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Abstract We continue our study of the parabolic Anderson equation ∂u/∂ t =
κ∆u + γξ u for the space-time field u : Zd × [0,∞)→ R, where κ ∈ [0,∞) is the
diffusion constant, ∆ is the discrete Laplacian, γ ∈ (0,∞) is the coupling constant,
and ξ : Zd × [0,∞)→ R is a space-time random environment that drives the equa-
tion. The solution of this equation describes the evolution of a “reactant” u under
the influence of a “catalyst” ξ , both living on Zd .

In earlier work we considered three choices for ξ : independent simple random
walks, the symmetric exclusion process, and the symmetric voter model, all in equi-
librium at a given density. We analyzed the annealed Lyapunov exponents, i.e., the
exponential growth rates of the successive moments of u w.r.t. ξ , and showed that
these exponents display an interesting dependence on the diffusion constant κ , with
qualitatively different behavior in different dimensions d. In the present paper we
focus on the quenched Lyapunov exponent, i.e., the exponential growth rate of u
conditional on ξ .

We first prove existence and derive some qualitative properties of the quenched
Lyapunov exponent for a general ξ that is stationary and ergodic w.r.t. translations
in Zd and satisfies certain noisiness conditions. After that we focus on the three par-
ticular choices for ξ mentioned above and derive some more detailed properties. We
close by formulating a number of open problems.
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1 Introduction

Section 1.1 defines the parabolic Anderson model, Section 1.2 introduces the
quenched Lyapunov exponent, Section 1.3 summarizes what is known in the litera-
ture, Section 1.4 contains our main results, while Section 1.5 provides a discussion
of these results and lists open problems.

1.1 Parabolic Anderson model

The parabolic Anderson model (PAM) is the partial differential equation

∂

∂ t
u(x, t) = κ∆u(x, t)+ [γξ (x, t)−δ ]u(x, t), x ∈ Zd , t ≥ 0. (1)

Here, the u-field is R-valued, κ ∈ [0,∞) is the diffusion constant, ∆ is the discrete
Laplacian acting on u as

∆u(x, t) = ∑
y∈Zd
‖y−x‖=1

[u(y, t)−u(x, t)] (2)

(‖ · ‖ is the Euclidian norm), γ ∈ [0,∞) is the coupling constant, δ ∈ [0,∞) is the
killing constant, while

ξ = (ξt)t≥0 with ξt = {ξ (x, t) : x ∈ Zd} (3)

is an R-valued random field that evolves with time and that drives the equation.
The ξ -field provides a dynamic random environment defined on a probability space
(Ω ,F ,P). As initial condition for (1) we take

u(x,0) = δ0(x), x ∈ Zd . (4)

One interpretation of (1) and (4) comes from population dynamics. Consider a
system of two types of particles, A (catalyst) and B (reactant), subject to:

• A-particles evolve autonomously according to a prescribed stationary ergodic dy-
namics with ξ (x, t) denoting the number of A-particles at site x at time t;

• B-particles perform independent random walks at rate 2dκ and split into two at a
rate that is equal to γ times the number of A-particles present at the same location;

• B-particles die at rate δ ;
• the initial configuration of B-particles is one particle at site 0 and no particle

elsewhere.

Then
u(x, t) = the average number of B-particles at site x at time t

conditioned on the evolution of the A-particles. (5)
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It is possible to remove δ via the trivial transformation u(x, t)→ u(x, t)e−δ t . In what
follows we will therefore put δ = 0.

We will assume that ξ is stationary and ergodic w.r.t. translations in Zd , is not
constant, and is such that

∀κ,γ ∈ [0,∞) ∃c = c(κ,γ) < ∞ : E
(

logu(0, t)
)
≤ ct ∀ t ≥ 0. (6)

Three choices of ξ will receive special attention, namely (N0 = N∪{0}):

(1) Independent Simple Random Walks (ISRW), where ξt ∈Ω = NZd

0 and ξ (x, t)
represents the number of particles at site x at time t. Under the ISRW-dynamics
particles move around independently as simple random walks stepping at rate
1. We draw ξ0 according to the Poisson product measure νρ with density ρ ∈
(0,∞). For this choice, ξ is stationary, ergodic and reversible in time (see
Kipnis and Landim [22], Chapter 1).

