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polymake Overview
most recent version 3.2 of January 2018

I software for research in mathematics
I geometric combinatorics: convex polytopes, matroids, . . .
I linear/combinatorial optimization
I toric/tropical geometry
I combinatorial topology

I open source, GNU Public License
I supported platforms: Linux, FreeBSD, MacOS X
I about 150,000 uloc (C++, Perl, C, Java)
I interfaces to many other software systems

I co-authored (since 1996) w/ Ewgenij Gawrilow
I contributions by Benjamin Assarf, Simon Hampe, Katrin Herr,

Silke Horn, Lars Kastner, Georg Loho, Benjamin Lorenz,
Andreas Paffenholz, Julian Pfeifle, Thomas Rehn, Olivia
Röhrig, Thilo Rörig, Benjamin Schröter, André Wagner and
others

www.polymake.org

www.polymake.org


The Basic Definition

A (convex) polytope is the convex hull of finitely many points (in
Rd).

I = intersection of finitely many
closed halfspaces (if bounded)

I = set of feasible points of a
linear program (if bounded for
all choices of linear objective
functions)

I conversion from points to inqualities (or vice versa)
conceptually simple but still has its challenges
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Example: Knapsack Problem

max
d∑

i=1

uixi

s.t.
d∑

i=1

wixi ≤ b

xi ∈ N for all i ∈ [d ]

I d = # items

I ui = utility of item i

I wi = weight of item i

I b = total weight bound
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Algorithm Overview (Selection)

I convex polytopes, polyhedra and fans
I convex hulls: cdd, lrs, normaliz, ppl, beneath-and-beyond
I Voronoi diagrams, Delone decompositions
I Hasse diagrams of face lattices
I  lattice polytopes/toric varieties

I optimization

I simplicial complexes
I tropical geometry

I tropical hypersurfaces
I tropical polytopes

I graphs, matroids, permutation groups, . . .



Example: Max-Cut

I combinatorial optimization problem on Γ = (V ,E ) finite graph

max
∑

s∈S, t∈T , {s,t}∈E

w(s, t)

◦ maximum over all
partitions S t T = V

◦ w = weight function on
E

◦ each cut S t T gives rise
to subset of E , which
can be encoded by its
characteristic vector
I  0/1-polytope

I goal: determine facets of the cut polytopes

Barahona & al. 1988; Avis, Imai & Ito 2008; Bonato & al. 2014;
. . .
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Facets of Cut Polytopes
variable dimension

. . .

length k
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bb
cdd
lrs
nmz6
ppl

I d = k + 6

I n = 2k+5 = # cuts
I m = 2d + 8 =

2k + 20
I Barahona 1983:

facets known if
no K5-minor



Knapsack Integer Hulls
fixed dimension, variable right hand side

a1 = 2, a2 = 3, ai = ai−2 + ai−1
Fd(b) = {x ∈ Rd

≥0 | a>x ≤ b}
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I d = 5

I n = 1366, 3173,
6509, 12182,
21245, 35025,
55157

I m = 12, 15, 12, 12,
8, 13, 15



Voronoi Diagrams of Random Points in a Box
variable dimension, variable number of points
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Some Rules of Thumb

1. If you do not know anything about your input, try double
description.
I cdd, ppl, nmz

2. Do use double description for computing the facets of
0/1-polytopes.
I cdd, ppl

3. On random input beneath-and-beyond often behaves very
well.
I bb

4. Use reverse search for partial information and non-degenerate
input.
I lrs
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