
Parabolic Problems for the Anderson Model

II. Structure of High Peaks and Lifshitz Tails

�

J. G�artner

1

and S.A. Molchanov

2

1

Technische Universit�at, FB Mathematik, Str. des 17. Juni 136, D-10623 Berlin, Germany

2

Department of Mathematics, University of North Carolina, Charlotte, NC 28223-9998

November 15, 1996

Summary. This is a continuation of our previous work [9] on the investigation

of intermittency for the parabolic equation (@=@t)u = Hu on R

+

� Z

d

associa-

ted with the Anderson Hamiltonian H = �� + �(�) for homogeneous random

potentials �(�). For the Cauchy problem with nonnegative homogeneous initial

condition we study the second order asymptotics of the statistical moments

hu(t; 0)

p

i and the almost sure growth of u(t; 0) as t!1. We also deal with the

Lifshitz tails of the spectral distribution function (`integrated density of states')

of H. Here we mainly treat the important case of i.i.d. potentials and discuss

the crucial role of double exponential tails of �(0) for the formation of high

intermittent peaks of the solution u(t; �) with asymptotically �nite size. The

challenging motivation for this paper was to achieve a better understanding of

the geometric structure of such high exceedances which in one or another sense

provide the main contribution to the solution. This is essential for di�erent

asymptotic problems related to the parabolic Anderson model. The behavior of

the moments and the Lifshitz tails is also studied for correlated potentials.
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Introduction

This paper is a natural continuation of our article [9]. The subject is the same,

asymptotic analysis as t ! 1 of the parabolic Anderson problem with homo-

geneous random potential �(�):

@u

@t

= ��u+ �(x)u; (t; x) 2 R

+

� Z

d

;

u(0; x) � 1:

In [9] we used rather `soft' qualitative arguments to prove intermittency for

the solution u under minimal conditions on the potential �(�). For a general

discussion of intermittency and further references see the lectures [11].

Roughly speaking, intermittency means that, in contrast with homogeniza-

tion, the spatial structure of u(t; �) is highly irregular for large t. In one or

another sense the essential part of the solution is believed to consist of islands

of high peaks which are located far from each other. If this picture is true, then

the sizes of these islands as well as the heights and shapes of the corresponding

peaks will be crucial for di�erent asymptotic questions related to our Anderson

problem. A detailed understanding of the geometric structure of intermittent

solutions will therefore be extremely useful.

The challenging stimulus for the present paper was the question about the

asymptotic size of the mentioned islands of high exceedances and its implica-

tions for di�erent asymptotic problems. But, instead of directly investigating

the spatial structure of u(t; �), we will study the second order asymptotics of

the moments hu(t; x)

p

i, p = 1; 2; : : : , and the almost sure growth of u(t; x) as

t ! 1 for �xed x. We will also consider the Lifshitz tails of the spectral dis-

tribution function (`integrated density of states') associated with the Anderson

Hamiltonian

H = ��+ �(�):

In the larger part of the paper we will restrict ourselves to the important case

(especially popular in the theory of random operators) when the potential �(�)

consists of independent, identically distributed random variables unbounded
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from above. In this case the solution u(t; �) is known to develop an intermittent

behavior as t!1, see [9]. Implicitly, our results and their proofs will allow a

rather detailed insight into the geometry of the peaks.

In the i.i.d. case, a crucial role is played by double exponential tails with

parameter %, 0 < % <1:

Prob(�(0) > r) = expf�e

r=%

g; r !1:

Such tail behavior leads to islands of asymptotically �nite size. In the case of

`heavier' tails (corresponding to % =1 and including Gaussian potentials) the

islands consist of isolated single lattice sites. On the other hand, for `almost

bounded' potentials (with faster decaying tails corresponding to % = 0) the

optimal peaks form very large 
at islands. Qualitatively, the last situation is

similar to the picture presented by A.-S. Sznitman in a series of papers on

Brownian motion in a Poissonian environment, see e.g. [13] and [14].

In Section 1 we will prove that

hu(t; 0)

p

i = exp

n

H(pt)� 2d��(

%

�

)pt+ o(t)

o

(0.1)

as t!1, where H is the cumulant generating function of �(0) and

e

H(pt)

:=

D

e

pt�(0)

E

is supposed to be �nite for t � 0. The last condition guarantees the existence of

all statistical moments of the (homogeneous and ergodic) solution u(t; �). The

shapes of the high exceedances of the solution determine the function � which

may be expressed in terms of a variational problem. We will see that �(0) = 0,

0 < �(%) < 1 for 0 < % < 1, and �(1) = 1. In the case when % = 1, the

factor expf�2d�ptg in (0.1) may be easily explained by use of the Feynman-Kac

formula

u(t; 0) = E

0

exp

�

Z

t

0

�(x(s)) ds

�

; (0.2)

where x(t) is simple random walk on Z

d

with generator ��. Namely, this factor

will appear if the random walk is forced to stay at 0 until time t. Indeed,

u(t; 0) � E

0

exp

�

Z

t

0

�(x(s)) ds

�

1l(x(s) = 0 for s 2 [0; t])

= e

t�(0)

P

0

(x(s) = 0 for s 2 [0; t])

= e

t�(0)�2d�t

;

and therefore

hu(t; 0)

p

i � e

H(pt)�2d�pt

:

Hence, in this case the random walk prefers to stay at one and the same lattice

site for almost all the time. This makes it plausible that for % =1 the islands
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of high exceedances consist of single lattice sites and that in general �(%=�) is

closely related to the size of these islands. In fact, the solution to the mentio-

ned variational problem, which is given by a nonlinear di�erence equation, is

expected to determine the nonrandom shape of the relevant peaks. Note also

that the simple universal bounds

e

H(pt)�2d�pt

� hu(t; 0)

p

i � e

H(pt)

are valid for arbitrary homogeneous potentials �(�) with �nite cumulant gene-

rating function H, see [9] for a proof of the upper bound.

In Section 2 we will show under reasonable regularity assumptions that

u(t; 0) = exp

n

t (d log t)� 2d��(

%

�

)t+ o(t)

o

(0.3)

as t!1 for almost all realizations of the random potential �(�). Thereby the

function  is again fully determined by the tail behavior of the distribution of

�(0). In fact,  (d log t) describes the almost sure asymptotics of the maximum of

the potential �(�) in a ball of radius t as t!1. Note that for unbounded from

above potentials the moments hu(t; 0)

p

i grow much faster then the solution

u(t; 0) itself, which is one more manifestation of intermittency. Hence, the

leading terms in the asymptotic formulas (0.1) and (0.3) are totally di�erent.

But the second order correction terms, which contain the essential information

about the geometry of the relevant peaks, coincide. This means that in both

cases the advantageous peaks have the same shape but di�erent heights. This

coincidence is closely related to the special properties of the double exponential

distribution and will be explained below.

In Section 3 we will prove under certain restrictions that the tail

�

N(�) =

1�N(�) of the spectral distribution function N of the Anderson Hamiltonian

H satis�es

log

�

N(�) � log

�

F

�

�+ 2d��(

%

�

)

�

as � ! 1, where

�

F (�) := Prob(�(0) > �). Here again the correction term

2d��(%=�) appears. For general background information on Lifshitz tails we

refer to Pastur and Figotin [12].

Section 4 contains an alternative proof of (0.1) for 0 < % <1 which makes

the role of the geometry of high peaks more transparent. After that our results

for the moments and the Lifshitz tails will be generalized to a large class of

correlated potentials �(�). In such generality, the proofs are more involved and

rely on a large part on the ideas and results of the previous sections. We do not

intend to treat the general case from the very beginning, since this would have

made it more di�cult for the reader to extract the basic ideas and techniques.

Conceptionally our results are closely related to the spectral analysis of the

Anderson Hamiltonian H. According to localization theory (see e.g. Aizenman

and Molchanov [1]), the upper part of the spectrum of H in l

2

(Z

d

) consists of

a complete system of exponentially localized (random) eigenfunctions e

n

corre-

sponding to (non-isolated) eigenvalues �

n

. Hence, one may try to expand the
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solution u(t; �) of our Cauchy problem in a Fourier series with respect to these

eigenfunctions:

u(t; �) =

X

n

e

�

n

t

(e

n

; 1l)e

n

(�):

This suggests the following general picture known in the physics literature, see

e.g. Lifshitz, Gredescul, and Pastur [10]:

(i) The main contribution to the solution u(t; �) and its statistical moments

is given by local maxima of the potential �(�) of height comparable with

the asymptotic formulas (0.1) and (0.3), respectively.

(ii) The main contribution to the Feynman-Kac representation (0.2) of the

solution is given by those trajectories of the random walk x(s), s 2 [0; t],

which spend the overwhelming time near these high exceedances of the

potential.

(iii) The eigenvalues responsible for the asymptotics of u(t; 0) and hu(t; 0)

p

i are

`generated' by these local maxima, and the corresponding eigenfunctions

are localized nearby and produce the high peaks of the solution u(t; �).

Since the relevant maxima are separated from each other by a huge di-

stance, these eigenfunctions may be considered as ground states corre-

sponding to such peaks (`potential wells'). Of course, the eigenfunctions

are not strictly positive, but their negative parts (caused by interaction

between distinct maxima) are very small and may be evaluated by means

of an appropriate cluster expansion.

Let us now explain how and why the double exponential tails enter this

picture in the i.i.d. case. The fundamental property of the double exponential

distribution is that

Prob (�(x) > h+ '(x), jxj � R) = exp

8

<

:

�e

h=%

X

jxj�R

e

'(x)=%

9

=

;

:

This means that, independent of their common height h, two local peaks of the

potential of the form h+'(�) and h+ ~'(�) occur with the same frequency if and

only if

X

jxj�R

e

'(x)=%

=

X

jxj�R

e

~'(x)=%

:

Because of the above spectral theoretical considerations, we conclude from this

that, both for u(t; 0) and hu(t; 0)

p

i, the shape '(�) of the typical peaks (normali-

zed by

P

x

e

'(x)=%

= 1) maximizes the principle eigenvalue �( ~') of the operator

��+ ~'(�) among all shapes ~'(�) with

X

x

e

~'(x)=%

= 1: (0.4)
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The corresponding positive eigenfunction describes the shape of the advanta-

geous peaks of the solution u(t; �) near the relevant local maxima of the potential.

We will see in Section 2 that under the constraint (0.4) the maximum of �( ~')

coincides with the term �2d��(%=�) in (0.1) and (0.3). For technical reasons, in

Section 1 we will describe � by means of a di�erent, but equivalent, variational

problem. For % ! 1, the shapes ~'(�) in (0.4) become more and more �-like.

But for '(0) = 0 and '(x) = �1, x 6= 0, the principle eigenvalue �(') equals

�2d� in accordance with �(1) = 1. If % ! 0, then ~'(�) becomes more and

more 
at. But �(') = 0 for ' � 0, which makes it plausible that �(0) = 0.

1. Asymptotics of the statistical moments

1.1. Statement of the result

This section deals with the random Cauchy problem

@u(t; x)

@t

= ��u(t; x) + �(x)u(t; x); (t; x) 2 R

+

� Z

d

;

u(0; x) = u

0

(x); x 2 Z

d

;

(1.1)

for the Anderson tight binding Hamiltonian

H := ��+ �(�):

Thereby � denotes a positive di�usion constant and � is the lattice Laplacian:

�f(x) :=

X

y : jy�xj=1

[f(y)� f(x)] ; x 2 Z

d

:

The potential �(�) and the nonnegative initial datum u

0

(�) are random �elds on

a joint probability space. The underlying probability measure and expectation

will be denoted by Prob(�) and h�i, respectively.

We will assume throughout that the �eld �(�) consists of independent, iden-

tically distributed random variables whose cumulant generating function H is

�nite on the positive half-axis:

H(t) := log

D

e

t�(0)

E

<1 for t � 0.

The �eld u

0

(�) is supposed to be nonnegative, homogeneous, and independent

of �(�). We further require that

0 < hu

0

(0)

p

i <1 for p = 1; 2; : : : (1.2)

The above assumptions guarantee that a.s. the Cauchy problem (1.1) ad-

mits a unique nonnegative solution u. For each t � 0, u(t; �) is a spatially

homogeneous random �eld, and

0 < hu(t; x)

p

i <1 for p = 1; 2; : : : and (t; x) 2 R

+

� Z

d

.
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If, in addition, u

0

(�) is ergodic, then u(t; �) is also ergodic for all t. For details

see [9], Sections 2 and 3.

The objective of this section is to study the asymptotic behavior of the

moments hu(t; x)

p

i, p = 1; 2; : : : , as t ! 1 under the following regularity

assumption on the cumulant generating function H.

Assumption (H). There exists %, 0 � % � 1, such that

lim

t!1

H(ct)� cH(t)

t

= %c log c (1.3)

for all c 2 (0; 1).

In order to explain the meaning of this assumption let us consider the case

when the potential is double exponentially distributed with parameter %, 0 <

% <1:

Prob(�(0) > r) = expf�e

r=%

g; r 2 R:

ThenH(t) = log �(%t+1) = %t log(%t)�%t+o(t), and (1.3) is ful�lled. Therefore,

roughly speaking, for 0 < % <1, Assumption (H) tells us that the upper tail of

the distribution of �(0) behaves like that of a double exponential distribution. In

the case % =1 the tail is `heavier', i.e. we are `beyond' the double exponential

situation. Finally, % = 0 means that the tail decays faster than in the double

exponential case, and we will say that the potential �(�) is `almost bounded.'

Remark 1.1. a) If 0 � % < 1, then Assumption (H) says that the function

expfH(t)=tg is regularly varying with exponent %.

b) If 0 � % < 1, then the convergence in (1.3) is uniform on [0; 1]. For

% = 1, the convergence to �1 is uniform on each compact subset of (0; 1).

This follows from the observation that the function on the left of (1.3) is convex

in c.

By P(Z) we will denote the space of probability measures on Z. We next

introduce the Donsker-Varadhan functional S : P(Z) ! R

+

and the entropy

functional I : P(Z)! R

+

de�ned by

S(p) :=

X

x2Z

�

p

p(x+ 1)�

p

p(x)

�

2

; p 2 P(Z);

and

I(p) := �

X

x2Z

p(x) log p(x); p 2 P(Z);

respectively. Our result will be described in terms of the cumulant generating

function H and the function

�(%) :=

1

2

inf

p2P(Z)

[S(p) + %I(p)] ; 0 � % <1: (1.4)

One easily checks that � is strictly increasing and concave and 0 � � < 1.

Moreover, �(0) = 0 and lim

%!1

�(%) = 1. Set �(1) := 1.

We are now ready to state the main result of this section.
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Theorem 1.2. Let Assumption (H) be satis�ed. Then

hu(t; 0)

p

i = exp

n

H(pt)� 2d��(

%

�

)pt+ o(t)

o

(1.5)

as t!1 for p = 1; 2; : : :

Remark 1.3. a) It will become obvious from the proof that the same asymptotics

holds true for hu(t; x

1

) : : : u(t; x

p

)i, x

1

; : : : ; x

p

2 Z

d

, as well as for the moments

of the fundamental solution q(t; x; y) of our Cauchy problem. One only has to

check that the large deviation principles of Lemma 1.5 below are also valid for

the correspondingly modi�ed measures.

b) As explained in the Introduction, the asymptotics (1.5) allows the follo-

wing interpretation. For 0 < % < 1, the main contribution to the statistical

moments is given by high peaks of the solution u(t; �) which form islands of

asymptotically bounded size and unboundedly increasing distance. In the case

% = 1, these islands consist of isolated single lattice sites, whereas for % = 0

the sizes of the islands grow unboundedly as t!1.

c) For 0 < % < 1, the in�mum in (1.4) is attained. A probability measure

on Z is a solution to this variational problem if and only if it is of the form

const v

2

%

, where v

%

is a nonnegative solution of the nonlinear di�erence equation

�v

%

+ 2%v

%

log v

%

= 0 on Z (1.6)

with minimal l

2

-norm kv

%

k

2

. Moreover,

�(%) = % log kv

%

k

2

:

For su�ciently large %, the minimal l

2

-solution of (1.6) is unique modulo shifts.

For small % this is an open problem. As % # 0,

�(%) =

%

4

log

1

%

+ O(%)

and v

%

has an asymptotically Gaussian shape of width 1=

p

%. The proof of these

facts may be found in the forthcoming paper [8]. Note also that a similar pro-

blem occurs in Bolthausen and Schmock [2] in connection with the investigation

of self-attracting random walks. Let us further remark that, for 0 < % < 1,

the term 2d��(%=�) in the expansion (1.5) is concave and strictly increasing as

a function of the di�usion constant �. This is obvious from (1.4).

d) A deeper analysis in the spirit of the almost sure considerations in Sec-

tion 2 indicates that the typical shapes of the above mentioned high peaks of

our solution are (time-dependent) multiples of v

%=�


 � � � 
 v

%=�

. See also the

discussion at the end of Section 4.1.

