OPTIMIZATION AND TROPICAL GEOMETRY:
EXERCISES AND PROBLEMS 4

MICHAEL JOSWIG

Exercise 1. Consider a product-mix auction for n = 1 indivisibile good and m > 1 agents.
Suppose that the utility function v’ : A7 — R of all agents are constant. Give an algorithm
to decide whether or not there exists a competitive equilibrium. What is its complexity?

Exercise 2. Find two finite point sets A! and A? in Z? such that there does not exist any
pair of utility functions u! : A' — R and u? : A> — R such that the product-mix auction
(for n = 2 indivisibile goods and m = 2 agents) with (u',u?) does has any competitive
equilibrium.

Exercise 3. Phrase the existence of competitive equilibrium in a product-mix auction (for
general m,n > 1) as an integer linear program.

Exercise 4. Consider the running example (with m = n = 2) from the lecture defined by
the tropical polynomials

Fi(X,Y) = max(0,3+Y,5+2Y,94+ X +2Y)

F(X,Y) = max(0,1+ X,14Y) ,

which combine the bundle sets A' and A? with the utility functions u' : A' — R and
u? : A2 = R of the two agents.

(1) Determine the full demand types D! and D? of u! and u?, respectively.
(2) Is the union D! U D? unimodular?

kkk

To see how the following topics concerning lattice polytopes and toric varieties are related
to product-mix auctions we refer to [5, §6]. A notoriously open problem in this area is
Oda’s question “Is every smooth projective toric variety projectively normal?”; cf. [3] and [5,
Conjecture 6.10].

But first things first. A lattice polytope, P, is a convex polytope all of whose vertices have
integer coordinates. It has the integer decomposition property (IDP) if

(k-P)NZ" = (PNZ")+---+(PNZ")

k times
for all kK > 1. The lattice polytope P is smooth if for each vertex v of P the edges through
v form a lattice basis (of the integer lattice Z™): a smooth polytope is necessarily simple. A
triangulation T' of P is unimodular if all simplices in 7" have normalized volume one. The
existence if a unimodular triangulation implies IDP.

Date: 13 May 2019.



2 MICHAEL JOSWIG

Problem 5 ([3, §1.5.4]). Lattice zonotopes are known to be IDP. Do they have unimodular
triangulations?

A regular unimodular triangulation is quadratic if its minimal non-faces are edges, i.e., it
is “flag”. A lattice polytope is reflexive if its polar dual is a lattice polytope, too.

Problem 6 (|3, §1.5.1]). Do all smooth reflexive polytopes have a quadratic triangulation?
Specifically this question is open for 18 out of the 80892 types in dimension 7. This probably
calls for polymake [2] and the database polyDB [4].

Problem 7 (3], §1.5.2]). Do polytopes whose facet normals are contained in the root systems
of types C,,, Dy, Eg or E7 admit a unimodular triangulation? What about quadratic ones?
A standard reference on root systems is [1].
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