(2) Symmetric Exclusion Process (SEP), where ξt ∈Ω = {0,1}Zd
and ξ (x, t) rep-

resents the presence (ξ (x, t) = 1) or absence (ξ (x, t) = 0) of a particle at site
x at time t. Under the SEP-dynamics particles move around independently
according to a symmetric random walk transition kernel at rate 1, but sub-
ject to the restriction that no two particles can occupy the same site. We draw
ξ0 according to the Bernoulli product measure νρ with density ρ ∈ (0,1).
For this choice, the ξ -field is stationary, ergodic and reversible in time (see
Liggett [23], Chapter VIII).

(3) Symmetric Voter Model (SVM), where ξt ∈ Ω = {0,1}Zd
and ξ (x, t) rep-

resents two possible opinions or, alternatively, the presence (ξ (x, t) = 1) or
absence (ξ (x, t) = 0) of a particle at site x at time t. Under the SVM-dynamics
each site imposes its state on another site according to a symmetric ran-
dom walk transition kernel at rate 1. We draw ξ0 according to the equilib-
rium distribution νρ with density ρ ∈ (0,1), which is not a product mea-
sure. The ergodic properties of the SVM are qualitatively different in low
and high dimensions, namely, when d = 1,2 all equilibria are trivial, i.e.,
νρ = (1− ρ)δ0 + ρδ1, while when d ≥ 3 there are also non-trivial equilib-
ria, i.e., ergodic νρ parametrized by the density ρ (see Liggett [23], Chapter
V).

Contrary to ISRW and SEP, the dynamics of SVM is non-conservative and non-
reversible: opinions are not preserved and the law of ξ is not invariant under time
reversal. For each of these examples we study the quenched Lyapunov exponents
as a function of d, κ , γ and ρ . Because ξ is dependent in space and time, these
examples require techniques different from those developed in the case of a white
noise potential ξ (see Carmona and Molchanov [6], Greven and den Hollander [18]).

Throughout the sequel, we write Pη for the law of ξ starting from η ∈ Ω , and
P =

∫
Ω

νρ(dη)Pη for the law of ξ in equilibrium νρ at density ρ .
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1.2 Lyapunov exponents

Our focus will be on the quenched Lyapunov exponent, i.e., the exponential growth
rate of u conditional on ξ :

λ0 = lim
t→∞

1
t

logu(0, t) ξ -a.s. (7)

We will be interested in comparing λ0 with the annealed Lyapunov exponents, de-
fined by

λp = lim
t→∞

1
t

logE
(
[u(0, t)]p)1/p

, p ∈ N, (8)

which were analyzed in detail in our earlier work (see Section 1.3). In (7–8) we pick
x = 0 as the reference site to monitor the growth of u. However, it is easy to show
that the Lyapunov exponents are the same at other sites.

By the Feynman-Kac formula, the solution of (1) reads

u(x, t) = Ex

(
exp
[

γ

∫ t

0
ξ (Xκ(s), t− s) ds

]
u
(
Xκ(t),0

))
, (9)

where Xκ = (Xκ(t))t≥0 is simple random walk on Zd with step rate 2dκ and Ex
denotes expectation with respect to Xκ given Xκ(0) = x. In particular, for stationary
ξ and t > 0 we have

u(0, t) = ∑
y∈Zd

u(y,0)E0

(
exp
[

γ

∫ t

0
ξ
(
Xκ(s), t− s

)
ds
]

δy
(
Xκ(t)

))

= ∑
y∈Zd

u(y,0)Ey

(
exp
[

γ

∫ t

0
ξ
(
Xκ(s),s

)
ds
]

δ0
(
Xκ(t)

))
P= ∑

y∈Zd

u(y,0)E0

(
exp
[

γ

∫ t

0
ξ
(
Xκ(s),s

)
ds
]

δ−y
(
Xκ(t)

))
, (10)

where in the second line we reverse time and use that Xκ is a reversible dynamics,
while in the third line we use the stationarity of ξ to get equality in P-distribution.
Therefore, for any initial condition u(·,0) satisfying u(x,0) = u(−x,0) for all x∈Zd ,
which is the case for our choice in (4), we can define

Λ0(t) =
1
t

logu(0, t) P=
1
t

logE0

(
exp
[

γ

∫ t

0
ξ
(
Xκ(s),s

)
ds
]

u
(
Xκ(t),0

))
. (11)

If the last quantity admits a limit as t→ ∞, then

λ0 = lim
t→∞

Λ0(t) ξ -a.s., (12)

where the limit is expected to be ξ -a.s. constant. Condition (6) implies that λ0 ≤ c.
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Clearly, λ0 is a function of d, κ , γ and the parameters controlling ξ . In what
follows, our main focus will be on the dependence on κ , and therefore we will often
write λ0(κ).