To prove Theorem 1.2 we �rst remark that the logarithmic asymptotics of

the moments hu(t; 0)

p

i is independent of the particular choice of the initial �eld
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u

0

(�). Under our general assumptions on the random �elds �(�) and u

0

(�), we

have

hu

0

(0)i

p

�

hu(t; 0)

p

i

hu(t; 0)

p

i

� hu

0

(0)

p

i;

where u is the solution to our Cauchy problem with initial datum identically

one, see e.g. step 2 in the proof of Theorem 3.2 in [9]. We will therefore assume

from now on that u

0

is identically one.

As a next step towards the proof of Theorem 1.2, we will express the moments

of u(t; 0) by means of local times of random walks on Z

d

. To this end, we exploit

the Feynman-Kac representation

u(t; x) = E

x

exp

�

Z

t

0

�(x(s)) ds

�

; (1.7)

where (x(t);P

x

) denotes simple symmetric random walk on Z

d

with generator

�� and E

x

stands for expectation with respect to P

x

. Let p 2 N be �xed

until the end of the proof. Consider p independent copies x

1

(t); : : : ; x

p

(t) of the

random walk x(t), and denote by P

p

0

and E

p

0

probability and expectation given

x

1

(0) = � � � = x

p

(0) = 0, respectively. Let

l

t;i

(z) :=

Z

t

0

1l (x

i

(s) = z) ds

be the local time of the i-th random walk spent at z 2 Z

d

during the time

interval [0; t], and introduce the total local time

l

t

(z) :=

p

X

i=1

l

t;i

(z):

It then follows from (1.7) that

u(t; 0)

p

= E

p

0

exp

8

<

:

X

z2Z

d

l

t

(z)�(z)

9

=

;

:

Averaging over the random �eld �(�) leads to

hu(t; 0)

p

i = E

p

0

exp

(

X

z

H(l

t

(z))

)

: (1.8)

We next note that the occupation time measures

L

t

(�) :=

l

t

(�)

pt

satisfy the weak large deviation principle as t ! 1 with rate function being a

d-dimensional analogue of the Donsker-Varadhan functional S, cf. Donsker and
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Varadhan [5]. In the next subsection we will explain how to get appropriate

upper and lower bounds for the expectation on the right of (1.8) by `compac-

tifying' the state space of our random walks and then applying the full large

deviation principle for the corresponding occupation time measures. After that,

in Section 1.3, we will see how the variational expressions in these upper and

lower bounds �t together to arrive at (1.5).

1.2. Compacti�cation and application of large deviations

Given R 2 N , let T

d

R

:= f�R; : : : ; Rg

d

denote the centered lattice cube of length

2R+ 1. By introducing the periodic distance

d

�

R

(x; y) := min

z2(2R+1)Z

d

jx� y � zj; x; y 2 T

d

R

;

we may consider T

d

R

as d-dimensional lattice torus.

Let u

R;�

and u

R;0

denote the solutions to the initial boundary value problem

for the equation

@u

@t

= ��u+ �(x)u on R

+

� T

d

R

with periodic and zero boundary conditions, respectively, and initial datum

identically one. The following lemma enables us to reduce the study of the

moments to the consideration of a large �nite box T

d

R

. This has the advantage

that the probability laws of the associated occupation time measures live on the

compact state space P(T

d

R

).

Lemma 1.4. Let u be the solution to the Cauchy problem (1.1) with initial

datum u

0

� 1. Then




u

R;0

(t; 0)

p

�

� hu(t; 0)

p

i �




u

R;�

(t; 0)

p

�

(1.9)

for all R 2 N, t � 0, and p = 1; 2; : : :

The derivation of these bounds relies on probabilistic formulas for the moments

and only works for i.i.d. potentials. Rather than directly exploiting the bounds

(1.9), we will use later on the corresponding inequalities for their probabilistic

representations. But Lemma 1.4 explains the idea on a more analytic language.

Moreover, in Section 4.1 this simple lemma will be taken as starting point for a

totally di�erent proof of Theorem 1.2.

We consider the `periodized' local times

l

R

t

(z) :=

X

x2(2R+1)Z

d

l

t

(z + x); z 2 T

d

R

;

which may be regarded as total local times of p independent random walks on

T

d

R

with generator �� and periodic boundary conditions. Let

L

R

t

(�) :=

l

R

t

(�)

pt
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be the associated occupation time measures on T

d

R

. Let further �

p

R

denote the

�rst time when one of the random walks x

1

(t); : : : ; x

p

(t) exits T

d

R

.

We already know that the moments of the solution u to (1.1) with initial

datum u

0

� 1 admit the representation (1.8). In analogy with this, we �nd that




u

R;0

(t; 0)

p

�

= E

p

0

exp

8

<

:

X

z2T

d

R

H(l

t

(z))

9

=

;

1l (�

p

R

> t) (1.10)

and




u

R;�

(t; 0)

p

�

= E

p

0

exp

8

<

:

X

z2T

d

R

H(l

R

t

(z))

9

=

;

: (1.11)

Proof of Lemma 1.4. The lower bound for hu(t; 0)

p

i is obvious from (1.8) and

(1.10). Since the cumulant generating function H is convex and H(0) = 0, we

have

n

X

k=1

H(�

k

) � H

 

n

X

k=1

�

k

!

for all n 2 N and �

1

; : : : ; �

n

2 R

+

. Hence,

X

z2Z

d

H(l

t

(z)) �

X

z2T

d

R

H(l

R

t

(z)):

Using this, we obtain the upper bound for hu(t; 0)

p

i from the probabilistic re-

presentations (1.8) and (1.11). �

The main tools for deriving asymptotic formulas for the moments (1.10) and

(1.11) are large deviations for the occupation time measures of p independent

random walks on T

d

R

with zero and periodic boundary conditions (Lemma 1.5

below). That is, we will consider large deviations for the subprobability measu-

res

�

R;0

t

(B) := P

p

0

(L

t

(�) 2 B; �

p

R

> t)

and the probability measures

�

R;�

t

(B) := P

p

0

�

L

R

t

(�) 2 B

�

on P(T

d

R

). In this context, we need the Donsker-Varadhan functionals S

R;0

d

and

S

R;�

d

on P(T

d

R

) de�ned by

S

R;0

d

(p) :=

X

fx;yg�Z

d

jx�yj=1

�

p

p(x)�

p

p(y)

�

2

; p 2 P(T

d

R

);
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and

S

R;�

d

(p) :=

X

fx;yg�T

d

R

d

�

R

(x;y)=1

�

p

p(x)�

p

p(y)

�

2

; p 2 P(T

d

R

);

respectively, where, by convention, in the �rst formula p(x) := 0 for x =2 T

d

R

.

Note that these expressions coincide with the Dirichlet form at

p

p of the ope-

rator �� on l

2

(T

d

R

) with either zero or periodic boundary condition.

We intend to apply the following �nite dimensional large deviation results

which may be derived as particular cases from Donsker and Varadhan [4] or

G�artner [7].

Lemma 1.5. Given R 2 N, the following holds true as t!1.

a) The subprobability measures �

R;0

t

satisfy the full large deviation principle

with scale pt and rate function �S

R;0

d

.

b) The probability measures �

R;�

t

satisfy the full large deviation principle

with scale pt and rate function �S

R;�

d

.

Remark 1.6. Since the formulation of a large deviation principle for unnor-

malized measures may appear to be unconventional, let us remark that asser-

tion a) of Lemma 1.5 may be rephrased as follows. The probability measures

�

R;0

t

(�)=�

R;0

t

(T

d

R

) satisfy the full large deviation principle with scale pt and rate

function �S

R;0

d

�min(�S

R;0

d

) and

lim

t!1

1

pt

log�

R;0

t

(T

d

R

) = �min(�S

R;0

d

):

We are now in a position to derive the desired asymptotic formulas for

hu

R;0

(t; 0)

p

i and hu

R;�

(t; 0)

p

i. Passing from the description by local times to

the description by occupation time measures, we may rewrite (1.11) in the form




u

R;�

(t; 0)

p

�

= e

H(pt)

E

p

0

exp

8

<

:

pt

X

z2T

d

R

H(L

R

t

(z)pt)� L

R

t

(z)H(pt)

pt

9

=

;

:

(1.12)

Let us �rst consider the case when 0 � % < 1. Then Remark 1.1 b) to As-

sumption (H) implies that the expression under the last sum becomes uniformly

close to %L

R

t

(z) logL

R

t

(z) as t!1, and we arrive at




u

R;�

(t; 0)

p

�

= e

H(pt)+o(t)

E

p

0

exp

�

�pt%I

R

d

(L

R

t

(�))

	

; (1.13)

where I

R

d

is the entropy functional on P(T

d

R

):

I

R

d

(p) := �

X

z2T

d

R

p(z) log p(z); p 2 P(T

d

R

):
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We may now apply the Laplace-Varadhan method for the large deviation pro-

babilities of Lemma 1.5 b) to see that

E

p

0

exp

�

�pt%I

R

d

(L

R

t

(�))

	

= exp

n

�ptmin

h

�S

R;�

d

+ %I

R

d

i

+ o(t)

o

:

(1.14)

Combining (1.13) with (1.14), we arrive at assertion b) of the next lemma.

Lemma 1.7. Let Assumption (H) be satis�ed. Then the following holds true

as t!1 for arbitrary R 2 N and p = 1; 2; : : :

a) If 0 � % <1, then




u

R;0

(t; 0)

p

�

� exp

n

H(pt)� ptmin

h

�S

R;0

d

+ %I

R

d

i

+ o(t)

o

:

b) If 0 � % <1, then




u

R;�

(t; 0)

p

�

� exp

n

H(pt)� ptmin

h

�S

R;�

d

+ %I

R

d

i

+ o(t)

o

:

c) If % =1, then




u

R;0

(t; 0)

p

�

= exp fH(pt)� 2d�pt+ o(t)g ; (1.15)

and the same asymptotics is valid for hu

R;�

(t; 0)

p

i.

The proof of assertion a) follows the same lines as that of b). Instead of

(1.11) and Lemma 1.5 b), one has to use (1.10) and Lemma 1.5 a), respectively.

To prove assertion c) assume that % =1. The expression on the right of (1.15)

is a trivial lower bound for hu

R;0

(t; 0)

p

i which is obtained from (1.10) by forcing

all random walks x

1

(t); : : : ; x

p

(t) to stay at 0 during the whole time interval

[0; t]. In view of Lemma 1.4, it now only remains to show that the expression

on the right of (1.15) may also serve as an upper bound for hu

R;�

(t; 0)

p

i. From

(1.12) and Remark 1.1 b) we conclude that




u

R;�

(t; 0)

p

�

� e

H(pt)

h

P

p

0

�

L

R

t

(z) =2 ("; 1� ") for all z 2 T

d

R

�

+ o(e

�
t

)

i

for any " 2 (0; 1) and arbitrarily large 
. Here we have also used that the

expression under the sum on the right of (1.12) is always nonpositive. But the

large deviation principle for L

R

t

(�) (Lemma 1.5 b)) tells us that the probability

on the right behaves like

exp

n

� ptmin

�

�S

R

d

(p) : p(z) =2 ("; 1� ") for all z 2 T

d

R

	

+ o(t)

o

:

Since the minimum in the exponent tends to 2d� as "! 0, this yields the correct

upper bound.

A combination of Lemma 1.4 with Lemma 1.7 c) proves Theorem 1.2 in the

case when % =1. To complete the proof for 0 � % <1 one has to show that the
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minima in the exponents on the right of the assertions a) and b) of Lemma 1.7

converge to the same limit as R ! 1 and that this limit equals 2d��(%=�).

This �nal step will be carried out in the next subsection in Lemma 1.10.

1.3. Properties of associated variational problems

We �rst consider the d-dimensional Donsker-Varadhan functional S

d

and the

d-dimensional entropy functional I

d

de�ned by

S

d

(p) :=

X

fx;yg�Z

d

jx�yj=1

�

p

p(x)�

p

p(y)

�

2

; p 2 P(Z

d

);

and

I

d

(p) := �

X

x2Z

d

p(x) log p(x); p 2 P(Z

d

);

respectively. Note that S

1

and I

1

coincide, respectively, with the functionals S

and I introduced in Section 1.1.

We claim that our d-dimensional variational problems split into the sum of

d one-dimensional problems.

Lemma 1.8. For 0 � % <1,

inf [S

d

+ %I

d

] = d inf [S + %I] :

If 0 < % <1, then the in�mum on the left is attained at p 2 P(Z

d

) if and only

if p is a product measure,

p =

d

O

i=1

p

i

;

and the in�mum on the right is attained at all p

i

2 P(Z), i = 1; : : : ; d.

Proof. Given d � 1 and % with 0 � % <1, abbreviate

F

d

:= S

d

+ %I

d

:

We will show that

inf F

d+1

= inf F

d

+ inf F

1

: (1.16)

First observe that

S

d+1

(p

d


 p

1

) = S

d

(p

d

) + S

1

(p

1

) (1.17)

and

I

d+1

(p

d


 p

1

) = I

d

(p

d

) + I

1

(p

1

) (1.18)
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for all p

d

2 P(Z

d

) and p

1

2 P(Z). This implies that the expression on the left

of (1.16) does not exceed that on the right. To obtain the opposite inequality

�x p 2 P(Z

d+1

) arbitrarily. Denote by p

d

and p

1

the marginals of the �rst d

and the last component of p, respectively, and consider the conditional laws

p

d

(xjy) :=

p(x; y)

p

1

(y)

and p

1

(yjx) :=

p(x; y)

p

d

(x)

; (x; y) 2 Z

d

� Z:

Then

S

d+1

(p) =

X

y2Z

p

1

(y)S

d

(p

d

(� jy)) +

X

x2Z

d

p

d

(x)S

1

(p

1

(� jx))

and

I

d+1

(p) =

X

y2Z

p

1

(y)I

d

(p

d

(� jy)) +

X

x2Z

d

p

d

(x)I

1

(p

1

(� jx))

+

X

x2Z

d

2

4

X

y2Z

�

p

1

(y)p

d

(xjy) log p

d

(xjy)

�

� p

d

(x) log p

d

(x)

3

5

:

Since the function x logx, x � 0, is strictly convex, an application of Jensen's

inequality shows that the expression in the square brackets is nonnegative and

vanishes identically if and only if p = p

d


 p

1

. Hence,

F

d+1

(p) �

X

y2Z

p

1

(y)F

d

(p

d

(� jy)) +

X

x2Z

d

p

d

(x)F

1

(p

1

(� jx)): (1.19)

This yields the desired lower bound. Moreover, if 0 < % < 1, then in (1.19)

equality holds only if p = p

d


 p

1

. Together with (1.17) and (1.18), this shows

that the in�mum on the left of (1.16) is attained at p if and only if p has the

form p

d


 p

1

and the in�ma on the right are attained at p

d

and p

1

, respectively.

�

Remark 1.9. It is obvious from the above proof that assertions analogous to

Lemma 1.8 are valid for the functionals S

R;�

d

+ %I

R

d

and S

R;0

d

+ %I

R

d

considered

in Section 1.2.

Recall that the function � has been de�ned in (1.4). The next lemma �lls

the outstanding gap in the proof of Theorem 1.2.

Lemma 1.10. For 0 � % <1 and each R 2 N,

min

h

S

R;�

d

+ %I

R

d

i

� inf [S

d

+ %I

d

] � min

h

S

R;0

d

+ %I

R

d

i

:

(1.20)

Moreover,

lim

R!1

min

h

S

R;�

d

+ %I

R

d

i

= lim

R!1

min

h

S

R;0

d

+ %I

R

d

i

= inf [S

d

+ %I

d

] = 2d�(%): (1.21)
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Proof. Because of Lemma 1.8 and Remark 1.9, it will be enough to consider

the case d = 1. For convenience, we will suppress the dimension index in our

notation.

The right inequality in (1.20) is obvious. To derive the left inequality, we �x

p 2 P(Z) arbitrarily and consider the `periodized' measure

p

R

(z) :=

X

x2(2R+1)Z

p(z + x); z 2 T

R

:

It will then be enough to check that

S

R;�

(p

R

) � S(p) (1.22)

and

I

R

(p

R

) � I(p): (1.23)

As a consequence of the Cauchy-Schwarz inequality, we have

�

p

p

R

(y)�

p

p

R

(z)

�

2

�

X

x2(2R+1)Z

�

p

p(y + x)�

p

p(z + x)

�

2

for all y; z 2 T

R

. This yields (1.22). Inequality (1.23) follows from the fact that

the function '(x) := �x logx, x � 0, is concave and '(0) = 0 and therefore

'(p

R

(z)) �

X

x2(2R+1)Z

'(p(z + x))

for all z 2 T

R

.

