.6. Review the definition of the cubical cone over a simplicial complex X.
Prove that the cubical complex has a simplicial subdivision simplicially isomorphic to the
cone over the barycentric subdivision of X.

Exercise 1.1.7. Discuss actions of Z2 on R, T1 on C, Zn2 on Rn, Tn on Cn: quotients, point
stabilizers, orbits. Similarly for Zn2 on Sn−1, Zn−1

2 on RPn−1, Tn on S2n−1, Tn on CPn−1.

Exercise 1.1.8 (*). On the Grassmann manifold of 2 planes in C4 the group of diagonal
matrices in GL(4,C) acts. Discuss this action: point stabilizers, orbits, orbit closures,
quotient.
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1.2. MJ: Affine Toric Varieties.

Exercise 1.2.1. Sketch the real locus V (f) ∩ R2 of the plane algebraic curve V (f) ⊂ C2,
where f is one of the following bivariate (real) polynomials:

(1) x3 − y2,
(2) x3 + 3x2 − y2,
(3) x(x+ 1)(x− 3)(x+ 2)(x− 2)− y2,
(4) (x2 + y2)2 + 18(x2 + y2)− 27 and
(5) (x+ y2 − 1)2 − 4((x− 1)2 + y2).

Let σ ⊂ Rn be a rational polyhedral cone, and let C[σ ∩ Zn] be the induced semigroup
algebra.

Exercise 1.2.2. Give a proof of Gordan’s Lemma, which says that C[σ ∩ Zn] is finitely
generated.

Exercise 1.2.3. Give an example which shows that the rationality assumption in Gordan’s
Lemma is essential.

Exercise 1.2.4. Show that
(1) the dual σ∨ is again a rational polyhedral cone,
(2) we have (σ∨)∨ = σ.

Under which conditions on σ is σ∨ strongly convex?

In the sequel tm is short for the non-zero complex number tm1
1 · · · tmn

n , where t =
(t1, . . . , tn) ∈ (C∗)n and m = (m1, . . . ,mn) ∈ Zn.

Exercise 1.2.5. Letm1, . . . ,m` be generators of C[σ∨∩Zn]. Show that Uσ, which is defined
as the Zariski closure of the image of the map φ : (C∗)n → C`, t 7→ (tm1 , . . . , tm`), is a toric
variety.

Exercise 1.2.6.
(1) What are good definitions of “homomorphism” and “isomorphism” between affine

toric varieties?
(2) Let σ ⊂ Rn and τ ⊂ Rm both are rational polyhedral cones. Show that Uσ×τ ∼=

Uσ × Uτ , where “∼=” refers to the notion of “isomorphic” developed before.

1.3. MJ: Projective Toric Varieties. Let Σ be a fan of strictly convex rational polyhedral
cones in Rn.

Exercise 1.3.1. Show that for σ ∈ Σ and τ ≤ σ the affine toric variety Uτ is a Zariski open
subset of Uσ.

Exercise 1.3.2. Show that for σ, τ ∈ Σ the embedding of (C∗)n into Uσ∩τ is compatible
with its embeddings into Uσ and Uτ .

Exercise 1.3.3. Let Σ be the fan in Rn whose cones are generated by the proper subsets
of {e1, e2, . . . , en,−e1 − e2 − · · · − en}. Show that XΣ = Pn.
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Exercise 1.3.4. Let Σ = Σ[0,1]n be the normal fan of the n-dimensional unit cube. Show
that XΣ = (P1)

n.

Exercise 1.3.5. Write down smooth and non-smooth examples of 2- and 3-dimensional
projective toric varieties.

Exercise 1.3.6. For fixed n ≥ 2 consider the permutahedron P , which is defined as the
convex hull in R of all permutations of length n (written as vectors of length n). Show that
P is a simple polytope of dimension n− 1. Describe the combinatorics of P for n = 2, 3, 4.
What can you say about the projective toric variety XΣP

? Is it smooth?

1.4. TJ: Right-Angled Coxeter Groups.

Exercise 1.4.1. Is the standard Z2×Z2 action on RP2 a reflection? What about the action
of Z2 × Z2 × Z2 on S2?

Exercise 1.4.2. Prove that the group

W = 〈s, t, r | s2 = t2 = r2 = (st)3 = (sr)3 = (tr)3 = 1〉
is infinite.