1.3 Literature

1.3.1 White noise

The behavior of the Lyapunov exponents for the PAM in a time-dependent random
environment has been the subject of several papers. Carmona and Molchanov [6]
obtained a qualitative description of both the quenched and the annealed Lyapunov
exponents when ξ is white noise, i.e.,

ξ (x, t) =
∂

∂ t
W (x, t), (13)

where W = (Wt)t≥0 with Wt = {W (x, t) : x ∈ Zd} is a space-time field of inde-
pendent Brownian motions. They showed that if u(·,0) has compact support (e.g.
u(·,0) = δ0(·)), then the quenched Lyapunov exponent λ0(κ) defined in (7) exists
and is independent of u(·,0). Moreover, they found that the asymptotics of λ0(κ) as
κ ↓ 0 is singular, namely, there are constants C1,C2 ∈ (0,∞) and κ0 ∈ (0,∞) such
that

C1
1

log(1/κ)
≤ λ0(κ)≤C2

log log(1/κ)
log(1/κ)

∀0 < κ ≤ κ0. (14)

Subsequently, Carmona, Molchanov and Viens [7], Carmona, Koralov and Molcha-
nov [5], and Cranston, Mountford and Shiga [9], proved the existence of λ0 when
u(·,0) has non-compact support (e.g. u(·,0) ≡ 1), showed that there is a constant
C ∈ (0,∞) such that

lim
κ↓0

log(1/κ)λ0(κ) = C, (15)

and proved that
lim
p↓0

λp(κ) = λ0(κ) ∀κ ∈ [0,∞). (16)

(These results were later extended to Lévy white noise by Cranston, Mountford and
Shiga [10], and to colored noise by Kim, Viens and Vizcarra [20].) Further refine-
ments on the behavior of the Lyapunov exponents were conjectured in Carmona and
Molchanov [6] and proved in Greven and den Hollander [18]. In particular, it was
shown that λ1(κ) = 1

2 for all κ ∈ [0,∞), while for the other Lyapunov exponents the
following dichotomy holds (see Figs. 1–2):

• d = 1,2: λ0(κ) < 1
2 , λp(κ) > 1

2 for p ∈ N\{1}, for κ ∈ [0,∞);
• d ≥ 3: there exist 0 < κ1 ≤ κ2 ≤ . . . such that
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λ0(κ)− 1
2

{
< 0, for κ ∈ [0,κ1),
= 0, for κ ∈ [κ1,∞), (17)

and

λp(κ)− 1
2

{
> 0, for κ ∈ [0,κp),
= 0, for κ ∈ [κp,∞), p ∈ N\{1}. (18)

Moreover, variational formulas for κp were derived, which in turn led to upper and
lower bounds on κp, and to the identification of the asymptotics of κp for p→ ∞

(κp grows linearly with p). In addition, it was shown that for every p ∈ N\{1}
there exists a d(p) < ∞ such that κp < κp+1 for d ≥ d(p). Moreover, it was shown
that κ1 < κ2 in Birkner, Greven and den Hollander [2] (d ≥ 5), Birkner and Sun [3]
(d = 4), Berger and Toninelli [1], Birkner and Sun [4] (d = 3). Note that, by Hölder’s
inequality, all curves in Figs. 1–2 are distinct whenever they are different from 1

2 .

0
κ

1
2

λp(κ)

p = 0

p = 1

p = 2
p = 3
·
··

p = k

q
q
qq
q

d = 1,2

Fig. 1 Quenched and annealed Lyapunov exponents when d = 1,2 for white noise.

0
κ

1
2

λp(κ)

p = 0

p = 1

p = 2
p = 3
·
··

p = k

q
q
qq
q

q q q q
κ1 κ2 κ3 · · · κk

d ≥ 3

Fig. 2 Quenched and annealed Lyapunov exponents when d ≥ 3 for white noise.
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1.3.2 Interacting particle systems