To prove (1.21), let p 2 T

R

be a measure at which the minimum of S

R;�

+%I

R

is attained. Because of shift invariance, we may assume without loss of generality

that

p(�R) + p(R) �

2

2R+ 1

:

Then

S

R;0

(p)� S

R;�

(p) = 2

p

p(�R)

p

p(R) �

2

2R+ 1

:

This implies that

min

�

S

R;0

+ %I

R

�

�min

�

S

R;�

+ %I

R

�

�

2

2R+ 1

:

Together with (1.20), this proves the convergence relations in (1.21). For d = 1

the last equality on the right of (1.21)) is the de�nition of �. �
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2. Almost sure asymptotics

2.1. Statement of the result

In this section we will study the almost sure behavior of the solution u(t; x) to

our basic Cauchy problem (1.1) as t!1 for �xed x 2 Z

d

.

We will assume throughout that the potential �(�) consists of independent,

identically distributed random variables with continuous distribution function

F satisfying F (r) < 1 for all r (i.e. �(�) is unbounded from above a.s.). The

initial datum u

0

(�) is assumed to be nonnegative, a.s. not to vanish identically,

and to satisfy the growth condition

lim sup

jxj!1

log log

+

u

0

(x)

log jxj

< 1 a.s. (2.1)

where log

+

x := log(x _ e).

Let us introduce the non-decreasing function

'(r) := log

1

1� F (r)

; r 2 R;

and its left-continuous inverse

 (s) := minfr : '(r) � sg; s > 0:

Note that  is strictly increasing and '( (s)) = s for all s > 0. The function

 has been determined in such a way that the distribution of the �eld �(�)

coincides with that of  (�(�)), where �(�) is a �eld of independent, exponentially

distributed random variables with mean 1. Hence, we may and will assume

without loss of generality that �(�) =  (�(�)). This will allow us to study the

high peaks of �(�) by investigating those of the `standard' �eld �(�).

We next formulate our crucial restriction on the tail behavior of the distri-

bution function F .

Assumption (F). There exists %, 0 � % � 1, such that

lim

s!1

[ (cs)�  (s)] = % log c (2.2)

for all c 2 (0; 1). If % =1, then we demand in addition that

lim

s!1

[ (s+ log s)�  (s)] = 0: (2.3)

Roughly speaking, if 0 < % <1, then assumption (2.2) requires that the upper

tail of F behaves like that of a double exponential distribution with parameter

%. The case % = 0 is that of an `almost bounded' potential. If % = 1, then
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we are `beyond' the double exponential tails, and (2.3) mainly restricts the tails

to be not as `heavy' as for exponentially distributed variables. In particular,

problem (1.1) admits a unique nonnegative solution u, and this solution is given

by the Feynman-Kac formula

u(t; 0) = E

0

exp

�

Z

t

0

�(x(s)) ds

�

u

0

(x(t)); (2.4)

cf. [9], Sections 2 and 3. This sounds very similar to what was assumed in the

previous section. In fact, we will prove later (Lemma 2.3 below) that Assump-

tion (F) is slightly stronger than Assumption (H). The latter was imposed on

the cumulant generating function in Section 1.1.

Remark 2.1. The following assertions are easily veri�ed.

a) For 0 � % <1, (2.2) says that e

 

is regularly varying with exponent %.

b) Condition (2.3) is equivalent to

lim

s!1

[ (s+ c log s)�  (s)] = 0 for all c 2 R.

If 0 � % <1, then (2.3) follows from (2.2). As a consequence of (2.3),  (s) =

o(s= log s).

c) Assumption (F) implies that

lim

r!1

'(r + �)

'(r)

= e

�=%

for all � 2 R

(with the obvious de�nition of e

�=%

for % = 0 and % =1) and

'(r) + log'(r) � '(r + �)

for each � > 0 and all su�ciently large r. If F (r) is strictly increasing for large

r, then the converse is also true.

d) If 0 � % <1, then

 ('(r)) = r + o(1) as r !1.

The almost sure asymptotics of u(t; x) as t!1 will now be characterized in

terms of the function  and the function � which was introduced in Section 1.1

by means of the Donsker-Varadhan functional S and the entropy functional I.

Theorem 2.2. Let Assumption (F) be satis�ed. If d = 1, suppose in addition

that hlog(1 + �(0)

�

)i <1. Then almost surely

u(t; 0) = exp

n

 (d log t)t� 2d��(

%

�

)t+ o(t)

o

as t!1.

(2.5)
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The leading term in this asymptotic expansion is related to the maximum of the

potential �(�) along those paths of the random walk x(t) which give the main

contribution to the Feynman-Kac formula (2.4). As we will see,

max

jxj�t

�(x) =  (d log t) + o(1) a.s.

For `heavy' tails violating assumption (2.3), this non-random asymptotics breaks

down and the second order term in (2.5) is expected to be superimposed by

random 
uctuations.

Although the leading terms in the expansion of hu(t; 0)i and u(t; 0) are totally

di�erent, the second order terms coincide. As explained in the Introduction, this

comes from the fact that, in the double exponential case, the typical shapes of

high exceedances of �(�) which contribute to hu(t; 0)i and u(t; 0), respectively,

are the same independent of their di�erent height. Our proof also indicates the

following interpretation. Assume that 0 < % < 1 and that the minimal l

2

-

solution v

%

of equation (1.6) is unique modulo shifts. Let the initial total mass

P

u

0

(x) be �nite a.s. Then, as t!1, the main contribution to the total mass

of u(t; �) will be given by widely spaced high peaks the local shapes of which

consist of (time-dependent) multiples of v

%=�


 � � �
 v

%=�

. These peaks of u(t; �)

correspond to high exceedances of the potential �(�) of the form

 (d log t)� 2d��(%=�) + 2% log

�

v

%=�


 � � � 
 v

%=�

�

: (2.6)

The proof of Theorem 2.2 will be broken down into several steps. In the

Sections 2.2{2.4 we will collect all the ingredients necessary for the proof which

will then be �t together in Section 2.5.

We close this subsection by revealing the precise relationship between As-

sumption (F) and Assumption (H) from Section 1.1. As before, assume that

the distribution function F is continuous and F (r) < 1 for all r. Let H denote

the associated cumulant generating function.

Lemma 2.3. Assume that H(t) <1 for all t > 0 or, equivalently,  (s) = o(s)

as s!1.

a) If 0 � % <1, then the following two conditions are equivalent:

lim

s!1

[ (cs)�  (s)] = % log c for all c 2 (0; 1) (2.7)

and

lim

t!1

�

H(ct)

ct

�

H(t)

t

�

= % log c for all c 2 (0; 1). (2.8)

Moreover, either of them implies that

H(t)

t

=  (t) + % log %� %+ o(1) as t!1. (2.9)

b) Suppose that % = 1. Then assumption (2.7) implies (2.8). If  (s) is

continuously di�erentiable and  

0

(s) is strictly decreasing for large s, then (2.8)

also implies (2.7).
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Without additional regularity assumptions on  like that in assertion b), (2.7)

does not follow from (2.8) when % =1. To construct a counterexample consider

the discrete distribution function F with mass at e

n

and `Gaussian-like' tail

1� F (e

n

) = expf�e

2n

g, n 2 N .

Proof of Lemma 2.3. 1

0

Recall that �(0) =  (�(0)), where �(0) is exponentially

distributed with mean 1. Using this, we �nd that

e

H(t)

= t

Z

1

0

exp ft [ (ct)� c]g dc; t > 0:

An application of the Laplace method yields

sup

c>0

[ (ct)� c]�

1

t

�

H(t)

t

� sup

c>0

[ (ct)� �c] +

1

t

log

1

1� �

(2.10)

for � 2 (0; 1) and all t > 0. Indeed,

e

H(t)

� t

Z

�+

1

t

�

exp f[ (ct)� c]g dc � exp

�

t

�

 (�t)� � �

1

t

��

for all � > 0. This gives the lower bound for H(t)=t. On the other hand,

e

H(t)

= t

Z

1

0

exp ft [ (ct)� �c]g e

�(1��)tc

dc

�

1

1� �

exp

�

t sup

c>0

[ (ct)� �c]

�

for � 2 (0; 1). This is the upper bound.

We are now going to prove assertion a). It will be su�cient to verify that

both (2.7) and (2.8) imply (2.9).

2

0

We �rst show that (2.7) implies (2.9) for 0 � % <1. Since  is increasing,

it follows from (2.7) that

 (ct) =  (t) + [%+ o

u

(1)] log c+ ~o

u

(1);

where o

u

(1) and ~o

u

(1) tend to zero as t!1 uniformly in c > 0. Substituting

this in (2.10) and noting that sup

c>0

[% log c� c] = % log %� %, we obtain (2.9).

3

0

We next show that (2.8) implies (2.9) for 0 < % < 1. To this end, we

introduce the shifted distribution functions

F

t

(r) := F

�

H(t)

t

+ r

�

; r 2 R, t > 0.

Then

Z

e

�tr

F

t

(dr) = exp fH(�t)� �H(t)g ;
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and it follows from assumption (2.8) that

lim

t!1

1

t

log

Z

e

�tr

F

t

(dr) = %� log � =: G(�) for � > 0:

Since the function G is continuously di�erentiable on (0;1) and has in�nite

negative slope at 0, we conclude from this by a standard Cram�er argument that

the probability measures associated with F

t

on the (left-compacti�ed) space

[�1;1) satisfy the full large deviation principle with scale t and rate function

J being the Legendre transform of G:

J(�) = % exp

�

�

%

� 1

�

; � 2 [�1;1);

cf. e.g. Freidlin and Wentzell [6], Chap. 5. In particular,

1� F

�

H(t)

t

� % log %+ %

�

= exp f�(1 + o(1))tg ;

i.e.

'

�

H(t)

t

� % log %+ %

�

= (1 + o(1))t:

Using (2.8) once more, one easily derives from this assertion (2.9).

4

0

We now assume that (2.8) is ful�lled for % = 0. To avoid heavy notation

let us further assume that  is continuous and, hence, the supremum of  (ct)�c

is attained at some point c

t

> 0 for su�ciently large t. The modi�cations for

noncontinuous  will be obvious. Using (2.10), we �nd that, for � > 1 and

� 2 (0; 1),

H(�t)

�t

�

H(�t)

�t

� max

c>0

�

 (ct)�

c

�

�

�max

c>0

[ (ct)� c] + o(1)

�

�

1�

1

�

�

c

t

+ o(1):

Since, by assumption, the expression on the left tends to zero, we obtain c

t

! 0

as t!1. Using (2.10) once more, we conclude that

H(�t)

�t

� max

c>0

[ (ct)� c] + o(1) =  (c

t

t)� c

t

+ o(1)

�  (�t) + o(1)

for all � 2 (0; 1), i.e.

H(t)

t

�  (t) + o(1): (2.11)

On the other hand, for arbitrary � > 0,

H(t)

t

�  (�t)� � + o(1);
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i.e.

 (t) �

H(t=�)

t=�

+ � + o(1) =

H(t)

t

+ � + o(1);

and we arrive at the inequality opposite to (2.11). In this way we have shown

that (2.9) holds for % = 0.

5

0

We now turn to the proof of assertion b). Let us �rst show that (2.7)

implies (2.8) if % = 1. To this end �x 
 and � with 0 < 
 < � < 1 arbitrarily.

Then (2.10) implies that

H(t)

t

�

H(
�t)


�t

� sup

c>0

[ (ct)� c]� sup

c>0

[ (
ct)� c] + o(1):

It will therefore be enough to show that the expression on the right tends to

in�nity as t!1. Since (2.7) holds for % =1, both suprema on the right may

be taken over c � 1 only for large t. Hence, we may continue as follows:

= sup

c�1

[ (ct)� c]� sup

c�1

[ (
ct)� c] + o(1)

� inf

s�t

[ (s)�  (
s)] :

By assumption, the last expression tends to in�nity as t!1, and we are done.

6

0

It remains to consider the case when (2.8) is ful�lled for % = 1,  (s) is

continuously di�erentiable, and  

0

(s) is strictly decreasing for large s. We will

again exploit inequality (2.10). Since H(t)=t! 1, the supremum of  (ct)� c

is attained at some point c

t

(for large t) such that c

t

t!1. But

 

0

(c

t

t) =

1

t

;

and therefore our assumptions ensure that c

t

t varies continuously in t. We then

obtain for 0 < 
 < � < 1 the estimate

H(�t)

�t

�

H(
t)


t

� sup

c>0

[ (ct)� c]� sup

c>0

[ (
ct)� c] + o(1)

�  (c

t

t)�  (
c

t

t) + o(1):

By assumption, the expression on the left tends to in�nity as t!1. Therefore

 (c

t

t)�  (
c

t

t)!1 as t!1

for all 
 2 (0; 1). Hence, (2.7) is valid for % =1. �

2.2. Percolation bounds

In dimension d � 2, there is no need to impose any restrictions on the lower tail

of the distribution function F . As a consequence of a percolation e�ect, in the

Feynman-Kac representation (2.4) the random walk is able to bypass clusters
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of extremely negative peaks of the potential �(�). This subsection contains the

related notation and auxiliary results.

Given x 2 Z

d

and r � 0, let B

r

(x) := fy 2 Z

d

: jy � xj � rg denote the

closed ball in Z

d

with center x and radius r. Here and in the sequel j � j stands

for the lattice norm on Z

d

. We will abbreviate B

r

(0) by B

r

.

Given a natural number R, we will say that x; y 2 Z

d

are R-neighbors if

jx� yj � R. A subset W of Z

d

will be called R-connected if any two sites x; y

of W may be joined by a path x = z

0

! z

1

! � � � ! z

n

= y of R-neighbors

in W . The minimum of the lengths

P

jz

k

� z

k�1

j of all such paths will be

denoted by d

R

W

(x; y). Hence, d

R

W

(x; y) measures the distance of x and y inside

the R-connected set W . Each subset of Z

d

splits into R-connected components.

For each R 2 N , consider the random variables

�

R

(z) := min

x2B

R

(z)

�(x); z 2 (2R+ 1)Z

d

:

Note that �

R

(�) is a �eld of i.i.d. random variables on the sublattice (2R+1)Z

d

.

De�ne the level sets

A

+

�

(R) :=

�

z 2 (2R+ 1)Z

d

: �

R

(z) > �

	

; � 2 R:

Lemma 2.4. Suppose that d � 2. Then, for each R 2 N, one �nds a level

� = �

R

such that the following holds true.

a) A.s. there exists a unique in�nite (2R+1)-connected subsetW

+

=W

+

(R)

of A

+

�

(R), and Prob(0 2 W

+

) > 0.

b) There exists #

R

> 1 such that a.s.

lim sup

jyj!1;y2W

+

d

2R+1

W

+

(x; y)

jx� yj

� #

R

for all x 2W

+

.

Proof. This repeats the proof given in [9], Section 2.4, with the random �eld

�(�) on Z

d

replaced by �

R

(�) on the sublattice (2R+ 1)Z

d

. �

We will assume from now on that, for each R 2 N , a level � = �

R

has been

chosen as in Lemma 2.4 and the level set A

+

�

(R) and the in�nite percolation

cluster W

+

(R) are de�ned accordingly.

As before, let (x(t);P

x

) denote random walk on Z

d

with generator ��. By �

x

and �(r) we denote the �rst hitting times of the site x 2 Z

d

and the complement

of the ball B

r

, respectively.

Lemma 2.5. a) For arbitrary r > 0 and t > 0, we have

P

0

(�(r) � t) � 2

d+1

exp

n

�r log

r

d�t

+ r

o

:
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b) Suppose that d � 2. Fix R 2 N arbitrarily. Then there exists #

R

> 1 such

that for each t > 0 a.s.

E

0

exp

�

Z

�

x

0

�(x(s)) ds

�

1l (�

x

� t) � exp f�#

R

jxj log jxjg

(2.12)

and

E

x

exp

�

Z

�

0

0

�(x(s)) ds

�

1l (�

0

� t) � exp f�#

R

jxj log jxjg

(2.13)

for all su�ciently large x 2

S

z2W

+

(R)

B

R

(z). In dimension d = 1, cor-

responding estimates are valid a.s. for all su�ciently large jxj provided that

hlog(1 + �(0)

�

)i <1.

This is a slight modi�cation of Lemma 4.3 in [9]. The proof of part b) relies on

the percolation bound in Lemma 2.4 b).

2.3. High exceedances of the random potential

In this subsection we consider random �elds �(�) which satisfy Assumption (F)

for some % 2 [0;1]. We will show that almost surely as t ! 1 the high

exceedances of the �eld �(�) in the ball B

t

are of order  (d log t) and, for % 2

(0;1], form islands of bounded size which are separated from each other by an

arbitrarily large distance. After that we will prove that almost surely the set

of local peaks of the shifted potential �(�) �  (d log t) in B

t

is asymptotically

described by the class of pro�les h(�) for which

X

x

e

h(x)=%

� 1:

Our results will �rst be formulated for the �eld �(�) of independent, expo-

nentially distributed random variables with mean 1. As a corollary, we will then

obtain the corresponding statements for the transformed �eld �(�) =  (�(�)).