Exercise 1.4.3. Draw Cayley graphs of dihedral groups, of S4 and of the group W from
Excercise 1.4.2. Draw the Davis–Vinberg and Coxeter complexes of the free products of
two, three and four copies of Z2.

Exercise 1.4.4. Show that if a square complex has links of vertices which are flag, then
the standard geodesic metric is locally CAT(0). Show that if links of vertices in a simplicial
complex have girth six, then the standard geodesic metric is locally CAT(0).

Exercise 1.4.5. Show that the barycentric subdivision of any simplicial complex is flag.

Exercise 1.4.6. Compute the Euler characteristics of the (pqr) triangle groups. Prove
Hurwitz theorem, which says that the automorphism group of a surface of genus g has at
most 84(g − 1) elements.

Exercise 1.4.7. Prove that any 2-dimensional simplicial complex admits a flag-no square
triangulation.

1.5. TJ: Topological Toric Manifolds.

Exercise 1.5.1. Compute the Euler characteristics of real and complex toric spaces over a
P , cc(L). (in particular note they are independent of a characteristic function).

Exercise 1.5.2. Toric spaces have two descriptions as identification spaces of (P ×Tn)/ ∼,
where relation is given by characteristic function and as quotients [P (×Tv/) ∼]/Tv−n, where
Tv−n is an appropriately encoded subtorus.

Show how to pass from one description to the other.

Exercise 1.5.3. Similarly small covers come from an appropriate homomorphismWP → Zn2 .
Show how to pass from this homomorphism to characteristic function and back.
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Exercise 1.5.4. Describe the polytope and the characteristic function of a projective toric
variety given by a fan.

Exercise 1.5.5. Describe the characteristic function of MR in terms of the characteristic
function of MC.

Exercise 1.5.6.
(1) Discuss/classify smooth toric surfaces over a square, pentagon, hexagon, . . ..
(2) Discuss/classify toric spaces over the triangle.

Exercise 1.5.7. Discuss the topology of a link of a vertex in a toric space in case P is not
a simple polytope.

Exercise 1.5.8. Do not use the Four Color Theorem, but still prove: For any simple closed
convex polytope P there is a smooth toric space over P .

Show an example of a polytope in dimension 4 which does not have this propoerty.

1.6. MJ: Even Simple Polytopes.

Exercise 1.6.1. Let ∆ and ∆′ be finite simplicial complexes with facets σ0 and σ′0, respec-
tively. Show that Π(∆ ∗∆′, σ0 ∪ σ1) = Π(∆, σ0)×Π(∆′, σ′0). Here ∆ ∗∆′ is the join of ∆
and ∆′.

Exercise 1.6.2. What is the minimal dimension of a simply-connected combinatorial
manifold ∆ (with or without boundary) for which Π(∆) is not trivial?

Exercise 1.6.3. Generalize the theorem which describes a system of generators for the group
of projectivities of a combinatorial manifold ∆ to the situation where ∆ has a non-trivial
boundary.

Exercise 1.6.4. Determine the groups of projectivities of all regular polytopes which are
simple. Which Coxeter groups do these correspond to? Does the 24-cell admit a group of
projectivities?

A full truncation of a polytope Q is a polytope obtained from Q by first truncating all
the vertices, then truncating all the edges and further all faces with increasing dimension.
The boundary of a full truncation is dual to the barycentric subdivision of the boundary of
Q∨. The combinatorial type is unique, which is why we also speak of the full truncation.

Exercise 1.6.5. Show that the full truncation of any polytope is an even simple polytope.

Exercise 1.6.6. Construct even simple polytopes which are neither full truncations nor
zonotopes.

Exercise 1.6.7. For any even simple polytope construct a canonical characteristic function.

Exercise 1.6.8. Can you construct a subdivision scheme for simplicial complexes which
gets arbitrarily fine and which preserves the group of projectivities?

— INCOMPLETE DRAFT of March 21, 2018—



CONVEX GEOMETRY RELATED TO HAMILTONIAN GROUP ACTIONS 5

1.7. MJ: A Colorful Lebesgue Theorem. Let X be a topological space. Its covering
dimension is defined to be the minimal d, such that every open cover of X has an open
refinement which covers each point at most d+ 1 times.