Various models where ξ is dependent in space and time were looked at more re-
cently. Kesten and Sidoravicius [19], and Gärtner and den Hollander [13], consid-
ered the case where ξ is a field of independent simple random walks in Poisson
equilibrium (ISRW). The survival versus extinction pattern [19] and the annealed
Lyapunov exponents [13] were analyzed, in particular, their dependence on d, κ , γ

and ρ . The case where ξ is a single random walk was studied by Gärtner and Hey-
denreich [12]. Gärtner, den Hollander and Maillard [14], [16], [17] subsequently
considered the cases where ξ is an exclusion process with a symmetric random walk
transition kernel starting from a Bernoulli product measure (SEP), respectively, a
voter model with a symmetric random walk transition kernel starting either from
a Bernoulli product measure or from equilibrium (SVM). In each of these cases,
a fairly complete picture of the behavior of the annealed Lyapunov exponents was
obtained, including the presence or absence of intermittency, i.e., λp(κ) > λp−1(κ)
for some or all values of p ∈ N\{1} and κ ∈ [0,∞). Several conjectures were for-
mulated as well. In what follows we describe these results in some more detail. We
refer the reader to Gärtner, den Hollander and Maillard [15] for an overview.

Let Gd be the Green function at the origin of simple random walk stepping at rate
1. It was shown in Gärtner and den Hollander [13], and Gärtner, den Hollander and
Maillard [14], [16], [17] that for ISRW, SEP and SVM in equilibrium the function
κ → λp(κ) satisfies:

• If d ≥ 1 and p ∈ N, then the limit in (8) exists for all κ ∈ [0,∞). Moreover, if
λp(0) < ∞, then κ → λp(κ) is finite, continuous, strictly decreasing and convex
on [0,∞).

• There are two regimes for the annealed Lyapunov exponents:

– Strongly catalytic regime (see Fig. 3):
· ISRW: d = 1,2, p ∈ N or d ≥ 3, p≥ 1/γGd : λp ≡ ∞ on [0,∞).
· SEP: d = 1,2, p ∈ N : λp ≡ γ on [0,∞).
· SVM: d = 1,2,3,4, p ∈ N : λp ≡ γ on [0,∞).

– Weakly catalytic regime (see Fig. 4–5):
· ISRW: d ≥ 3, p < 1/γGd : ργ < λp < ∞ on [0,∞).
· SEP: d ≥ 3, p ∈ N : ργ < λp < γ on [0,∞).
· SVM: d ≥ 5, p ∈ N : ργ < λp < γ on [0,∞).

• For all three dynamics, in the weakly catalytic regime limκ→∞ κ[λp(κ)−ργ] =
C1 +C2 p21{d=dc} with C1,C2 ∈ (0,∞) and dc a critical dimension: dc = 3 for
ISRW, SEP and dc = 5 for SVM.

• Intermittent behavior:

– In the strongly catalytic regime, there is no intermittency for all three dynam-
ics.

– In the weakly catalytic regime, there is full intermittency for:
· all three dynamics when 0≤ κ � 1.
· ISRW and SEP in d = 3 when κ � 1.
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· SVM in d = 5 when κ � 1.

Note: For SVM the convexity of κ→ λp(κ) and its scaling behavior for κ→∞ have
not been proved, but have been argued on heuristic grounds.

0

ργ

γ

∞

q
q

SEP, SVM

ISRW

κ

λp(κ)

Fig. 3 Triviality of the annealed Lyapunov exponents for ISRW, SEP, SVM in the strongly catalytic
regime.

ργ

0

qqqp = 1

p = 2

p = 3

?

κ

λp(κ)

d = 3 ISRW, SEP
d = 5 SVM

Fig. 4 Non-triviality of the annealed Lyapunov exponents for ISRW, SEP and SVM in the weakly
catalytic regime at the critical dimension.

ργ

0

qqqp = 1

p = 2

p = 3

?

κ

λp(κ)

d ≥ 4 ISRW, SEP
d ≥ 6 SVM

Fig. 5 Non-triviality of the annealed Lyapunov exponents for ISRW, SEP and SVM in the weakly
catalytic regime above the critical dimension.
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Recently, there has been further progress for the case where ξ consists of n inde-
pendent random walks (Castell, Gün, Maillard [8]), for the trapping version of the
PAM with γ ∈ (−∞,0) (Drewitz, Gärtner, Ramı́rez and Sun [11]), and for the voter
model (Maillard, Mountford and Schöpfer [24]). All these papers appear elsewhere
in the present volume.

1.4 Main results

We have six theorems, all relating to the quenched Lyapunov exponent and extend-
ing the results on the annealed Lyapunov exponents listed in Section 1.3.2.

Our first three theorems will be proved in Section 2 and deal with a general ξ

that is stationary and ergodic w.r.t. translations in Zd , and satisfies condition (6).