Let us begin with the almost sure behavior of the maxima of the �eld �(�).

Lemma 2.6. We have

lim sup

t!1

�

�

�

�

max

x2B

t

�(x)� log jB

t

j

�

�

�

�

log log jB

t

j

� 1 a.s.

The proof of this classical result will be given for the sake of completeness only.

Proof of Lemma 2.6. Fix � > 1 and an increasing sequence (t

n

) of positive

numbers so that jB

t

n

j � �

n

as n!1. Since

log jB

t

n+1

j � log jB

t

n

j = o(log log jB

t

n

j)
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and

log log jB

t

n+1

j � log log jB

t

n

j;

it will be enough to prove the statement for the sequence (t

n

) instead of t. For

each c > 1, we get

Prob

�

max

x2B

t

n

�(x) > log jB

t

n

j+ c log log jB

t

n

j

�

� jB

t

n

jProb (�(0) > log jB

t

n

j+ c log log jB

t

n

j)

=

1

(log jB

t

n

j)

c

�

1

(n log �)

c

and

Prob

�

max

x2B

t

n

�(x) < log jB

t

n

j � c log log jB

t

n

j

�

=

�

1�

(log jB

t

n

j)

c

jB

t

n

j

�

jB

t

n

j

� exp f�(log jB

t

n

j)

c

g

= exp f�(n log �)

c

(1 + o(1))g :

Hence, the probabilities on the left of both inequalities are summable over n for

c > 1, and our assertion follows by an application of the Borel-Cantelli lemma.

�

Taking into account Remark 2.1 b), we obtain the corresponding result for the

transformed �eld �(�).

Corollary 2.7. Let Assumption (F) be satis�ed. Then almost surely

max

x2B

t

�(x) =  (log jB

t

j) + o(1) as t!1.

Remark 2.8. Since jB

t

j behaves like (2t)

d

, we may replace in Lemma 2.6, and

therefore also in Corollary 2.7, log jB

t

j by d log t. Corollary 2.7 therefore explains

the appearance of the term  (d log t) in our considerations.

Given 
 > 0 and t > 0, consider the point process of high exceedances

~

E




t

:=

�

x 2 B

t

: �(x) > e

�


log jB

t

j

	

:

We next want to show that almost surely for large t the set

~

E




t

consists of islands

the size of which does not exceed e




. After that this result will be reformulated

in terms of the high exceedances of �(�).

Lemma 2.9. For each 
 > 0 and each natural number R, the following is true

almost surely. There exists a random time t

0

= t

0

(
;R; �(�)) > 0 such that for

t > t

0

each R-connected component of

~

E




t

consists of at most e




elements.
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Proof. Fix 
 > 0, R 2 N , and � > 1 arbitrarily. Consider an increasing sequence

(t

n

) such that jB

t

n

j � �

n

as n!1. Then

e

�


log jB

t

n+1

j = e

�
+o(1)

log jB

t

n

j; n!1:

Because of this it will su�ce to prove our lemma for the sequence (t

n

) instead

of t.

Fix a natural number m > e




arbitrarily and denote by A


;m

t

the event that

~

E




t

contains an R-connected subset ofm elements. By the Borel-Cantelli lemma

it will be enough to check that

X

n

Prob

�

A


;m

t

n

�

<1: (2.14)

There are at most C

m;R

jB

t

j R-connected subsets of B

t

consisting ofm elements,

where C

m;R

is a positive constant which depends on m and R only. For each of

these sets the probability to be contained in

~

E




t

equals

exp

�

�me

�


log jB

t

j

	

= jB

t

j

�me

�


:

Therefore,

Prob

�

A


;m

t

n

�

� C

m;R

jB

t

n

j

1�me

�


� C

m;R

�

�(me

�


�1)n

:

Since me

�


> 1, we arrive at (2.14). �

Given 
 > 0 and t > 0, consider now the point process

E




t

:=

�

x 2 B

t

: �(x) > max

B

t

� � 


�

:

Corollary 2.10. Let Assumption (F) be satis�ed for some % 2 (0;1]. Then

for each 
 > 0 and each natural number R, the following is true almost surely.

There exists a random time t

0

= t

0

(
;R; �(�)) > 0 such that for t > t

0

each

R-connected component of E




t

consists of at most e


=%

elements.

In other words, for 0 < % � 1, the high exceedances of the potential �(�) form

islands of asymptotically bounded size which are located far from each other.

For % =1, these islands shrink to single lattice sites as t!1.

Proof of Corollary 2.10. Suppose �rst that 0 < % < 1. Then in Lemma 2.9

the point process

~

E


=%

t

coincides in law with

n

x 2 B

t

: �(x) >  

�

e

�
=%

log jB

t

j

�o

and, by Assumption (F),

 

�

e

�
=%

log jB

t

j

�

=  (log jB

t

j)� 
 + o(1):

Combining this with Corollary 2.7, we arrive at the desired result. The case

% =1 may be treated similarly. �
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We now turn to the investigation of the typical shapes of high peaks of the

�eld �(�) (resp. �(�)) in a large ball around 0.

Lemma 2.11. For each R 2 N and almost all realizations of the random �eld

�(�),

lim sup

t!1

max

x2B

t

P

y2B

R

(x)

�(y)

log jB

t

j

� 1: (2.15)

Proof. Fix � > 1 arbitrarily and select an increasing sequence (t

n

) so that

jB

t

n

j � �

n

as n ! 1. It will be enough to prove (2.15) for the sequence

(t

n

) instead of t. Fix further 
 > 1 arbitrarily. Then, applying Chebyshev's

exponential inequality, we obtain

Prob

0

@

max

x2B

t

n

X

y2B

R

(x)

�(y) > 


2

log jB

t

n

j

1

A

� jB

t

n

jProb

0

@




�1

X

y2B

R

�(y) > 
 log jB

t

n

j

1

A

� jB

t

n

j exp f�
 log jB

t

n

jg

*

exp

8

<

:




�1

X

y2B

R

�(y)

9

=

;

+

=

�





 � 1

�

jB

R

j

jB

t

n

j

1�


�

�





 � 1

�

jB

R

j

�

�(
�1)n

:

Hence, the above probabilities are summable over n, and our assertion again

follows from the Borel-Cantelli lemma. �

Corollary 2.12. Let Assumption (F) be satis�ed for some % 2 (0;1). Then

for each R 2 N and almost all realizations of the random �eld �(�),

lim sup

t!1

max

x2B

t

X

y2B

R

(x)

exp f[�(y)�  (log jB

t

j)] =%g � 1:

Remark 2.13. The corresponding assertion for % = 1 is obvious from Corol-

lary 2.7 and Corollary 2.10. In this case, given 
 < 0 < � and R 2 N, the

following holds true a.s. for su�ciently large t. In each ball B

R

(x), x 2 B

t

, the

shifted potential �(�)�  (log jB

t

j) exceeds 
 at not more than one lattice site

and does not exceed � at all.

Proof of Corollary 2.12. Since �(�) = '(�(�)), the assertion of Lemma 2.11 may

be rewritten in the form

lim sup

t!1

max

x2B

t

X

y2B

R

(x)

'(�(y))

log jB

t

j

� 1 a.s. (2.16)
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Assume that 0 < % <1. It then follows from Remark 2.1 c) that

lim

t!1

' ( (log jB

t

j) + �)

log jB

t

j

= e

�=%

uniformly in � � �

0

(2.17)

for each �

0

. Because of Corollary 2.7, a.s. the �eld �(�)� (log jB

t

j) is bounded

from above on B

t+R

uniformly for large t. Taking this into account, we conclude

from (2.17) that a.s.

'(�(y))

log jB

t

j

= exp f[�(y)�  (log jB

t

j)] =%g+ o(1)

uniformly in y 2 B

t+R

as t ! 1. Substituting this in (2.16), we arrive at the

desired result. �

We are now going to derive bounds on the pro�les of high peaks opposite to

that given in Lemma 2.11 and Corollary 2.12. To this end we will need to consi-

der percolation clusters. Recall that, for each R 2 N , we �xed a level � = �

R

as

in Lemma 2.4 and denoted by A

+

(R) = A

+

�

(R) and W

+

(R) the associated level

set on the sublattice (2R+1)Z

d

and its in�nite (2R+1)-connected component,

respectively. We will assume without loss of generality that the random �eld

�(�) admits a representation of the form

�(x) = (1� �(x))�

�

(x) + �(x)�

+

(x); x 2 Z

d

;

where the random variables �(x), �

�

(x), �

+

(x) are mutually independent, �(x)

attains the values 0 and 1 with probability Prob(�(x) � �) and Prob(�(x) > �),

respectively, �

�

(x) � � < �

+

(x), and the distributions of �

�

(x) and �

+

(x) coin-

cide with the conditional laws of �(x) given �(x) � � and �(x) > �, respectively.

Note that �(x) = 1 if and only if �(x) exceeds the level �. Accordingly, the �eld

�(�) = '(�(�)) admits the decomposition

�(x) = (1� �(x))�

�

(x) + �(x)�

+

(x); x 2 Z

d

; (2.18)

where �

�

(x) := '(�

�

(x)). In particular, we have �

�

(x) � '(�) � �

+

(x) and

Prob(�

+

(x) > s) = expf'(�)� sg for s > '(�).

Lemma 2.14. a) Suppose that d � 2. Given a natural number R and a function

h : B

R

! R

+

with

X

x2B

R

h(x) < 1; (2.19)

the following holds true a.s. There exists a positive (random) time t

0

such that

for all t > t

0

one �nds a (random) site z

0

2W

+

(R) such that B

R

(z

0

) � B

t

and

�(z

0

+ � ) > h(�) log jB

t

j on B

R

. (2.20)

b) With W

+

(R) replaced by A

+

(R), the above assertion is also true in di-

mension d = 1.
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Proof. a) Fix R 2 N and h : B

R

! R

+

satisfying (2.19) arbitrarily. Suppose

without loss of generality that h is strictly positive. Since log jB

n+1

j � log jB

n

j,

we may restrict ourselves to natural values of t. For t � R, de�ne

W

+

t

(R) :=W

+

(R) \B

t�R

:

The balls B

R

(z), z 2 W

+

t

(R), are pairwise disjoint and contained in B

t

. Recall

that Prob(0 2W

+

(R)) > 0 (Lemma 2.4 a)). Hence, we conclude from Birkho�'s

ergodic theorem that there exists a positive constant C

R

such that a.s.

jW

+

t

(R)j � C

R

jB

t

j for su�ciently large t. (2.21)

Consider the events

E

t;z

:= f�(z + � ) > h(�) log jB

t

j on B

R

g ;

t 2 N , z 2 (2R+ 1)Z

d

. Using the decomposition (2.18) and taking into account

that �(x) = 1 for all x 2 B

R

(z) if z 2W

+

t

(R), the events E

t;z

coincide with

E

+

t;z

:= f�

+

(z + � ) > h(�) log jB

t

j on B

R

g

for z 2 W

+

t

(R). Therefore an application of the Borel-Cantelli lemma with

respect to the conditional law given �(�) reduces the proof of assertion a) to the

veri�cation of

1

X

t=R

Prob

�

\

z2W

+

t

(R)

(E

+

t;z

)

c

�

�

�

�

�(�)

�

<1 a.s. (2.22)

Since the random cluster W

+

t

(R) depends on �(�) only and the events E

+

t;z

are

mutually independent and independent of �(�), we obtain a.s.

Prob

�

\

z2W

+

t

(R)

(E

+

t;z

)

c

�

�

�

�

�(�)

�

=

�

1� Prob(E

+

t;0

)

�

jW

+

t

(R)j

� exp

�

�jW

+

t

(R)jProb(E

+

t;0

)

	

= exp

n

�jW

+

t

(R)je

jB

R

j'(�)

jB

t

j

�

P

x2B

R

h(x)

o

� exp

n

�

~

C

R

jB

t

j

1�

P

x2B

R

h(x)

o

for su�ciently large t, where

~

C

R

denotes a positive constant. On the bottom

line we have used the bound (2.21). Because of assumption (2.19), this proves

(2.22).

b) With several simpli�cations, the proof of part b) goes along the same

lines as that of part a). �

Corollary 2.15. Suppose that d � 2. Let Assumption (F) be satis�ed for some

% 2 [0;1). Fix R 2 N arbitrarily. Then the following is valid for almost all

realizations of the random �eld �(�).
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a) If % = 0, then for each � > 0 there exists a positive (random) time t

0

such that for every t > t

0

one �nds a (random) site z

0

2 W

+

(R) such that

B

R

(z

0

) � B

t

and

�(z

0

+ � ) >  (log jB

t

j)� � on B

R

.

b) If 0 < % <1, then for each function h : B

R

! R with

X

x2B

R

e

h(x)=%

< 1 (2.23)

there exists a positive (random) time t

0

such that for every t > t

0

one �nds a

(random) site z

0

2W

+

(R) such that B

R

(z

0

) � B

t

and

�(z

0

+ � ) >  (log jB

t

j) + h(�) on B

R

.

c) With W

+

(R) replaced by A

+

(R), the above assertions are also true in

dimension d = 1.

For % = 0, assertion a) tells us that the size of the islands of high exceedances

of the potential �(�) grows unboundedly as t!1.

Proof of Corollary 2.15. Since �(�) =  (�), assertion (2.20) implies that

�(z

0

+ � ) >  (h(�) log jB

t

j) on B

R

. (2.24)

But, if % = 0, then

 (h(�) log jB

t

j) =  (log jB

t

j) + o(1)

independent of the speci�c choice of h : B

R

! R

+

provided that h is strictly

positive. This yields assertion a).

To prove b) we remark that assumption (2.23) is the same as (2.19) with

h(�) replaced by e

h(�)=%

. Hence, instead of (2.24) we obtain

�(z

0

+ � ) >  

�

e

h(�)=%

log jB

t

j

�

on B

R

.

But, since 0 < % <1, Assumption (F) yields

 

�

e

h(�)=%

log jB

t

j

�

=  (log jB

t

j) + h(�) + o(1) on B

R

,

and we are done.

To prove c), one has to use assertion b) of Lemma 2.14 instead of a). �

2.4. Related spectral problems

Given R > 0 and h : B

R

! R, let us denote by �

R

(h(�)) the principal eigenvalue

of the operator �� + h(�) in l

2

(B

R

) with Dirichlet boundary condition. In

particular, �

t

(�(�)) is the principal eigenvalue of the Anderson Hamiltonian

H = ��+ �(�)

in l

2

(B

t

) with zero boundary condition. The aim of this subsection is to prove

the following theorem on the almost sure asymptotics of �

t

(�(�)).
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Theorem 2.16. Let Assumption (F) be satis�ed for some % 2 [0;1]. Then

almost surely

�

t

(�(�)) =  (log jB

t

j)� 2d��(

%

�

) + o(1) as t!1. (2.25)

Before carrying out the details, let us brie
y explain the origin of formula

(2.25) in the case when 0 < % < 1. We have seen in Section 2.3 that almost

surely the high peaks of �(�) in B

t

are of the form

 (log jB

t

j) + h(�);

where h : B

R

! R runs through the class of functions satisfying

X

x2B

R

e

h(x)=%

< 1 (2.26)

and R is arbitrarily large. Since the islands of these peaks are located far from

each other, the upper part of the spectrum of H in l

2

(B

t

) is expected to split

into the union of the spectra on the single islands. Hence, as t ! 1, �

t

(�(�))

will be close to the upper boundary of

�

R

( (log jB

t

j) + h(�)) =  (log jB

t

j) + �

R

(h(�))

taken over all pro�les h : B

R

! R satisfying (2.26) for arbitrarily large R.

The next lemma shows that this variational expression equals  (log jB

t

j) �

2d��(%=�). It therefore makes plausible formula (2.25).

Let S

0

R

denote the Donsker-Varadhan functional on P(B

R

) with Dirichlet

boundary condition, and let I

R

be the corresponding entropy functional. These

functionals are de�ned in the same way as the functionals S

R;0

d

and I

R

d

conside-

red in the Sections 1.2 and 1.3 with the only di�erence that they are now given

on P(B

R

) instead of P(T

d

R

).

