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Exercise 1. Consider a product-mix auction for n = 1 indivisibile good and m ≥ 1 agents.
Suppose that the utility function uj : Aj → R of all agents are constant. Give an algorithm
to decide whether or not there exists a competitive equilibrium. What is its complexity?

Exercise 2. Find two finite point sets A1 and A2 in Z2 such that there does not exist any
pair of utility functions u1 : A1 → R and u2 : A2 → R such that the product-mix auction
(for n = 2 indivisibile goods and m = 2 agents) with (u1, u2) does has any competitive
equilibrium.

Exercise 3. Phrase the existence of competitive equilibrium in a product-mix auction (for
general m,n ≥ 1) as an integer linear program.

Exercise 4. Consider the running example (with m = n = 2) from the lecture defined by
the tropical polynomials

F1(X,Y ) = max(0, 3 + Y, 5 + 2Y, 9 +X + 2Y )

F2(X,Y ) = max(0, 1 +X, 1 + Y ) ,

which combine the bundle sets A1 and A2 with the utility functions u1 : A1 → R and
u2 : A2 → R of the two agents.

(1) Determine the full demand types D1 and D2 of u1 and u2, respectively.
(2) Is the union D1 ∪D2 unimodular?

***
To see how the following topics concerning lattice polytopes and toric varieties are related

to product-mix auctions we refer to [5, §6]. A notoriously open problem in this area is
Oda’s question “Is every smooth projective toric variety projectively normal?”; cf. [3] and [5,
Conjecture 6.10].

But first things first. A lattice polytope, P , is a convex polytope all of whose vertices have
integer coordinates. It has the integer decomposition property (IDP) if

(k · P ) ∩ Zn = (P ∩ Zn) + · · ·+ (P ∩ Zn)︸ ︷︷ ︸
k times

for all k ≥ 1. The lattice polytope P is smooth if for each vertex v of P the edges through
v form a lattice basis (of the integer lattice Zn): a smooth polytope is necessarily simple. A
triangulation T of P is unimodular if all simplices in T have normalized volume one. The
existence if a unimodular triangulation implies IDP.
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Problem 5 ([3, §1.5.4]). Lattice zonotopes are known to be IDP. Do they have unimodular
triangulations?

A regular unimodular triangulation is quadratic if its minimal non-faces are edges, i.e., it
is “flag”. A lattice polytope is reflexive if its polar dual is a lattice polytope, too.

Problem 6 ([3, §1.5.1]). Do all smooth reflexive polytopes have a quadratic triangulation?
Specifically this question is open for 18 out of the 80 892 types in dimension 7. This probably
calls for polymake [2] and the database polyDB [4].

Problem 7 ([3, §1.5.2]). Do polytopes whose facet normals are contained in the root systems
of types Cn, Dn, E6 or E7 admit a unimodular triangulation? What about quadratic ones?
A standard reference on root systems is [1].
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