Theorem 1.1. Fix d ≥ 1, κ ∈ [0,∞) and γ ∈ (0,∞). If ξ is stationary and ergodic
w.r.t. translations in Zd and satisfies condition (6), then the limit in (7) exists P-a.s.
and in P-mean, and is finite.

For our second theorem we need to make the additional assumption that

liminf
T→∞

E(|Iξ (0,T )− Iξ (e,T )|)
logT

> 0, (19)

where e is any nearest-neighbor site of 0, and

Iξ (x,T ) =
∫ T

0
[ξ (x, t)−ρ]dt, x ∈ Zd . (20)

Theorem 1.2. Fix d ≥ 1 and γ ∈ (0,∞). If ξ is stationary and ergodic w.r.t. transla-
tions in Zd and satisfies condition (6), then (see Fig. 6):
(i) κ 7→ λ0(κ) is globally Lipschitz outside any neighborhood of 0.
(ii) κ 7→ λ0(κ) is not Lipschitz at 0 subject to condition (19).
(iii) ργ < λ0(κ) < ∞ for all κ ∈ (0,∞) with ρ = E(ξ (0,0)).

Note that λ0(0) = ργ , but that Theorem 1.2 does not include continuity of κ 7→
λ0(κ) at 0. For our third theorem we need to make the additional assumption that

limsup
T→∞

1
T

log

[
sup
η∈Ω

Pη

(∫ T

0
ξ (0,s)ds > (ρ +δ )T

)]
< 0 ∀δ > 0. (21)

Theorem 1.3. Fix d ≥ 1 and γ ∈ (0,∞). If ξ is stationary and ergodic w.r.t. transla-
tions in Zd , is bounded and satisfies condition (21), then

limsup
κ↓0

log(1/κ)
log log(1/κ)

[λ0(κ)−ργ] < ∞. (22)
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For a discussion of conditions (19) and (21), see Section 1.5.
Our last three theorems deal with ISRW, SEP and SVM and will be proved in

Section 3.

Theorem 1.4. For ISRW, SEP and SVM in the weakly catalytic regime (see Fig. 6),
limκ→∞ λ0(κ) = ργ .

Theorem 1.5. For ISRW and SEP in the weakly catalytic regime (see Fig. 6),

liminf
κ↓0

log(1/κ) [λ0(κ)−ργ] > 0. (23)

Theorem 1.6. For ISRW in the strongly catalytic regime, λ0(κ) < λ1(κ) for all κ ∈
[0,∞) (see Fig. 7).

0
ργ p

κ

λ0(κ)

Fig. 6 The quenched Lyapunov exponent. Conjectured behavior in the weakly catalytic regime.

0
p = 0

p = 1

p

p

κ

λp(κ)
d = 3 ISRW, SEP
d = 5 SVM

Fig. 7 Comparison between κ 7→ λ0(κ) and κ 7→ λ1(κ). Conjectured behavior for ISRW, SEP and
SVM at the critical dimension.

0
p = 0

p = 1

κ1

p

p

κ

λp(κ)
d ≥ 4 ISRW, SEP
d ≥ 6 SVM

Fig. 8 Comparison between κ 7→ λ0(κ) and κ 7→ λ1(κ). Conjectured behavior for ISRW, SEP and
SVM above the critical dimension.
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1.5 Discussion and open problems

By (11–12), condition (6) is trivially satisfied for bounded ξ , which includes SEP
and SVM. Condition (6) is a direct consequence of Theorem 2 in Kesten and Sido-
ravicius [19] when ξ is ISRW. Condition (19) is weak; we will see in Section 3.2
that it is satisfied for the three dynamics because the numerator of (19) grows poly-
nomially rather than logarithmically. Condition (21) is strong; it fails for the three
dynamics, but is satisfied e.g. for spin-flip dynamics in the so-called “M < ε regime”
(see Liggett [23], Section I.3).

The following problems remain open:

• Extend the existence of λ0 to u(·,0) ≡ 1, and prove that the limit is the same as
for u(·,0) = δ0(·) assumed in (4). It is straightforward to do the extension for
u(·,0) symmetric with bounded support.

• Prove Theorem 1.4 for the three dynamics in the strongly catalytic regime, The-
orem 1.5 for SVM in the weakly catalytic regime, and Theorem 1.6 for SEP and
SVM in the strongly catalytic regime. The limits as κ ↓ 0 and κ→∞ correspond
to time ergodicity and space ergodicity, respectively, but are non-trivial because
they require control on the large deviations of ξ .