Lemma 2.17. If 0 < % <1, then

sup

P

x2B

R

e

h(x)=%

<1

�

R

(h(�)) = � min

P(B

R

)

�

�S

0

R

+ %I

R

�

for each R 2 N. Moreover,

lim

R!1

min

P(B

R

)

�

�S

0

R

+ %I

R

�

= 2d��(

%

�

):

Proof. Let us �rst note that

sup

P

x2B

R

e

h(x)=%

<1

�

R

(h(�)) = sup

P

x2B

R

e

h(x)=%

=1

�

R

(h(�)): (2.27)
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This follows e.g. from the observation that �

R

(h(�) + c) = �

R

(h(�)) + c for each

constant c. According to the variational principle for the largest eigenvalue,

�

R

(h(�)) = sup

kvk

2

=1

X

x2B

R

(��v(x) + h(x)v(x)) v(x);

where, by convention, v(x) = 0 for x =2 B

R

. Since it is enough to take the

supremum over positive v, we may use the substitution v

2

=: p to rewrite it in

the form

�

R

(h(�)) = sup

p2P(B

R

)

"

X

x2B

R

h(x)p(x)� �S

0

R

(p)

#

:

In other words, �

R

is the Legendre transform of �S

0

R

. Using this, we �nd that

the supremum on the right of (2.27) equals

sup

p2P(B

R

)

8

<

:

sup

P

x2B

R

e

h(x)=%

=1

"

X

x2B

R

h(x)p(x)� % log

X

x2B

R

e

h(x)=%

#

� �S

0

R

(p)

9

=

;

:

Now observe that the expression in the square brackets does not change by

adding a constant to h. Therefore the inner supremum may be taken over all

h : B

R

! R, and a straightforward computation shows that it coincides with

�%I

R

(p). In this way we arrived at the �rst assertion of our lemma. Since

each ball B

R

may be embedded in between two tori T

d

R

0

and T

d

R

00

, the second

assertion is a straightforward consequence of Lemma 1.10. �

It may be seen from the above proof that the maximum of �

R

(h(�)) over all

h with

X

x2B

R

e

h(x)=%

= 1 (2.28)

is attained at h if and only if the square of the normalized positive eigenfunction

of ��+ h(�) in l

2

(B

R

) minimizes the functional �S

0

R

+ %I

R

, i.e. if

h = �

��

p

p

p

p

+ const;

where p 2 P(T

d

R

) is a minimizer of �S

0

R

+%I

R

and the constant adjusts h to ful�ll

(2.28). Now let R!1 and take into account Remark 1.3 c) and Lemma 1.10.

Then one �nds that the relevant shapes of the potential should be of the form

h = 2% log

�

v

%=�


 � � � 
 v

%=�

�

� 2d��(%=�):

This is in accordance with our claims after Theorem 2.2.

We are now going to prove that the principal eigenvalue �

t

(�(�)) indeed may

be approached by the maximum of the principle eigenvalues on the islands of

high peaks provided that these islands are located far from each other. Since
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primarily this does not have to do anything with randomness, we will formu-

late the result in a nonrandom setting, although the proof will heavily rely on

probabilistic arguments.

Let B be a �nite connected subset of Z

d

. Fix � > 0 and a potential

V : B ! R arbitrarily. We want to estimate the principle eigenvalue �

G

of

the Hamiltonian

G = ��+ V in l

2

(B)

with Dirichlet boundary condition by comparing it with the maximum of the

principle eigenvalues of G on the `islands of high peaks' of V . To this end, let

G

i

, i = 1; : : : ;m, denote connected subsets of B such that dist(G

i

; G

j

) > 1 for

i 6= j, where dist(�; �) denotes the lattice distance between subsets of Z

d

. For

i = 1; : : : ;m, let g

i

be a (not necessarily connected) non-empty subset of G

i

.

Think of the g

i

's as the sites of high exceedances of V on some islands G

i

in a

surrounding ocean B. Let �

i

denote the principle eigenvalue of G in l

2

(G

i

) with

Dirichlet boundary condition, and set

�

max

:= max

i

�

i

; g :=

[

i

g

i

; G :=

[

i

G

i

:

Lemma 2.18. (Cluster expansion) Suppose that

max

Bng

V � �

max

: (2.29)

Then the principle eigenvalue �

G

of G in l

2

(B) satis�es

�

max

< �

G

< 


for all 
 > �

max

for which


 � �

max

2d�

"

�

1 +


 � �

max

2d�

�

dist(BnG;g)

� 1

#

> max

i

jG

i

j: (2.30)

Proof. Since the principle eigenvalue �

G

depends on the potential V monotoni-

cally, the lower bound �

G

> �

max

is obvious from replacing V by �1 outside of

G. To prove the upper bound, we will apply some sort of cluster expansion of

the resolvent R




associated with G. We will show that, under (2.29) and (2.30),


 belongs to the resolvent set of G. Using the probabilistic representation of the

resolvent and taking into account that B is �nite, it will be enough to check

that

R




1l(x) = E

x

Z

�

0

dt exp

�

Z

t

0

ds [V (x(s))� 
]

�

<1 (2.31)

for all x 2 B. Here, as before, (x(t);P

x

) denotes symmetric random walk on Z

d

with generator ��, and � is the �rst exit time from B:

� := inf ft � 0: x(t) =2 Bg :
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We next introduce stopping times 0 � �

0

< �

0

< �

1

< �

1

: : : of successive visits

of the sets g and G

c

by our random walk:

�

0

:= infft � 0: x(t) 2 gg;

�

i

:= infft � �

i

: x(t) =2 Gg;

�

i+1

:= infft � �

i

: x(t) 2 gg; i = 0; 1; 2; : : :

We will use these stopping time cycles to estimate the resolvent from above by

a geometric series. First, we may rewrite (2.31) in the form

R




1l(x) = E

x

Z

�

0

^�

0

dt exp

�

Z

t

0

ds [V (x(s))� 
]

�

+

1

X

i=0

E

x

Z

�

i+1

^�

�

i

^�

dt exp

�

Z

t

0

ds [V (x(s))� 
]

�

:

(2.32)

Since x(s) 2 B n g for 0 < s < �

0

^ � and because of (2.29), we have

E

x

Z

�

0

^�

0

dt exp

�

Z

t

0

ds [V (x(s))� 
]

�

�

Z

1

0

dt e

(�

max

�
)t

=

1


 � �

max

<1 (2.33)

for all x 2 B. Using the strong Markov property together with (2.29) and

�

max

< 
, we �nd for i = 0; 1; 2; : : : that

E

x

Z

�

i+1

^�

�

i

^�

dt exp

�

Z

t

0

ds [V (x(s))� 
]

�

= E

x

exp

�

Z

�

0

0

ds [V (x(s))� 
]

�

1l(�

0

< �)

� E

x(�

0

)

exp

�

Z

�

i

0

ds [V (x(s))� 
]

�

1l(�

i

< �)

� E

x(�

i

)

Z

�

1

^�

0

dt exp

�

Z

t

0

ds [V (x(s))� 
]

�

�

�

max

y2g

E

y

exp

�

Z

�

1

0

ds [V (x(s))� 
]

�

1l(�

1

< �)

�

i

�max

y2g

E

y

Z

�

1

^�

0

dt exp

�

Z

t

0

ds [V (x(s))� 
]

�

: (2.34)

Combining (2.32) with (2.33) and (2.34), we see that it will be enough to show

that, under the assumptions (2.29) and (2.30),

E

x

exp

�

Z

�

1

0

ds [V (x(s))� 
]

�

1l(�

1

< �) < 1 (2.35)
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and

E

x

Z

�

1

^�

0

dt exp

�

Z

t

0

ds [V (x(s))� 
]

�

<1 (2.36)

for all x 2 g.

Let us �rst prove assertion (2.35). Applying the strong Markov property, we

obtain for x 2 g:

E

x

exp

�

Z

�

1

0

ds [V (x(s))� 
]

�

1l(�

1

< �)

= E

x

exp

�

Z

�

0

0

ds [V (x(s))� 
]

�

1l(�

0

< �)

� E

x(�

0

)

exp

�

Z

�

0

0

ds [V (x(s))� 
]

�

1l(�

0

< �):

(2.37)

To derive an appropriate bound for the last expectation, note that x(�

0

) 2 BnG

and x(s) 2 B ng for 0 � s < �

0

. But, by assumption (2.29), V �
 � �

max

�
 <

0 outside of g. Moreover, �

0

may be estimated from below by the sum of

dist(BnG; g) independent exponentially distributed random variables with mean

(2d�)

�1

. Hence, P

x

-a.s.

E

x(�

0

)

exp

�

Z

�

0

0

ds [V (x(s))� 
]

�

1l(�

0

< �)

� E

x(�

0

)

e

�(
��

max

)�

0

�

�

2d�

2d�+ 
 � �

max

�

dist(BnG;g)

: (2.38)

Note that, P

x

-a.s. for x 2 g

i

, �

0

coincides with the �rst exit time from G

i

. Thus,

for i 2 f1; : : : ;mg and x 2 g

i

,

u(x) := E

x

exp

�

Z

�

0

0

ds [V (x(s))� 
]

�

; (2.39)

coincides with the solution to the boundary value problem

(��+ V � 
)u = 0 in G

i

,

u = 1 on G

c

i

.

With the substitution u =: 1 + v, this turns into

(��+ V � 
) v = 
 � V in G

i

,

v = 0 on G

c

i

.

For 
 > �

i

, the solution exists and is given by

v = R

(i)




(V � 
);
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where R

(i)




denotes the resolvent of G in l

2

(G

i

) with Dirichlet boundary condi-

tion. Since V � �

i

+ 2d� � 
 + 2d� on G

i

, and because of the positivity of the

resolvent, we obtain

v(x) � 2d�R

(i)




1l(x) � 2d�

�

R

(i)




1l; 1l

�

G

i

; x 2 G

i

;

where (�; �)

G

i

is the inner product in l

2

(G

i

). Using the spectral representation

of the resolvent (i.e. its Fourier expansion with respect to the orthonormal basis

of eigenfunctions of G in l

2

(G

i

)), we �nd that

�

R

(i)




1l; 1l

�

G

i

�

jG

i

j


 � �

i

:

This means that

u(x) � 1 +

2d�


 � �

i

jG

i

j; x 2 G

i

: (2.40)

Combining (2.37) with (2.38), (2.39), and (2.40), we arrive at

E

x

exp

�

Z

�

1

0

ds [V (x(s))� 
]

�

1l(�

1

< �)

�

�

1 +

2d�


 � �

max

max

i

jG

i

j

��

1 +


 � �

max

2d�

�

� dist(BnG;g)

for x 2 g. But the expression on the right is less than 1 if and only if (2.30) is

ful�lled. This proves (2.35).

It remains to verify (2.36). Given i 2 f1; : : : ;mg and x 2 g

i

, an application

of the strong Markov property and (2.33) yields

E

x

Z

�

1

^�

0

dt exp

�

Z

t

0

ds [V (x(s))� 
]

�

= E

x

�

Z

�

0

0

+

Z

�

1

^�

�

0

^�

�

dt exp

�

Z

t

0

ds [V (x(s))� 
]

�

= R

(i)




1l(x) + E

x

exp

�

Z

�

0

0

ds [V (x(s))� 
]

�

1l(�

0

< �)

� E

x(�

0

)

Z

�

0

^�

0

dt exp

�

Z

t

0

ds [V (x(s))� 
]

�

� R

(i)




1l(x) +

1


 � �

max

E

x

exp

�

Z

�

0

0

ds [V (x(s))� 
]

�

:

Since 
 > �

i

, R

(i)




1l(x) is �nite. The �niteness of the expectation on the right

of the last estimate was shown before, see (2.39) and (2.40). Hence, we arrived

at (2.36). This completes the proof of our lemma. �

We have now collected all the auxiliary material for the proof of our theorem.
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Proof of Theorem 2.16. a) Lower bound. Let us �rst assume that 0 < % <1.

Fix R 2 N and h : B

R

! R with

X

x2B

R

e

h(x)=%

< 1

arbitrarily. Corollary 2.15 b) (resp. c) in dimension one) tells us that a.s. for

su�ciently large t there exists a site z

0

such that B

R

(z

0

) � B

t

and

�(z

0

+ � ) >  (log jB

t

j) + h(�) on B

R

.

This implies that

�

t

(�(�)) �  (log jB

t

j) + �

R

(h(�)):

From this we conclude that

lim inf

t!1

[�

t

(�(�))�  (log jB

t

j)] � sup

P

x2B

R

e

h(x)=%

<1

�

R

(h(�)) a.s.

Together with Lemma 2.17, this yields the lower bound.

In the case % = 0, using Corollary 2.15 a) (resp. c)), we obtain

lim inf

t!1

[�

t

(�(�))�  (log jB

t

j)] � �

R

(0):

But �

R

(0)! 0 as R!1, and we are done.

For % =1, the lower bound follows from Corollary 2.7 and the fact that

�

t

(�(�)) � max

B

t

� � 2d�:

The latter is obvious from the observation that, for each x 2 B

t

, �

t

(�(�)) may

be estimated from below by the principal eigenvalue of H on the set fxg with

zero boundary condition which equals �(x)� 2d�.

b) Upper bound. We �rst treat the case 0 < % < 1. Fix � > 0 arbitrarily

and choose R 2 N so large that

�

2d�

"

�

1 +

�

2d�

�

R

� 1

#

> e

2d�=%

jB

R

j: (2.41)

We know from Corollary 2.10 that a.s. for su�ciently large t the level set

E

t

:=

�

x 2 B

t

: �(x) > max

B

t

� � 2d�

�

splits into (2R+1)-connected clusters of size not exceeding e

2d�=%

. Given x 2 E

t

,

denote by g

x

the (2R+1)-connected component of E

t

which contains x, and let

G

x

:=

[

y2g

x

B

R

(y) \B

t
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denote its R-neighborhood in B

t

. By construction, the sets G

x

are connected.

Moreover, any two of these sets either coincide or have a distance larger than one.

Let �

x

denote the principle eigenvalue of H in l

2

(G

x

) with Dirichlet boundary

condition. Since

�

x

� max

G

x

� � 2d�; x 2 E

t

;

and the potential in B

t

does not exceed max

B

t

� � 2d� outside of E

t

=

S

x

g

x

,

we �nd that

�

max

:= max

x2E

t

�

x

� max

B

t

n

S

x2E

t

g

x

�:

Hence, we are in a situation where we may apply Lemma 2.18 to estimate

�

t

(�(�)) from above. In our case g =

S

x2E

t

g

x

, G =

S

x2E

t

G

x

,

dist(B

t

nG; g) � R; and max

x2E

t

jG

x

j � e

2d�=%

jB

R

j:

Because of (2.41), this means that condition (2.30) is ful�lled for 
 = �

max

+ �.

Thus, we conclude from Lemma 2.18 that a.s. for large t,

�

t

(�(�)) � max

x2E

t

�

x

+ �: (2.42)

Now observe that each of the sets G

x

is contained in a ball of radius R

0

:=

e

2d�=%

R. But, according to Corollary 2.12, we have

max

x2B

t

X

y2B

R

0

(x)

exp f[�(y)�  (log jB

t

j)]g < e

�=%

(2.43)

a.s. for large t. Since the principle eigenvalue depends on the potential mono-

tonically, we conclude from (2.42) and (2.43) that

�

t

(�(�))�  (log jB

t

j) � max

x2B

t

�

R

0

(�(x+ � )�  (log jB

t

j)) + �

� sup

P

y2B

R

0

e

h(y)=%

<e

�=%

�

R

0

(h) + �

= sup

P

y2B

R

0

e

h(y)=%

<1

�

R

0

(h) + 2�

a.s. for large t. Hence, for each � > 0 and all su�ciently large R,

lim sup

t!1

[�

t

(�(�))�  (log jB

t

j)] � sup

P

y2B

R

0

e

h(y)=%

<1

�

R

0

(h) + 2� a.s.

Combining this with Lemma 2.17, we arrive at the desired upper bound.

The proof for % = 1 is similar. Given � > 0, one has to choose R so large

that (2.41) holds with e

2d�=%

replaced by 1. A.s. for su�ciently large t, the

(2R+1)-connected components of the level set E

t

consist of single lattice sites.

In particular, G

x

= B

R

(x), x 2 E

t

. Choose 
 < 0 arbitrarily. According to

Remark 2.13, a.s. for large t, the shifted potential �(�) �  (log jB

t

j) does not
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exceed 
 on B

R

(x)nfxg and does not exceed � at site x for each x 2 E

t

. Hence,

applying Lemma 2.18, we �nd that

lim sup

t!1

[�

t

(�(�))�  (log jB

t

j)] � �

R

(h

�;


) + � a.s.,

where h

�;


(0) = � and h

�;


(x) = 
 for x 2 B

R

n f0g. But �

R

(h

�;


) tends to

� � 2d� as 
 ! �1. Since � > 0 may be chosen arbitrarily small, this implies

the desired bound.

