

WS 2006/2007 30.11.2006

Algorithmische Geometrie

5. Übung

Gruppenübungen

Definition: Zu einer gegebenen Anordnung der Ecken v_1, \ldots, v_k eines Polytops P und einer gegebenen Anordung der Facetten F_1, \ldots, F_l kann man eine *Inzidenzmatrix* $I \in \mathbb{R}^{k \times l}$ definieren, deren Koeffizienten an der Stelle (i, j) jeweils 1 oder 0 sind, je nachdem, ob die Ecke v_i in der Facette F_j liegt oder nicht.

Aufgabe G13 Zeigen Sie, dass zwei Polytope genau dann kombinatorisch äquivalent sind, wenn es Anordnungen ihrer Ecken und Facetten gibt, so dass die zugehörigen Inzidenzmatrizen gleich sind.

Aufgabe G14 Sei $P = \bigcap_{i=1}^m H_i^+$ in \mathcal{H} -Beschreibung gegeben.

- (a) Konstruieren Sie ein lineares Programm, mittels dessen Sie eine affine Hyperebene angeben können, die P enthält, bzw. mittels dessen Sie entscheiden können, das eine solche Hyperebene nicht existiert.
- (b) Geben Sie ein Verfahren an, um die Dimension von P zu bestimmen.

Hausübungen

Definition: Ein Polytop heißt kubisch, falls alle seine echten Seiten kombinatorisch äquivalent zu Würfeln sind.

Aufgabe H7 Zeigen Sie, dass für den f-Vektor eines kubischen Polytops gilt

$$f_1 + 2f_2 + 2^2 f_3 + \dots + 2^{n-2} f_{n-1} \le \binom{f_0}{2}$$
.

Aufgabe H8 Sei $P = \bigcap_{i=1}^{m} H_i^+$ in \mathcal{H} -Beschreibung gegeben. Geben Sie ein Verfahren an, um den Linealitätsraum von P zu bestimmen.

Aufgabe H9 Gegeben seien zwei \mathcal{V} -Polytope

$$P = \text{conv}\{p^{(1)}, \dots, p^{(m)}\}$$
 und $Q = \text{conv}\{q^{(1)}, \dots, q^{(r)}\}$

im \mathbb{R}^n . Formulieren Sie das Problem, eine P und Q trennende Hyperebene zu bestimmen, bzw. zu entscheiden, ob eine solche Hyperebene existiert, als lineares Programm.