polymake 2.12 (and beyond)
GTS 2012

Michael Joswig
w/ Ewgenij Gawrilow and many others

TU Darmstadt

Chapel Hill, June 19, 2012
The polymake System

- software for research in:
 - geometric combinatorics: convex polytopes
 - algebraic geometry
 - linear/combinatorial optimization
 - ...

- open source, GNU Public License
 - supported platforms: Linux, FreeBSD, MacOS X
 - more than 100,000 uloc (Perl, C++, C, Java)

- co-authored (since 1996) w/ Ewgenij Gawrilow [now TomTom]
 - contributions by many people

www.polymake.org
convex polytopes, polyhedra and fans
 - convex hulls: cdd, lrs, beneath-and-beyond
 - Voronoi diagrams, Delone decompositions
 - face lattices: Kaibel–Pfetsch (including variations)
 - lattice polytopes/toric varieties

simplicial complexes
 - simplicial (co-)homology, cup- and cap-products
 - Björner–Lutz heuristics to recognize spheres

tropical geometry
 - tropical polytopes
 - tropical hypersurfaces

graphs, matroids, ...
Algorithm Overview (Selection)

- convex polytopes, polyhedra and fans
 - convex hulls: cdd, lrs, beneath-and-beyond
 - Voronoi diagrams, Delone decompositions
 - face lattices: Kaibel–Pfetsch (including variations)
 - lattice polytopes/toric varieties

- simplicial complexes
 - simplicial (co-)homology, cup- and cap-products
 - Björner–Lutz heuristics to recognize spheres

- tropical geometry
 - tropical polytopes
 - tropical hypersurfaces

- graphs, matroids, ...
Algorithm Overview (Selection)

- convex polytopes, polyhedra and fans
 - convex hulls: cdd, lrs, beneath-and-beyond
 - Voronoi diagrams, Delone decompositions
 - face lattices: Kaibel–Pfetsch (including variations)
 - lattice polytopes/toric varieties
- simplicial complexes
 - simplicial (co-)homology, cup- and cap-products
 - Björner–Lutz heuristics to recognize spheres
- tropical geometry
 - tropical polytopes
 - tropical hypersurfaces
- graphs, matroids, ...
convex polytopes, polyhedra and fans
- convex hulls: cdd, lrs, beneath-and-beyond
- Voronoi diagrams, Delone decompositions
- face lattices: Kaibel–Pfetsch (including variations)
- lattice polytopes/toric varieties

simplicial complexes
- simplicial (co-)homology, cup- and cap-products
- Björner–Lutz heuristics to recognize spheres

tropical geometry
- tropical polytopes
- tropical hypersurfaces

graphs, matroids, ...
switch to “first steps” of demo
Technical Aspects

- Hybrid design: Perl (interpreted) and C++ (compiled)
 - Perl: Server side (= organization/communication)
 - C++: Client side (= computation)
- Shell type user interface
 - (extension of) Perl as language
- Technical features include:
 - C++ template library
 - extends STL, based on template meta-programming
 - shared memory communication between client/server, transaction safe
 - whole system can be used as a C++ library (since 2.12)
- prototype: pypolymake [Burcin Erocal]
- interfaces to polymake in the making:
 - Singular, GAP, Sage
Objects and Properties

- hierarchy of **big object types** (modelling mathematical concepts)
 - e.g., polytopes, simplicial complexes, graphs, . . .
 - under control of client/server system
 - with templates

- **properties** as class members (functions or data)
 - strongly typed
 - a type is a built-in Perl type, a C++ class type, or a big object type
 - immutable

- new big object types and properties to a given big object type *can be added at will*

- big object types grouped into **applications** (≈ name spaces)
switch back to demo