The proof in the case % = 0 is a straightforward consequence of Corollary 2.7

and the observation that

�

t

(�(�)) � max

B

t

�:

�

We close this subsection with a modi�cation of Theorem 2.16 which takes

into account the percolation e�ect explained in Section 2.2. Recall that A

+

(R)

and W

+

(R) denote, respectively, the level set in the sublattice (2R+ 1)Z

d

and

its in�nite (2R+1)-connected component considered in Lemma 2.4. For d � 2,

de�ne

c

W

+

t

(R) :=

[

z2W

+

(R)\B

t�R

B

R

(z):

This is the R-neighborhood of the part of the in�nite percolation clusterW

+

(R)

in the ball B

t�R

. If d = 1, then we de�ne

c

W

+

t

(R) by the same formula but with

W

+

(R) replaced by the level set A

+

(R). We denote by �

R

t

(�(�)) the principle

eigenvalue of our random HamiltonianH in l

2

(

c

W

+

t

(R)) with Dirichlet boundary

condition. Note that �

R

t

(�(�)) � �

t

(�(�)).

Corollary 2.19. Let Assumption (F) be satis�ed for some % 2 [0;1]. Then

almost surely

lim inf

R!1

lim inf

t!1

�

�

R

t

(�(�))�  (log jB

t

j)

�

� �2d��(

%

�

):

This means that the principle eigenvalue �

t

(�(�)) is essentially `generated' by

those islands of high peaks of the potential �(�) which are located in the R-

neighborhood of the cluster W

+

(R) for large R.

Proof of Corollary 2.19. For 0 < % <1 and also for % = 0, this repeats part a)

of the proof of Theorem 2.16. Namely, according to Corollary 2.15, in the proof

the lattice site z

0

may be assumed to belong toW

+

(R). If % =1, then one has

to replace Corollary 2.7 by the asymptotic formula

max

x2W

+

(R)\B

t�R

�(x) =  (log jB

t

j) + o(1) a.s. as t!1

which holds in dimension d � 2 and the corresponding formula with W

+

(R)

replaced by A

+

(R) in dimension d = 1). To understand how to treat such a

restriction to the cluster W

+

(R), we refer to the proof of Lemma 2.14 where a

similar problem had been considered. The details are left to the reader. �
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2.5. Completion of the proof

We are now �nally in a position to complete the proof of Theorem 2.2. Roughly

speaking, we will show by an application of the Feynman-Kac formula and the

spectral representation theorem that u(t; 0) behaves like e

t�

t

(�(�))

a.s. as t!1.

This combined with our asymptotic formula for the principle eigenvalue �

t

(�(�))

will then yield the desired asymptotics of u(t; 0).

To be precise, �x " > 0 arbitrarily and set

r(t) :=

t

(log t)

1+"

and r(t) := t(log t)

1+"

:

We want to show that under the assumptions of Theorem 2.2,

exp

n

(t� 3)�

R

r(t)

(�(�)) + o(t)

o

� u(t; 0) � exp

�

t�

r(t)

(�(�)) + o(t)

	

(2.44)

a.s. as t ! 1 for each R 2 N . We may then apply the asymptotic formulas

for the principle eigenvalues �

r(t)

(�(�)) and �

R

r(t)

(�(�)) obtained in Theorem 2.16

and Corollary 2.19, respectively. Substituting them in (2.44) and taking into

account that

 

�

log jB

r(t)

j

�

=  (d log t) + o(1);

 

�

log jB

r(t)

j

�

=  (d log t) + o(1);

and  (d log t) = o(t), we arrive at the desired asymptotics (2.5). The above

properties of  are obvious from Remark 2.1 b).

It now only remains to prove (2.44) by exploiting the Feynman-Kac repre-

sentation (2.4) of u(t; 0). To derive the lower bound for u(t; 0), �x R 2 N arbi-

trarily. Recall that

c

W

+

r(t)

(R) is the R-neighborhood of the part of the in�nite

percolation cluster W

+

(R) (resp. the level set A

+

(R) if d = 1) which is contai-

ned in the ball B

r(t)�R

. Let e

R

t

denote the normalized positive eigenfunction

corresponding to the principle eigenvalue �

R

r(t)

(�(�)) of the random Hamiltonian

H in l

2

(

c

W

+

r(t)

(R)) with Dirichlet boundary condition. Let z

0

2

c

W

+

r(t)

(R) be a

random site (depending on t and R) at which e

R

t

attains its maximum. Then

jz

0

j � r(t) and (e

R

t

(z

0

))

2

� j

c

W

+

r(t)

(R)j

�1

� jB

r(t)

j

�1

. Since the initial datum

u

0

is supposed a.s. not to vanish identically, we �nd a random site x

0

2 Z

d

such that u

0

(x

0

) > 0 a.s. Let �

R

t

denote the �rst exit time of the random walk

x(t) from

c

W

+

r(t)

(R). As before, �

x

0

and �

z

0

are the �rst hitting times of x

0

and z

0

, respectively. Repeatedly applying the strong Markov property to the
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Feynman-Kac representation of u(t; 0), we �nd that

u(t; 0) � E

0

exp

�

Z

�

z

0

0

�(x(u)) du

�

1l (�

z

0

� 1)

� E

z

0

exp

�

Z

t�3

0

�(x(u)) du

�

1l

�

�

R

t

> t� 3; x(t� 3) = z

0

�

� E

z

0

exp

�

Z

�

0

0

�(x(u)) du

�

1l (�

0

� 1)

� inf

1�s�3

E

0

exp

�

Z

s

0

�(x(u)) du

�

1l (x(s) = x

0

)u

0

(x

0

):

(2.45)

In other words, we have forced the random walk to hit z

0

until time 1 and

then to stay in

c

W

+

r(t)

(R) during a time period of length t � 3 at the end of

which it has to return to z

0

. After that x(t) is forced to move from z

0

to 0

during a time interval of length not exceeding 1. The remaining time has to be

spent in such a way that the random walk is at x

0

at time t. The expression

on the last line of (2.45) is independent of t and strictly positive a.s. Since

jz

0

j � r(t) = t=(log t)

1+"

, an application of Lemma 2.5 b) shows that a.s. both

the �rst and the third expectation on the right are of order e

o(t)

as t!1. The

main asymptotics is therefore hidden in the second expectation. But this is the

probabilistic representation of the fundamental solution of H in l

2

(

c

W

+

r(t)

(R))

with zero boundary condition considered at time t� 3 with starting point and

end point equal to z

0

. The spectral representation of the fundamental solution

shows that the considered expectation may be estimated from below by

e

(t�3)�

R

r(t)

(�(�))

(e

R

t

(z

0

))

2

� e

(t�3)�

R

r(t)

(�(�))

jB

r(t)

j

�1

:

In this way we arrive at the lower bound in (2.44).

To derive the upper bound, set R

n

(t) := nr(t) for n 2 N and t > 0. As

before, let �(R

n

(t)) denote the �rst exit time from the ball B

R

n

(t)

. Then, using

the Feynman-Kac formula, we obtain

u(t; 0) � E

0

exp

�

Z

t

0

�(x(u)) du

�

u

0

(x(t))1l (�(r(t)) > t)

+

1

X

n=1

E

0

exp

�

Z

t

0

�(x(u)) du

�

u

0

(x(t))1l (�(R

n

(t)) � t < �(R

n+1

(t))) :

(2.46)

We will show that the �rst term on the right provides the correct asymptotics

and the remaining sum tends to zero as t!1 a.s. First note that

v(s; x) := E

x

exp

�

Z

s

0

�(x(u)) du

�

1l (�(r(t)) > s) ; (s; x) 2 R

+

� B

r(t)

;

is the solution of the initial boundary value problem for the parabolic equation

@v

@s

= Hv on R

+

� B

r(t)
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with initial datum v(0; x) � 1 and Dirichlet boundary condition. Using the

spectral representation of v(t; �) (i.e. its Fourier expansion with respect to the

eigenfunctions of H in l

2

(B

r(t)

), we �nd that

v(t; 0) �

X

x2B

r
(t)

v(t; x) � e

t�

r
(t)

(�(�))

jB

r(t)

j:

Moreover, the growth condition (2.1) provides the bound

max

B

r(t)

u

0

� e

o(t)

a.s. as t!1.

Consequently,

E

0

exp

�

Z

t

0

�(x(u)) du

�

u

0

(x(t))1l (�(r(t)) > t) � exp

�

t�

r(t)

(�(�)) + o(t)

	

a.s. as t ! 1. This is the desired upper bound. It remains to check that the

sum on the right of (2.46) tends to zero a.s. We obtain

1

X

n=1

E

0

exp

�

Z

t

0

�(x(u)) du

�

u

0

(x(t))1l (�(R

n

(t)) � t < �(R

n+1

(t)))

�

1

X

n=1

exp

(

t max

B

R

n+1

(t)

� + max

B

R

n+1

(t)

log

+

u

0

)

P

0

(�(R

n

(t)) � t) : (2.47)

Using Corollary 2.7 and taking into account that  (s) = o(s) by Remark 2.1 b),

we �nd that a.s.

max

B

R

n+1

(t)

� =  

�

log jB

R

n+1

(t)

j

�

+ o(1) = o(logR

n+1

(t))

as t!1 uniformly in n. Assumption (2.1) implies that a.s.

max

B

R

n+1

(t)

log

+

u

0

= o(R

n+1

(t))

as t!1 uniformly in n. According to Lemma 2.5 a),

P

0

(�(R

n

(t)) � t) � 2

d+1

exp

�

�R

n

(t) log

R

n

(t)

d�t

+ R

n

(t)

�

:

Using these estimates and remembering that R

n

(t) = nt(log t)

1+"

, one easily

checks that the sum on the right of (2.47) tends to zero a.s. as t!1.

The proof of Theorem 2.2 is now complete.

Remark 2.20. A thorough analysis of the above proof shows that assump-

tion (2.1) may be replaced by the following slightly weaker growth condition:

There exist strictly positive random variables C

0

and "

0

such that a.s.

log

+

u

0

(x) � C

0

jxj

(log jxj)

1+"

0

for all x 2 Z

d

.
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3. Lifshitz tails of the integrated density of states

In this section we will study the logarithmic tail behavior of the spectral dis-

tribution function (`integrated density of states') associated with the Anderson

Hamiltonian

H = ��+ �(�):

As before, we will deal with potentials �(�) consisting of i.i.d. random variables

with double exponential tails. This case is of particular interest, since the up-

per part of the spectrum is expected to correspond to the principle eigenvalues

generated by sparsely distributed islands of high peaks of the potential which

have non-degenerate �nite size. This constellation is crucial for the tail beha-

vior of the spectral distribution function and will enter its asymptotics via the

variational problem considered in Section 1.

We will assume throughout that the potential �(x), x 2 Z

d

, consists of i.i.d.

random variables with continuous distribution function F such that F (r) < 1

for all r and he

t�(0)

i <1 for all t � 0. Later on we will require in addition that

Assumption (F) of Section 2 is ful�lled.

Given R � 1, let �

(R)

1

� �

(R)

2

� � � � � �

(R)

jT

d

R

j

denote the eigenvalues of H in

l

2

(T

d

R

) with Dirichlet boundary condition. The associated spectral distribution

function N

(R)

(h) is de�ned as the relative number of eigenvalues not exceeding

h:

N

(R)

(h) :=

1

jT

d

R

j

jT

d

R

j

X

i=1

1l

�

�

(R)

i

� h

�

; h 2 R:

The spectral distribution function N of H in l

2

(Z

d

) may then be de�ned by

N(h) := lim

R!1

N

(R)

(h); h 2 R:

It is well-known that this limit exists a.s. and is nonrandom as a consequence of

the ergodicity of �(�). Moreover, its Laplace transform coincides with the `trace'

of the fundamental solution q(t; x; y) of H:

Z

1

�1

e

th

N(dh) = hq(t; 0; 0)i for t � 0, (3.1)

provided that the expression on the right is �nite for all t � 0 which is certainly

true under our assumptions. Let

�

N

(R)

(h) := 1 � N

(R)

(h) and

�

N(h) := 1 �

N(h) denote the upper tails of the spectral distribution functions N

(R)

and N ,

respectively. Let further

�

F (h) := 1� F (h) be the upper tail of the distribution

of �(0).

Note that

�(�)� 4d� � H � �(�)

in the sense of positive de�niteness in l

2

. This implies that

1

jT

d

R

j

X

x2T

d

R

1l(�(x)� 4d� > h) �

�

N

(R)

(h) �

1

jT

d

R

j

X

x2T

d

R

1l(�(x) > h);
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and the strong law of large numbers yields the trivial bounds

�

F (h+ 4d�) �

�

N(h) �

�

F (h); h 2 R: (3.2)

We remark that these bounds are universal in the sense that they are valid for

any homogeneous ergodic potential.

Recall that the function � is de�ned by the variational expression (1.4).

The following theorem provides a more precise description of the asymptotics

of

�

N(h) than (3.2) because it takes into account the structure of the high peaks

of the potential �(�).

Theorem 3.1. Let Assumption (F) be satis�ed for some % 2 [0;1).

a) If 0 < % <1, then

log

�

N(h) � log

�

F (h+ 2d��(%=�)) as h!1. (3.3)

b) If % = 0, then

�

F (h+ �) �

�

N(h) �

�

F (h) (3.4)

for arbitrary � > 0 and all su�ciently large h.

As can be seen from Remark 2.1 c), for 0 � % < 1, log

�

F (h) and log

�

F (h + c)

are not asymptotically equivalent for c 6= 0. Hence, Theorem 3.1 is indeed an

improvement upon the universal bounds (3.2). On the other hand, for % = 1

Remark 2.1 c) shows that log

�

F (h) and log

�

F (h+c) are asymptotically equivalent

for all c. In this case assertion (3.3) is equivalent to (3.2). But, since for % =1

the relevant islands of high exceedances of the potential consist of isolated single

peaks, one may use more direct probabilistic methods. An expansion with

respect to the `noise' in a vicinity of such peaks will yield a much more accurate

asymptotics. This will be the subject of a separate paper.

In order to prove Theorem 3.1 we introduce the shifted spectral distribution

functions

N

t

(h) := N

�

H(t)

t

+ h

�

; t > 0, h 2 R,

where, as before, H is the cumulant generating function of �(0). We will consider

N

t

, t > 0, as probability measures on the left-compacti�ed real line [�1;1).

We further abbreviate

�

N

t

(h) := 1 � N

t

(h). The following lemma provides the

key for our proof of Theorem 3.1.

Lemma 3.2. Let Assumption (H) be satis�ed for some % 2 [0;1).

a) If 0 < % <1, then the probability measures N

t

on [�1;1) satisfy the full

large deviation principle as t!1 with scale t and rate function J : [�1;1)!

R

+

given by J(�1) := 0 and

J(h) = % exp

�

h+ 2d��(%=�)

%

� 1

�

for h 2 R. (3.5)
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b) If % = 0, then

lim

t!1

1

t

log

�

N

t

(h) = 0 for h < 0.

Proof. We know from Remark 1.3 a) that the fundamental solution q(t; x; y) of

H satis�es

hq(t; 0; 0)i = exp

n

H(t)� 2d��(

%

�

)t+ o(t)

o

as t!1. Because of (3.1), this implies that

1

t

log

Z

e

�th

N

t

(dh) =

H(�t)� �H(t)

t

� 2d��(

%

�

)� + o(1)

for each � > 0. Together with Assumption (H), this yields

lim

t!1

1

t

log

Z

e

�th

N

t

(dh) = %� log � � 2d��(

%

�

)� =: G(�) (3.6)

for � > 0.

a) Suppose now that 0 < % < 1. Since the limiting function G is conti-

nuously di�erentiable on (0;1) and G

0

(�)! �1 for � ! 0, we conclude from

(3.6) that N

t

satis�es the full large deviation principle with scale t and rate

function J being the Legendre transform of G:

J(h) = sup

�>0

[h� �G(�)] ; h 2 R;

which coincides with (3.5). See e.g. Freidlin and Wentzell [6], Chap. 5, for

standard Cram�er arguments of such type.

b) We now turn to the case % = 0. Fix � > 0 and � > 0 arbitrarily. We

conclude from (3.6) for % = 0 that

 

Z

��

�1

+

Z

�

��

+

Z

1

�

!

e

�ht

N

t

(dh) = e

o(t)

:

The �rst and the third integral decay exponentially fast as t!1. For,

Z

��

�1

e

�th

N

t

(dh) � e

���t

and

Z

1

�

e

�th

N

t

(dh) � e

�
�t

Z

1

�1

e

(�+
)th

N

t

(dh)

= e

�
�t+o(t)

for 
 > 0. Here we have again used (3.6). Thus,

e

��t

�

N

t

(��) �

Z

�

��

e

�th

N

t

(dh) = e

o(t)

:
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Since � > 0 may be chosen arbitrarily small, this shows that

lim

t!1

1

t

log

�

N

t

(��) = 0;

and we are done. �

Proof of Theorem 3.1. Under our general suppositions on �(�), Assumption (H)

and Assumption (F) are equivalent for % 2 [0;1). This was pointed out in

Lemma 2.3. There it had also be shown that

 (t) =

H(t)

t

� % log %+ %+ o(1) as t!1.

