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Exercise 1. Determine the nondominated points of the multiobjective linear program
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Exercise 2. Consider the monomial ideal M in K|[z1,z9, x3,z4] spanned by the nondomi-
nated points from Exercise[l}] Check if M is Artinian; if not replace M by its Artinian closure.
Compute the Alexander dual. You may use software like Macaulay?2 [4] or Singular [2].

Exercise 3. Let C' C TP" ! be a tropical cone, not necessarily polyhedral. Show that there
is a unique set R C C' which is minimal with respect to inclusion such that tpos(R) = C.

Exercise 4. In Exercise 3.1 we discussed the max-tropical polyhedron P = ord(P) where
P is the Puiseux polyhedron given by the linear inequalities
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over the ordered field K of reverse Puiseux series with real coefficients. Compute the tropical
vertices of P.
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Problem 5. Study the zero-sum matrix games with multi-dimensional payoffs introduced
by Hamel and Lohne [5 §3| in terms of tropical convexity. See also [3].

Problem 6 (|7, Question 25]). Give an interpretation of the planar resolution algorithm
from [8] §3.5] and the hull resolution from [§, §4.4] in terms of tropical convexity.

The tropical upper bound theorem bounds the number k of extremal generators of a
(monomial) tropical cone given as the intersection of m tropical halfspaces; cf. [I, Theorem 1]
and [7, Theorem 17|. Equivalently, the number & yields the number of scalarizations required
for an m-criteria optimization problem with m nondominated points. It is known that that
the bound in [I, Theorem 1] is not tight for all parameters.
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Problem 7 ([7, Question 26]). Determine the exact upper bound for m as a function of n
and d. See also work of Hosten and Morris [6] and [8, Theorem 6.33].

Problem 8 ([7, Question 27]). Which bipartite graphs occur as the vertex-facet incidence

graphs of monomial tropical cones?

Problem 9 (|7, Question 28|). To what extent does our approach generalize to multicri-

teria optimization problems which are not discrete? For instance, look into more general

semigroup rings; cf. [8, Chapter 7].
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