Exercise 1.7.1. Classify the topological spaces of covering dimension zero.

Exercise 1.7.2. Show that Rd has covering dimension d.

1.8. TJ: Right-Angled Buildings.

2. Second Week Exercises

Bedlewo, March 19–22, 2018.

2.1. MJ: h-Vectors of Polytopes and Spheres.

Exercise 2.1.1. Determine the h-vectors of the cubes/cross polytopes in all dimensions.

Exercise 2.1.2. Determine the h-vectors of the permutahedra in all dimensions.

Exercise 2.1.3. What is the dual of an abstract objective function?

Exercise 2.1.4. Let P be a simple d-polytope with graph Γ = Γ(P ). Show that the facets
of P bijectively correspond to the connected and (d−1)-regular subgraphs of Γ which are
initial with respect to some abstract objective function.

Exercise 2.1.5. Let ∆ be a simplicial (d−1)-sphere. Show that hd(∆) = 1.

Exercise 2.1.6. Let `, i ≥ 1 be integers. Show that there is a unique j ∈ N and a unique
sequence of integers

ni > ni−1 > · · · > nj ≥ j ≥ 1

such that

` =

(
ni
i

)
+

(
ni−1

i− 1

)
+ · · ·+

(
nj
j

)
.

2.2. MJ: The g-Theorem.

Exercise 2.2.1. Compute the h-vector of the simplicial complex ∆ on four vertices with
facets {1, 2} and {2, 3, 4}. Describe its Stanley-Reisner ring R[∆].

Exercise 2.2.2. Let P and Q be simple polytopes. Show that the product P ×Q is a simple
polytope again. What is the h-vector of P ×Q expressed in the h-vectors of P and Q?

Exercise 2.2.3. Find out what stacked and k-stacked polytopes are (with or without the
help of Wikipedia). What can you say about their f - and h-vectors?

Exercise 2.2.4. For C = [0, 1]d and i ∈ {0, 1, . . . , bd/2c} determine the Lefschetz isomor-
phism

ωd−2i : H2i(XC ;Q)→ Hd−2i(XC ;Q) .

Start out with describing bases of the vector spaces H2i(XC ;Q).
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2.3. MJ: Computing Face Lattices and f-Vectors. Let us reconsider Exercise 2.1.2
in more detail. Let Πn be the convex hull of all permutations in the symmetric group Sn,
written in one-line representation. We have d := dim Πn = n− 1. The polytope Πd+1 is the
d-dimensional permutahedron.

Exercise 2.3.1. What are the facets of Πn? How many are there? What are the lower-
dimensional faces and how many are there?

Let a1 ≥ a2 ≥ · · · ≥ ak ≥ 1 with a1 + a2 + · · ·+ ak = n. This is a partition of n into k
parts.

Exercise 2.3.2. Determine how many of such partitions of n exist. How many partitions
of n into distinct parts are there? How many of them have at most k parts?

Exercise 2.3.3. Show that Πn is a secondary polytope for the prism over the (n−1)-simplex.

3. Projects

3.1. Counting Lattice Points. For P a lattice polytope in Rn and k ∈ N let

ηP (k) := # {m | m ∈ k · P ∩ Zn}
be the number of lattice points in the kth dilate of P .

Theorem. The function ηP (k) is a polynomial in k.

• Prove the theorem; you might want to borrow one or two lemmas from suitable
literature.
• Motivate those lemmas that you are citing by examples.
• What is known about these polynomials?
• What is not known?

3.2. Polygons With a Given Number of Interior Lattice Points.

Theorem. For every fixed integer g ≥ 1, there are only finitely many lattice polygons with
exactly g interior lattice points, up to integer affine isomorphisms in Z2.

• Prove the theorem.
• What is wrong with g = 0?
• How many distinct classes of polygons exist for g = 1, 2, 3?
• How can we enumerate them in general?

3.3. In the Art Gallery. In computational geometry language a simple polygon is the
bounded region described by a polygonal Jordan curve in R2. A simple polygon in the sense
of this definition does not need to be convex.

Theorem. Every simple polygon admits a balanced triangulation.

• Prove the theorem.
• Describe examples and non-examples.
• What is the “Art Gallery Theorem”, and how does it follow from the theorem?
• What is known about generalizations?
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