According to Remark 2.1 d),  ('(h)) = h+ o(1). Hence, we conclude that

h =

H('(h))

'(h)

� % log %+ %+ o(1) as h!1. (3.7)

a) If 0 < % <1, then we may combine (3.7) with assertion a) of Lemma 3.2

to �nd that

log

�

N(h� 2d��(%=�)) = log

�

N

'(h)

(�% log %+ %� 2d��(%=�) + o(1))

� �'(h) = log

�

F (h)

as h ! 1. Here we have also used that the rate function J is non-decreasing

and continuous and

J (�% log %+ %� 2d��(%=�)) = 1:

This clearly proves (3.3).

b) Suppose now that % = 0. In this case (3.7) tells us that

h =

H('(h))

'(h)

+ o(1) as h!1.

From this and assertion b) of Lemma 3.2 we conclude that

log

�

N(h� �) = log

�

N

'(h)

(�� + o(1)) � �'(h) = log

�

F (h)

for every � > 0 and all su�ciently large h. This yields the lower bound in (3.4).

The upper bound is the same as in (3.2). �

4. Another view on the moments and Lifshitz tails

4.1. An alternative proof

We have seen in Section 1.1 that the moments of the solution u to our Cauchy

problem with initial datum u

0

� 1 admit the probabilistic representation

hu(t; 0)

p

i =

*

E

p

0

exp

8

<

:

X

z2Z

d

l

t

(z)�(z)

9

=

;

+

:
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Theorem 1.2 was proved by �rst `averaging' over all realizations of the random

potential �(�) and then applying large deviations for the local times l

t

(�). In this

section we will go the other way round. We will �rst `average' over l

t

(�) and

then apply large deviations for the high exceedances of the potential �(�). This

approach works well under Assumption (H) at least for 0 < % < 1. It has the

advantage of making transparent the role of the typical pro�les of high peaks of

the potential and explains how to identify them in the same spirit as it had be

done for the almost sure asymptotics in Section 2.

As before, we will assume without loss of generality that u

0

� 1 and, hence,

hu(t; x)

p

i does not depend on x. It is obvious from the proof of Lemma 1.4 that

the bounds




u

R;0

(t; x)

p

�

� hu(t; 0)

p

i �




u

R;�

(t; x)

p

�

are valid not only for x = 0 but for arbitrary x 2 T

d

R

. This implies that

1

jT

d

R

j

p

*

0

@

X

x2T

d

R

u

R;0

(t; x)

1

A

p

+

� hu(t; 0)

p

i �

1

jT

d

R

j

*

0

@

X

x2T

d

R

u

R;�

(t; x)

1

A

p

+

:

(4.1)

This form of the bounds has the advantage that the sums on the left and the

right may be estimated by means of their spectral representations with respect

to the eigenvalues and eigenfunctions of H in l

2

(T

d

R

). For, given h : T

d

R

! R,

let �

R;0

(h(�)) and �

R;�

(h(�)) denote the principle eigenvalues of the operator

�� + h(�) in l

2

(T

d

R

) with zero and periodic boundary conditions, respectively.

Then we obtain

X

x2T

d

R

u

R;0

(t; x) � e

t�

R;0

(�(�))

and

X

x2T

d

R

u

R;�

(t; x) � jT

d

R

j e

t�

R;�

(�(�))

:

Rough considerations indicate that the relevant exceedances of the potential

�(�) should be of height H(pt)=pt. This motivates us to introduce the shifted

potential

�

t

(�) := �(�)�

H(t)

t

; t > 0:

Then

�

R;0

(�(�)) =

H(pt)

pt

+ �

R;0

(�

pt

(�))

and

�

R;�

(�(�)) =

H(pt)

pt

+ �

R;�

(�

pt

(�)):

With these observations and the above estimates we conclude from (4.1) that

jT

d

R

j

�p

e

H(pt)

D

e

pt�

R;0

(�

pt

(�))

E

� hu(t; 0)

p

i � jT

d

R

j

p�1

e

H(pt)

D

e

pt�

R;�

(�

pt

(�))

E

:

(4.2)



48 J. G�artner and S.A. Molchanov

To obtain asymptotic formulas for the expectations on the left and the right it

remains to derive a large deviation principle for �

t

(�) and afterwards to apply

the Laplace-Varadhan method. Since �

t

(0) ! �1 as t ! 1, we need to add

�1 to the real axis. We already know from step 3

0

of the proof of Lemma 2.3

that the distribution of �

t

(0) on the left-compacti�ed real line [�1;1) satis�es

the full large deviation principle as t!1 with scale t and rate function

J(h) = % exp

�

h

%

� 1

�

; h 2 [�1;1):

Since the random variables �

t

(x), x 2 T

d

R

, are independent and identically

distributed, this implies the following result.

Lemma 4.1. Let Assumption (H) be satis�ed for some % 2 (0;1). Then for

each R 2 N, the probability distributions of �

t

(�) on [�1;1)

T

d

R

satisfy the full

large deviation principle as t!1 with scale t and rate function

J

R;%

(h(�)) :=

%

e

X

x2T

d

R

e

h(x)=%

; h : T

d

R

! [�1;1):

Now observe that the principle eigenvalues �

R;0

and �

R;�

may be considered as

continuous functionals on [�1;1)

T

d

R

. If a potential h : T

d

R

! [�1;1) attains

the value �1, then �

R;0

(h(�)) and �

R;�

(h(�)) are the principal eigenvalues of

��+h(�) on T

d

R

nfh = �1g with Dirichlet boundary condition on the set where

h = �1 and zero or periodic boundary condition on the rest of the boundary.

The functionals �

R;0

and �

R;�

are not bounded from above. Therefore, in order

to be sure that the Laplace-Varadhan method is applicable, we still have to

check that

lim

M!1

lim sup

t!1

1

t

log

D

e

t�

R;�

(�

t

(�))

1l

�

�

R;�

(�

t

(�)) > M

�

E

= 0: (4.3)

The same will then be true for �

R;0

(�

t

(�)). Since

�

R;�

(�

t

(�)) � max

x2T

d

R

�

t

(x) = max

x2T

d

R

�(x)�

H(t)

t

;

we obtain

D

e

t�

R;�

(�

t

(�))

1l

�

�

R;�

(�

t

(�)) > M

�

E

� jT

d

R

j e

�H(t)

�

e

t�(0)

1l

�

�(0) >

H(t)

t

+M

��

:

Applying Chebyshev's exponential inequality and taking into account Assump-

tion (H), we may continue as follows:

� jT

d

R

j e

�2H(t)�Mt

D

e

2t�(0)

E

= jT

d

R

j expf�Mt+H(2t)� 2H(t)g

= expf�Mt+ 2(log 2)%t+ o(t)g:
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This clearly proves (4.3). Now an application of the Laplace-Varadhan method

for the large deviation principle of Lemma 4.1 yields

D

e

pt�

R;0

(�

pt

(�))

E

= exp

�

ptmax

�

�

R;0

� J

R;%

�

+ o(t)

	

and

D

e

pt�

R;�

(�

pt

(�))

E

= exp

�

ptmax

�

�

R;�

� J

R;%

�

+ o(t)

	

:

Substituting this in (4.2), we arrive at the next lemma.

Lemma 4.2. Let Assumption (H) be satis�ed for some % 2 (0;1). Then for

arbitrary R 2 N and p = 1; 2; : : : we have

hu(t; 0)

p

i � exp

�

H(pt) + ptmax

�

�

R;0

� J

R;%

�

+ o(t)

	

and

hu(t; 0)

p

i � exp

�

H(pt) + ptmax

�

�

R;�

� J

R;%

�

+ o(t)

	

as t!1.

Similarly to the proof of Lemma 2.17, we may now use the fact that �

R;0

and

�

R;�

are, respectively, the Legendre transforms of the functionals �S

R;0

d

and

�S

R;�

d

introduced in Section 1.2. Note that this makes sense even for potentials

which attain the value �1. We obtain

max

�

�

R;0

� J

R;%

�

= max

p2P(T

d

R

)

(

max

h2[�1;1)

T

d

R

�

X

x2T

d

R

p(x)h(x)� J

R;%

(h(�))

�

� �S

R;0

d

(p)

)

:

The inner maximum is attained for

h(�) = % log p(�) + % (4.4)

and equals �%I

R

d

(p). Hence,

max

�

�

R;0

� J

R;%

�

= �min

h

�S

R;0

d

+ %I

R

d

i

:

Correspondingly,

max

�

�

R;�

� J

R;%

�

= �min

h

�S

R;�

d

+ %I

R

d

i

:

This shows that Lemma 4.2 may be combined with Lemma 1.10 to arrive at the

assertion of Theorem 1.2 for 0 < % <1.

The above arguments indicate that those peaks of the potential �(�) which

form the p-th moment have height comparable with

H(pt)

pt

=

H(t)

t

+ % log p+ o(1):
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Their shape is given by (4.4) with p(�) being a minimizer of the functional

S

d

+ %I

d

. In view of Lemma 1.10 and Remark 1.3 c), this means that those

peaks which contribute to the p-th moment are of the form

H(t)

t

+ %(log p+ 1)� 2d��(

%

�

) + 2% log

�

v

%=�


 � � � 
 v

%=�

�

:

The heights of these peaks di�er for di�erent values of p and are much larger

than the typical exceedances (2.6) for the almost sure asymptotics. But their

pro�les coincide.

4.2. Generalization to correlated potentials

Until now we assumed that the potential �(�) consists of i.i.d. random varia-

bles. In the present section we will explain how our asymptotic results about

the moments and the Lifshitz tails may be extended to a large class of depen-

dent random �elds. This may be considered as an important step towards the

investigation of the spatially continuous situation.

We will assume throughout that �(�) is a (not necessarily ergodic) homoge-

neous random �eld such that

H(t) := log

D

e

t�(0)

E

<1 for all t � 0.

As before, we suppose that the initial �eld u

0

(�) is nonnegative, homogeneous,

independent of �(�), and satis�es (1.2). For general correlated potentials it

is unknown whether or not the nonnegative solution of our Cauchy problem

is unique a.s. In the following we consider the smallest nonnegative solution

which is given by the Feynman-Kac formula (2.4). For a detailed investigation

of existence and uniqueness see [9].

Let P

f

(Z

d

) denote the space of probability measures on Z

d

with �nite sup-

port. Let further �

z

be the Dirac measure at z 2 Z

d

. We consider shift-invariant

functionals G

t

: P

f

(Z

d

)! R, t > 0, de�ned by

G

t

(p) := log

*

exp

8

<

:

t

X

z2Z

d

p(z)�(z)

9

=

;

+

:

As a consequence of H�older's inequality, G

t

is convex. In particular,

G

t

(p) � G

t

(�

0

) = H(t) <1:

We impose the following general regularity assumption on the tail behavior of

�(�) which replaces Assumption (H) of Section 1.

Assumption (G). For each p 2 P

f

(Z

d

), the (possibly in�nite) limit

I(p) := lim

t!1

G

t

(�

0

)�G

t

(p)

t
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exists.

As a consequence of the mentioned properties of G

t

, the functional I is shift-

invariant and concave. Moreover, 0 � I � 1 and I(�

0

) = 0. We next introduce

the function

�

G

(�) := inf

P

f

(Z

d

)

[�S

d

+ I] ; � > 0;

where S

d

is the d-dimensional Donsker-Varadhan functional from Section 1.3.

Note that �

G

is concave and

0 � �

G

(�) � 2d�; � > 0:

The left equality is valid if I � 0, and the right equality holds if I(p) = 1 for

p not being a Dirac measure.

We are now ready to formulate our result about the moments of the solution

u to the Cauchy problem (1.1).

Theorem 4.3. Let Assumption (G) be satis�ed. Then

hu(t; 0)

p

i = exp fH(pt)� �

G

(�)pt+ o(t)g

as t!1 for p = 1; 2; : : :

We next want to illustrate this result by several examples. Its proof will be

postponed to the end of this section.

Example 4.4. a) Uncorrelated potentials. Theorem 1.2 is a particular case of

Theorem 4.3. Indeed, if the random variables �(x), x 2 Z

d

, are independent

and identically distributed, then

G

t

(p) =

X

z

H(tp(z)):

Under these circumstances, Assumption (H) implies Assumption (G) with I =

%I

d

, where I

d

is the d-dimensional entropy functional introduced in Section 1.3.

Hence, taking into account Lemma 1.10, we �nd that

�

G

(�) = inf

P

f

(Z

d

)

[�S

d

+ %I

d

] = 2d��(

%

�

):

b) Random clouds. Let �(�) be an i.i.d. random �eld such that

H

�

(t) := log

D

e

t�(0)

E

<1 for all t 2 R.

Given a function ' : Z

d

! R with �nite support, consider the random potential

�(x) :=

X

y2Z

d

'(y � x)�(y); x 2 Z

d

:
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Then the cumulant generating function H of �(0) has the form

H(t) =

X

y

H

�

(t'(y)):

Let us �rst consider the case when ' is nonnegative. Suppose that the

cumulant generating function H

�

satis�es Assumption (H) for some % 2 [0;1].

Then the function H also ful�lls this assumption but with parameter %

P

y

'(y).

We obtain

G

t

(p) =

X

y

H

�

(t(' � p)(y)); p 2 P

f

(Z

d

);

where ' � p denotes convolution of ' with p. Hence, if % is �nite, then the

potential �(�) satis�es Assumption (G) with

I(p) = % [I

d

(' � p)� I

d

(')] :

Assumption (G) is also ful�lled for % = 1. In this case I(p) = 1 if p is not a

Dirac measure. This may be seen from the formula

G

t

(�

0

)�G

t

(p)

t

=

X

y

�

P

z

p(z)H

�

(t'(y � z))�H

�

(t(' � p)(y))

t

�

:

(4.5)

By convexity, the expression in the square brackets is always nonnegative. Now

suppose that j supp pj � 2. Then one �nds y 2 Z

d

such that supp p intersects

y � supp' but is not entirely contained in that set. It will be enough to show

that, for this y, the term in the square brackets in (4.5) converges to +1 as

t!1. Note that

0 < 
 :=

X

y�z2supp'

p(z) < 1:

Hence, again by convexity,

X

z

p(z)H

�

(t'(y � z)) = 


X

y�z2supp'

p(z)




H

�

(t'(y � z))

� 
H

�

 

t

X

y�z2supp'

p(z)




'(y � z)

!

= 
H

�

�

t

1




(' � p)(y)

�

:

Thus, for our particular lattice site y, the term in the square brackets on the

right of (4.5) may be estimated from below by




H

�

�

t


�1

(' � p)(y)

�

� 


�1

H

�

(t(' � p)(y))

t

:

But, since % =1 and 


�1

> 1, this expression converges to in�nity as t!1.
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If ' attains both positive and negative values, then the situation will be

more complex. Let us consider in detail the case when the random �eld �(�) is

both unbounded from above and below and the cumulant generating functions

of �(0) and ��(0) satisfy Assumption (H) with �nite nonnegative parameters

%

+

and %

�

, respectively. Then we may use the decomposition

G

t

(�

0

)�G

t

(p)

t

=

X

y

H

�

(t'(y))� j'(y)jH

�

(t sign'(y))

t

�

X

y

H

�

(t(' � p)(y))� j(' � p)jH

�

(t sign (' � p)(y))

t

+

�

k'

�

k

1

� k(' � p)

�

k

1

�

H

�

(�t)

t

+

�

k'

+

k

1

� k(' � p)

+

k

1

�

H

�

(t)

t

;

where k�k

1

denotes the l

1

-norm. As t!1, the �rst sum on the right converges

to �%

�

I

d

('

�

) � %

+

I

d

('

+

). The second sum converges to the same expression

with ' replaced by '�p. The rest is either zero or converges to in�nity, since the

terms in the square brackets are nonnegative and both H

�

(�t)=t and H

�

(t)=t

tend to in�nity. But the sum of the two terms in the square brackets equals

kj'jk

1

� kj' � pjk

1

which is zero if and only if, for each y 2 Z

d

, supp p intersects at most one of the

two sets y� supp'

�

and y� supp'

+

. Let D

'

denote the set of all probabilities

p 2 P

f

(Z

d

) with this property. Then the above considerations show that the

potential �(�) satis�es Assumption (G) with

I(p) = %

�

�

I

d

((' � p)

�

)� I

d

('

�

)

�

+ %

+

�

I

d

((' � p)

+

)� I

d

('

+

)

�

if p 2 D

'

and I(p) =1 otherwise.

