Optimization and Tropical Geometry:
1. Shortest paths and the Hungarian method

Michael Joswig
TU Berlin

15 April 2019

partially joint w/ Benjamin Schréter



Shortest path problems

Let I be a finite directed graph on n nodes, equipped with real arc weights.

Three variants:

» s—t shortest path problem:
> the source node s and the target node t are fixed
» single source or single target shortest path problem:
> either s or t are fixed, and the other nodes vary arbitrarily

» all-pairs shortest path

It matters whether or not we restrict to positive weights only.

— Schrijver CO/A, Chapters 6,7,8
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Tropical arithmetic

For T := RU {oo} we call (T, min, +) the tropical semiring. Often we
abbreviate © = min and ©® = +.

Example

30(4®5)=3+min(4,5) =7=min(3+4,3+5) =304 @ (3®5).

Instead of general graph [ on n nodes with real arc weights consider
complete directed graph K, with arc weights in T.

Then the directed adjaceny matrix D = (dyy)u,v with
d:[n]x[n—=T, (uv)— dy

encodes the graph I.

There is a natural way to define tropical matrix multiplication.
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Powers of tropical matrices

Let I' be given by its directed adjacency matrix D € T"*".

Naive algorithm for all-pairs shortest path:

1. compute the tropical matrix power D®(7—1)

2. there is a negative cycle if and only if D®("=1) has a negative entry
on the diagonal

3. otherwise the coefficient of D®("~1) at (u, v) is the length of a
shortest u—v path

overall cost = O(n*)

Michael Joswig (TU Berlin) OTG Lecture 1, page 4 of 21 www.math.tu-berlin.de/~joswig


www.math.tu-berlin.de/~joswig

Kleene stars

Definition (Kleene star)

D =1aDaD?g...q D=1 g ... ’

where | = D®? is the tropical identity matrix, with coefficients 0 on the
diagonal and oo otherwise.

Well defined if sequence converges. Then D* = D®(n=1),
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Floyd—Warshall algorithm (1962)

Idea: reduce the complexity of computing D* to O(n®) via dynamic
programming.

Measure weight of a shortest path from u to v with all intermediate nodes

restricted to the set {1,2,...,r}, which is
duv if r=20
dl(JC) = r— r— r— 1
{min (df,v D oglr=b 4 gl 1)) ifr>1. (1)

That is, in the nontrivial step of the computation we check if going
through the new node r gives an advantage.

» correctness follows from the fact that (T, ®, ®) is a semiring,

equipped with a total ordering
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Floyd—Warshall algorithm (1962), continued

We set D(1) = (dl(,C))

u,v’

» with D=1 known the computation of a single coefficient dl(,rv)
requires only constant time

> negative cycle exists if and only if some diagonal coefficient of D(") is
negative

» otherwise we have D(") = pO(n—1) — p*

» overall cost = O(n%)

In general, the matrix D) is distinct from any tropical power DK,

Fact: optimal complexity known for arbitrary arc weights.
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Tropical polynomials

We can consider (multivariate) tropical polynomials like
4H3X BAXZ @ 2XY B6Y @ 2Y
= min(4,34+ X,4+2x,2+ X +Y,6+2Y,3+Y) .

They can be added and multiplied tropically, to obtain another semiring,
which we write as T[X, Y].

> via tropical evaluation a k-variate tropical polynomial

F € T[Xi,...,Xk] defines a (continuous) piecewise linear map from
R¥ to R

» evaluation defines partial ordering of tropical polynomials
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A univariate tropical polynomial

Example
FX)=BoX3)e(loX))aRoX)a4s

142X
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Regions of linearity of tropical polynomials

LY TY
5 I \ _
T 442X |34+ X 4
— X+1
> X > X
Y 2+Y
24 X+Y —
6+2Y
min(2,1+ X, Y) min(4,3+X,44+2X,24+ X+ Y,
6+2Y,2+Y)
Definition

The tropical hypersurface of a k-variate tropical polynomial F is the set of
points x in R¥ where the minimum in the evaluation F(x) is attained at

least twice.
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Parameterized all-pairs shortest paths

Proposition
The solution to the all-pairs shortest paths problem of a directed graph
with n nodes and weighted adjacency matrix

D ET[Xl,...,Xk]

is a polyhedral decomposition of R¥ induced by up to n? tropical
polynomials corresponding to the nonconstant coefficients of D("—1).
On each polyhedral cell the lengths of all shortest paths are linear
functions in the k parameters.

