WS 2006/2007 07.12.2006

Algorithmische Geometrie

6. Übung

Gruppenübungen

Aufgabe G15 Zeigen Sie, wie der Divide-and-Conquer-Algorithmus zur ebenen konevexen Hülle genutzt werden kann, um die Fläche eines durch Ecken gegebenen Polygons zu bestimmen.

Aufgabe G16 Es sei

$$P = \text{conv}\{v^{(1)}, \dots, v^{(m)}\} = H_1^+ \cap \dots \cap H_l^+ \subseteq \mathbb{R}^n$$

ein n-Polytop in doppelter Beschreibung mit paarweise verschiedenen Halbräumen H_1^+, \ldots, H_l^+ . Ferner sei $V_i := \{v^{(j)} \in H_i : 1 \le j \le m\}$. Zeigen Sie, dass H_i^+ genau dann redundant ist, wenn ein $k \in \{1, \ldots, l\}$ existiert mit $V_i \subsetneq V_k$.

Hausübungen

Aufgabe H10 Wie kann der Algorithmus Divide-and-Conquer modifiziert werden, um auch die konvexe Hülle von Punkten zu berechnen, die nicht in allgemeiner Lage sind?

Aufgabe H11 Sei (V, \mathcal{H}) doppelte Beschreibung eines (n+1)-Polytops P, und sei π : $\mathbb{R}^{n+1} \to \mathbb{R}^n$ die lineare Projektion auf die ersten n Koordinaten. Aus der Vorlesung ist bekannt, dass das Bild $\pi(P)$ wieder ein Polytop ist. Geben Sie eine doppelte Beschreibung von $\pi(P)$ an.