Let us �nally cast a glance at the particular situation when supp'

�

and

supp'

+

are neighboring in each direction (i.e., for each e 2 Z

d

with jej = 1,

there exist x; y 2 Z

d

such that x � y = e and '(x)'(y) < 0). Then p 2 D

'

implies that all connected components of supp p consist of single lattice sites

and, therefore, S

d

(p) = 2d. As a consequence, we obtain �

G

(�) = 2d�.

c) Random plateaux. Let again �(�) be a �eld of i.i.d. random variables with

�nite cumulant generating function H

�

. Given a �nite subset V of Z

d

, consider

the potential

�(x) := max

y2V

�(x� y); x 2 Z

d

:

Suppose thatH

�

satis�es Assumption (H) with % =1. This is true in particular
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for i.i.d. Gaussian �elds �(�). We obtain

max

m : supp p!V

*

exp

(

t

X

z

p(z)�(z �m(z))

)+

� e

G

t

(p)

�

X

m : supp p!V

*

exp

(

t

X

z

p(z)�(z �m(z))

)+

:

Note that the upper and lower bounds di�er at most by the constant factor

jV j

j supp pj

. Moreover, the maximum on the left may be taken over all m : Z

d

!

V . For such m,

X

z

p(z)�(z �m(z)) =

X

x

p(D

m

(x))�(x);

where D

m

(x) := fz : z � m(z) = xg and p(D

m

(x)) =

P

z2D

m

(x)

p(z). Taking

this into account, we �nd that

G

t

(p) = max

m : Z

d

!V

X

x

H

�

(tp(D

m

(x)) +O(1)

as t!1. In particular, G

t

(�

0

) = H

�

(t) + O(1). Hence,

G

t

(�

0

)�G

t

(p)

t

= min

m : Z

d

!V

X

x

p(D

m

(x))H

�

(t)�H

�

(tp(D

m

(x)))

t

+ o(1):

Since % = 1, the minimum on the right is either zero or tends to in�nity as

t ! 1. It is zero if and only if there exist m : Z

d

! V and x 2 Z

d

such that

supp p � D

m

(x). But this happens if and only if supp p � x + V for some

x 2 Z

d

. We have therefore shown that Assumption (G) is ful�lled with I(p) = 0

if supp p � x+ V for some x and I(p) =1 otherwise. Since the functional S

d

is shift-invariant, we conclude from this that

�

G

(�) = � min

supp p�V

S

d

(p) = ��

0

(V );

where �

0

(V ) denotes the smallest eigenvalue of �� in l

2

(V ) with Dirichlet

boundary condition. If jV j � 2, then 0 < �

0

(V ) < 2d.

As we will see later, our proof of Theorem 4.3 also works for the funda-

mental solution q(t; x; y) of the Anderson Hamiltonian H. In particular, under

Assumption (G),

hq(t; 0; 0)i = exp fH(t)� �

G

(�)t+ o(t)g as t!1. (4.6)

This allows a straightforward generalization of our result about the Lifshitz

tails in Section 3. To be precise, assume that the potential �(�) is homogeneous

and ergodic. Suppose further that all exponential moments he

t�(0)

i, t � 0, are
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�nite, the distribution function F of �(0) is continuous, and F (r) < 1 for all r.

Recall that Assumption (F) was introduced in Section 2.1. As before, let

�

F and

�

N denote the tails of the distribution function F and the spectral distribution

function N of our Hamiltonian H, respectively.

Theorem 4.5. Let Assumption (F) be satis�ed for some % 2 [0;1). Let also

Assumption (G) be ful�lled.

a) If 0 < % <1, then

log

�

N(h) � log

�

F (h+ �

G

(�)) as h!1.

b) If % = 0, then

�

F (h+ �

G

(�) + �) �

�

N(h) �

�

F (h+ �

G

(�)� �)

for arbitrary � > 0 and all su�ciently large h.

Almost word for word, the proof repeats that of Theorem 3.1 but with the

more general asymptotics (4.6) as starting point. In addition, we now have a

nontrivial upper bound in assertion b). Its proof is simple and left to the reader.

The rest of this section is devoted to the proof of Theorem 4.3. As before,

we may and will assume without loss of generality that u

0

� 1. Let us begin

with a few preliminary remarks after which the proof of the lower bound will

turn out to follow closely that for i.i.d. potentials.

First, given p 2 P

f

(Z

d

) with I(p) <1, observe that I(q) <1 for all q with

supp q � supp p. Indeed, for such q one �nds 
 2 (0; 1) and r 2 P

f

(Z

d

) such

that

p = 
q + (1� 
)r:

Since I is concave and nonnegative, this implies that

1 > I(p) � 
I(q) + (1� 
)I(r) � 
I(q):

Hence, I(q) is �nite. Now, if I(p) < 1, then the restriction of the functional

I to fq 2 P

f

(Z

d

) : supp q = supp pg is �nite and continuous. This is obvious

from the concavity of I and the observation that the above set is convex and

open in its a�ne hull. In particular, there exists an open neighborhood U(p) of

p in fq 2 P

f

(Z

d

) : supp q � supp pg = P(supp p) such that I is bounded and

continuous on U(p).

Next, we remark that

inf

P

f

(Z

d

)

[�S

d

+ I] = inf

P

f;c

(Z

d

)

[�S

d

+ I] ; (4.7)

where P

f;c

(Z

d

) is the subset of P

f

(Z

d

) consisting of measures with connected

support. To see this, �x p 2 P

f

(Z

d

) n P

f;c

(Z

d

) arbitrarily and let D

1

; : : : ; D

m

denote the connected components of supp p. Then we �nd p

1

; : : : ; p

m

2 P

f;c

(Z

d

)
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with supp p

i

= D

i

for i = 1; : : : ;m and 


1

; : : : ; 


m

2 (0; 1) with 


1

+ � � �+


m

= 1

such that

p =

m

X

i=1




i

p

i

:

Since I is concave, we have

I(p) �

m

X

i=1




i

I(p

i

):

Moreover, since the supports of the measures p

i

are separated from each other

by a distance larger than one, the functional S

d

splits into parts:

S

d

(p) =

m

X

i=1




i

S

d

(p

i

):

Hence,

�S

d

(p) + I(p) �

m

X

i=1




i

[�S

d

(p

i

) + I(p

i

)]

� inf

P

f;c

(Z

d

)

[�S

d

+ I] :

This clearly proves (4.7).

Because of (4.7), the derivation of the lower bound reduces to the following

lemma.

Lemma 4.6. Let Assumption (G) be satis�ed. Given q 2 P

f

(Z

d

), suppose that

I(q) is �nite and supp q is connected. Then

hu(t; 0)

p

i � exp fH(pt)� pt [�S

d

(q) + I(q)]� o(t)g

as t!1 for p = 1; 2; : : :

Proof. Because of shift-invariance, we may assume that 0 2 supp q. Let � be

the �rst time when one of our random walks x

1

(t); : : : ; x

p

(t) exits supp q. Then

hu(t; 0)

p

i =

*

E

p

0

exp

8

<

:

pt

X

z2Z

d

L

t

(z)�(z)

9

=

;

+

= E

p

0

exp fG

pt

(L

t

(�))g

� e

H(pt)

E

p

0

exp

�

�pt

G

pt

(�

0

)�G

pt

(L

t

(�))

pt

�

1l(� > t):

We know from our preliminary remarks that there exists an open neighbor-

hood U(q) of q in f~q 2 P

f

(Z

d

) : supp ~q � supp qg such that I is bounded and

continuous on U(q). Moreover, U(q) may be chosen so that the convergence

G

t

(�

0

)�G

t

(~q)

t

! I(~q) as t!1
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in Assumption (G) is uniform in ~q 2 U(q). This is again a consequence of

concavity. Hence, we obtain

hu(t; 0)

p

i � e

H(pt)�o(t)

E

p

0

exp f�ptI(L

t

(�))g1l (� > t; L

t

(�) 2 U(q)) :

Since supp q is connected, our assertion now follows by an application of the

large deviation principle for the occupation time measures L

t

on supp q with

killing on the complement of supp q, cf. assertion a) of Lemma 1.5. �

The proof of the upper bound is more subtle, mainly because the method of

`periodization' used in Section 1 breaks down for correlated potentials. Our way

out of this dilemma consists in deriving an upper bound for the moments by use

of Dirichlet boundary conditions. As in Lemma 1.4, let u

R;0

denote the solution

of our initial boundary value problem on T

d

R

with zero boundary condition and

initial datum identically one. Let further

@T

d

R

:= T

d

R

n T

d

R�1

denote the boundary of T

d

R

. The next lemma provides the key for the derivation

of the upper bound.

Lemma 4.7. For each R 2 N and p = 1; 2; : : : we have

hu(t; 0)

p

i � e

d�"

R

pt+o(t)

X

x2T

d

R




u

R;0

(t; x)

p

�

as t!1, where

"

R

:= j@T

d

R

j=jT

d

R

j ! 0

as R!1.

Proof. 1

0

Fix R and p arbitrarily. We consider the periodic frame

� :=

[

x2(2R+1)Z

d

�

x+ @T

d

R

�

:

Each lattice site is covered by exactly j@T

d

R

j of the shifted frames

�

y

:= y + �; y 2 T

d

R

:

From this we conclude that for each t > 0 there exists a (random) site y 2 T

d

R

such that

X

z2�

y

L

t

(z) � j@T

d

R

j=jT

d

R

j = "

R

:
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Because of this, using the probabilistic representation of the moments and the

homogeneity of the potential, we get

hu(t; 0)

p

i =

*

E

p

0

exp

(

pt

X

z

L

t

(z)�(z)

)+

� jT

d

R

j

*

E

p

0

exp

(

pt

X

z

L

t

(z)�(z)

)

1l

 

X

z2�

L

t

(z) � "

R

!+

� jT

d

R

je

d�"

R

pt

*

E

p

0

exp

(

pt

X

z

L

t

(z)�

R

(z)

)+

; (4.8)

where the potential �

R

(�) has been obtained by lowering �(�) on the frame � by

an amount of d�:

�

R

(z) :=

(

�(z)� d�; if z 2 �,

�(z); otherwise.

2

0

We next introduce the centered cubes

V

r

:=

[

z2(2R+1)Z

d

jz

1

j;:::;jz

d

j�r

�

z + T

d

R

�

; r > 0;

where z

1

; : : : ; z

d

are the components of z, and denote by �

p

(r) the �rst time

when one of the random walks x

1

(t); : : : ; x

p

(t) leaves V

r

. We set

r(t) := t log t

and show that the paths of our random walks may be restricted to the cube

V

r(t)

. More precisely, we want to prove that

*

E

p

0

exp

(

pt

X

z

L

t

(z)�

R

(z)

)+

�

*

E

p

0

exp

(

pt

X

z

L

t

(z)�

R

(z)

)

1l (�

p

(r(t)) > t)

+

+ e

H(pt)�
t

(4.9)

for arbitrary 
 > 0 and all su�ciently large t. With

R

n

(t) := nr(t); n 2 N ;

we obtain

*

E

p

0

exp

(

pt

X

z

L

t

(z)�

R

(z)

)+

=

*

E

p

0

exp

(

pt

X

z

L

t

(z)�

R

(z)

)

1l (�

p

(r(t)) > t)

+

+

1

X

n=1

*

E

p

0

exp

(

pt

X

z

L

t

(z)�

R

(z)

)

1l (�

p

(R

n

(t)) � t < �

p

(R

n+1

(t)))

+

:
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The expression under the sum may be estimated from above by

*

exp

(

pt max

z2V

R

n+1

(t)

�(z)

)+

P

p

0

(�

p

(R

n

(t)) � t)

� jV

R

n+1

(t)

j e

H(pt)

P

p

0

(�

p

(R

n

(t)) � t) :

Combining this with assertion a) of Lemma 2.5, one readily checks that the

above sum does not exceed

e

H(pt)�
t

for arbitrary 
 > 0 and all su�ciently large t. This proves (4.9).

3

0

Next observe that the �rst term on the right of (4.9) coincides with the

p-th moment of u

0

r(t)

(t; 0), where u

0

r(t)

is the solution of the initial boundary

value problem for our parabolic equation on V

r(t)

with lowered potential �

R

(�),

Dirichlet boundary condition, and initial datum identically one. Therefore,

combining (4.8) with (4.9), we �nd that

hu(t; 0)

p

i � e

d�"

R

pt+o(t)

hD

u

0

r(t)

(t; 0)

p

E

+ e

H(pt)�
t

i

for arbitrary 
 > 0. To get rid of the last exponential term we may take


 > (2 + "

R

)d�p and use the trivial bound

e

H(pt)�2d�pt

� hu(t; 0)

p

i

which is obtained from the probabilistic representation of the p-th moment by

forcing all random walks to stay at 0 until time t. In this way we arrive at the

bound

hu(t; 0)

p

i � e

d�"

R

pt+o(t)

D

u

0

r(t)

(t; 0)

p

E

: (4.10)

4

0

Now the spectral representation of u

0

r(t)

(t; �) yields

u

0

r(t)

(t; 0) � jV

r(t)

j e

t�

0

r(t)

(�

R

(�))

;

where �

0

r(t)

(�

R

(�)) denotes the principal eigenvalue of the operator

H

R;t

:= ��+ �

R

(�) in l

2

(V

r(t)

)

with zero boundary condition. Hence,

D

u

0

r(t)

(t; 0)

p

E

� e

o(t)

D

e

pt�

0

r(t)

(�

R

(�))

E

: (4.11)

For each z 2 (2R+ 1)Z

d

, let �

R;0

(�(z + � )) denote the principal eigenvalue of

H

R

z

:= ��+ �(�) in l

2

(z + T

d

R

)
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with zero boundary condition. A straightforward computation shows that, be-

cause of the special form of the potential �

R

(�),

H

R;t

�

M

z2(2R+1)Z

d

jz

1

j;:::;jz

d

j�r(t)

H

R

z

in the sense of positive de�niteness in l

2

(V

r(t)

). Consequently,

�

0

r(t)

(�

R

(�)) � max

z2(2R+1)Z

d

jz

1

j;:::;jz

d

j�r(t)

�

R;0

(�(z + � )):

Therefore

D

e

pt�

0

r(t)

(�

R

(�))

E

� jV

r(t)

j

D

e

pt�

R;0

(�(�))

E

: (4.12)

Using the spectral representation of u

R;0

(t; �), one �nds that

e

t�

R;0

(�(�))

�

X

x2T

d

R

u

R;0

(t; x): (4.13)

Thereby one also has to take into account that the eigenfunction corresponding

to the eigenvalue �

R;0

(�(�)) is positive. Combining (4.10){(4.13), we �nally

arrive at the assertion of our lemma. �

Because of the last lemma, it only remains to derive appropriate upper

bounds for the moments of u

R;0

. This will be done now.

Lemma 4.8. Let Assumption (G) be satis�ed. Then, for each R 2 N, p =

1; 2; : : : , and x 2 T

d

R

, we have




u

R;0

(t; x)

p

�

� exp

�

H(pt)� pt min

p2P

f

(Z

d

)

supp p�T

d

R

[�S

d

(p) + I(p)] + o(t)

�

as t!1.

Proof. Let us assume for simplicity that x = 0. Using the probabilistic repre-

sentation of the p-th moment, we �nd that




u

R;0

(t; 0)

p

�

= e

H(pt)

E

p

0

exp

�

�pt

G

pt

(�

0

)�G

pt

(L

t

(�))

pt

�

1l (�

p

R

> t) :

Together with Assumption (G) this indicates that our assertion follows from the

upper bound in the Laplace-Varadhan method applied for the large deviation

principle of Lemma 1.5 a). The expression

G

t

(�

0

)�G

t

(p)

t
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is nonnegative and converges to I(p) as t ! 1. In general, this convergence

is not uniform and the limiting functional I is not continuous on P(T

d

R

). Ne-

vertheless, an analysis of the standard proof of the upper bound in the Laplace-

Varadhan method (see e.g. Deuschel and Stroock [3], Lemma 2.1.8) shows that

it will work if the following assertion is valid. For each p 2 P(T

d

R

) and � 2 (0; 1)

there exists a neighborhood U

�

(p) of p in P(T

d

R

) such that

lim inf

t!1

inf

~p2U

�

(p)

G

t

(�

0

)�G

t

(~p)

t

� (1� �)I(p): (4.14)

To prove this note that

U

�

(p) :=

�

(1� 
)p+ 
r : 0 � 
 < �, r 2 P(T

d

R

)

	

is a neighborhood of p in P(T

d

R

) for any � 2 (0; 1). Since the functionals G

t

are

convex, we obtain

G

t

(�

0

)�G

t

((1� 
)p+ 
r) � (1� 
) (G

t

(�

0

)�G

t

(p)) + 
 (G

t

(�

0

)�G

t

(r))

� (1� 
) (G

t

(�

0

)�G

t

(p)) :

Hence,

inf

~p2U

�

(p)

G

t

(�

0

)�G

t

(~p)

t

� (1� �)

G

t

(�

0

)�G

t

(p)

t

�! (1� �)I(p)

for all � 2 (0; 1). This clearly implies (4.14). �

The proof of Theorem 4.3 is now complete.
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