First algorithm: (parameterized) Floyd—Warshall
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Example

Consider the directed graph I' on four nodes with the weighted adjacency
matrix

, (2)

0 o0 o 1
1 0 oo ™
Y 1 0
o X 1 0

whose coefficients lie in the semiring T[X, Y] of bivariate tropical
polynomials.

Then
min(2+ X,2+Y,0) min(1+ X, 3) 2 1
D®3 _ 1 min(2 + X, 0) 3 2
- min(Y, 2) min(l1+ X +Y,1) min(2+Y,0) min(1+4 Y, 3)
min(l+ X,1+Y,3) min(X, 2) 1 min(2+ X,2+Y,0)
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Parameterized all-pairs shortest paths, continued

Theorem (J. & Schréter 2019+)

Let D € T[xi,...,xx|"™" be the weighted adjacency matrix of a directed
graph on n nodes.

Suppose that D has separated variables.
Then, between any pair of nodes, there are at most 2* pairwise
incomparable shortest paths. Moreover, the Kleene star D*, which encodes

all parameterized shortest paths, can be computed in O(k - 2k n3) time, if
it exists.

» separated variables: each coefficient of D involves a constant plus at
most one of the k indeterminates
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Sketch of proof

» Assume no negative cycles.

» Then there is at least one shortest path between any two nodes
(possibly of infinite length).

» In each shortest path each arc occurs at most once. By our
assumption this means that the total weight is A + x;, + - - - + Xx;, for
A€ T and x;; +---+ X, is a multilinear tropical monomial, i.e., each
indeterminate occurs with multiplicity zero or one. There are 2%
distinct multilinear monomials, and hence this bounds the number of
incomparable shortest paths between any two nodes.

» Use Floyd—Warshall.

» The tropical multiplication, i.e., ordinary sum, of two multilinear
monomials takes linear time in the number of indeterminates, which is
at most k.
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The linear assignment problem

Pr.oblem 0010
Given 4 soccer players and 4
" . 0 00O
positions, what is the best A = 5 30 0
ion?
formation 000 0

» assignment = choice of coefficients, one per column/row
best = min a +a +a +a
weSym(4) 1,w(1) 2,w(2) 3,w(3) 4,w(4)

= @ A1w(1) © 2w(2) © 334,(3) © Aa.w(4)
weSym(4)

Definition
The tropical determinant is the multivariate homogeneous tropical
polynomial arising from Leibniz’ rule (ignoring the signs).
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Hungarian method (Kuhn 1955; Munkres 1957)
Input: matrix A € T"*"
Output: minimum weight maximal matching in B(A)
w0
repeat
U,, < nodes in [n] not covered by 1
W,, < nodes in [n'] not covered by 1
B,,  directed graph with node set [n] LI [n'],
edges with weights induced by A, directed from [n] to [n'],
except for those in u, which are reversed and
get negated weights
if there is a path from U, to W, in B, then
7 < edge set of shortest one among these
b pu AT

until there is no path from U, to W,
return u

overall cost: O(n3)
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Tropical eigenvalues

Let D = (djj) be a nxn-matrix with coefficients in the tropical semiring T.
Definition
A vector x € T" \ {00} is a tropical eigenvector for D with respect to the
tropical eigenvalue A € R if

Dox = AoOx .

If x is a tropical eigenvector with respect to the tropical eigenvalue X\ then
this definition amounts to requiring

(du10x1) @ (dy2Ox0) @+ B (dun©Oxp) = AOx, forallue[n] . (3)
This yields as a consequence A + x, < d, , + x, and thus

Xy —Xy < dyy—A forallu,veln . (4)
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Cycle means

For a directed path m = ((uo, u1), ..., (uk—1,ux)) in [ =T (D), i.e, for

duguys - -+ » du,_qu, finite, the number
1
C(ﬂ-) = ;(dUOU]_ + + dukfluk)

is the mean weight of 7.

If 7 is a cycle, i.e., for up = uy, then c(m) is also called the cycle mean
of 7.

Lemma

Let \ be a tropical eigenvalue of D, and let { be a cycle in (D).
Then we have X < c(().
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Minimum cycle mean

The minimum cycle mean of I = T(D) is

A(D) := min{c(¢)| ¢ directed cycle in T} . (5)

» A(D) > 0 if and only if “weighted digraph polyhedron” Q(D) is not
empty
» A(A) = o0 if T is acyclic

Now let [ be strongly connected.

Proposition
If \(D) = 0 then each column of D* which is contained in a zero weight
cycle is a tropical eigenvector of D for the tropical eigenvalue zero.

Theorem
The minimum cycle mean A\(D) is the only tropical eigenvalue of D.
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