• Derive an upper bound for λ0(κ)−ργ as κ ↓ 0 that supplements the lower bound
obtained in (23). The upper bound in Theorem 1.3 subject to (21) probably ex-
tends to ISRW, SEP and SVM. If so, then this would imply the continuity of
κ 7→ λ0(κ) at 0, which in turn would imply that there exists a κ1 > 0 such that
λ0(κ) < λ1(κ) for all κ ≤ κ1 (see Fig. 8).

• In the weakly catalytic regime, find the asymptotics of λ0(κ) as κ → ∞ and
compare with the asymptotics of λp(κ), p ∈ N, as κ → ∞ (see Figs. 4– 5).

• In the weakly catalytic regime, show that above the critical dimension there exists
a κ1 < ∞ such that λ0(κ) = λ1(κ) for all κ ≥ κ1 (see Figs. 7–8)? For white noise
dynamics such merging occurs for all d ≥ 3 (see Figs. 1–2).

• Extend the existence of λp to all (non-integer) p > 0, and prove that λp ↓ λ0 as
p ↓ 0. For white noise this is achieved in (16).

2 Proof of Theorems 1.1–1.3

The proofs of Theorems 1.1–1.3 are given in Sections 2.1–2.3, respectively.

2.1 Proof of Theorem 1.1

Proof. Recall (4), (11) and (12), and abbreviate
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χ(s, t) = E0

(
exp
[

γ

∫ t−s

0
ξ
(
Xκ(v),s+ v

)
dv
]

δ0(Xκ(t− s))
)

, 0≤ s≤ t < ∞.

(24)
Picking u ∈ [s, t], inserting δ0(Xκ(u− s)) under the expectation in (24) and using
the Markov property of Xκ at time u− s, we obtain

χ(s, t)≥ χ(s,u)χ(u, t), 0≤ s≤ u≤ t < ∞. (25)

Thus, (s, t) 7→ log χ(s, t) is superadditive. Since ξ is stationary, ergodic, satisfies
condition (6) and the law of {χ(u+s,u+t) : 0≤ s≤ t < ∞} is the same for all u≥ 0,
the claim follows from the superadditive ergodic theorem (see Kingman [21]), i.e.,

λ0 = lim
t→∞

1
t

log χ(0, t) exists P-a.s. and in P-mean, (26)

and the limit is finite. ut

2.2 Proof of Theorem 1.2(i)

Proof. In Step 1 we give the proof for a general stationary and ergodic ξ that is
bounded from above by 1. This proof is a copy of the proof in Gärtner, den Hollander
and Maillard [17] of the Lipschitz continuity of the annealed Lyapunov exponents
when ξ is SVM. In Step 2 we explain how to extend the proof to unbounded ξ

subject to condition (6).

1. Pick κ1,κ2 ∈ (0,∞) with κ1 < κ2 arbitrarily. By Girsanov’s formula,

E0

(
exp
[

γ

∫ t

0
ξ (Xκ2(s),s)ds

]
δ0(Xκ2(t))

)
= E0

(
exp
[

γ

∫ t

0
ξ (Xκ1(s),s)ds

]
δ0(Xκ1(t))

×exp
[
J(Xκ1 ; t) log(κ2/κ1)−2d(κ2−κ1)t

])
= I + II, (27)

where J(Xκ1 ; t) is the number of jumps of Xκ1 up to time t, I and II are the con-
tributions coming from the events {J(Xκ1 ; t)≤M2dκ2t}, respectively, {J(Xκ1 ; t) >
M2dκ2t}, and M > 1 is to be chosen. Clearly,

I ≤ exp
[(

M2dκ2 log(κ2/κ1)−2d(κ2−κ1)
)

t
]

E0

(
exp
[

γ

∫ t

0
ξ (Xκ1(s),s)ds

])
,

(28)
while

II ≤ eγt P0

(
J(Xκ2 ; t) > M2dκ2t

)
(29)
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because we may estimate ∫ t

0
ξ (Xκ1(s),s)ds≤ t (30)

and afterwards use Girsanov’s formula in the reverse direction. Since J(Xκ2 ; t) =
J∗(2dκ2t) with (J∗(t))t≥0 a rate-1 Poisson process, we have

lim
t→∞

1
t

logP0

(
J(Xκ2 ; t) > M2dκ2t

)
=−2dκ2I (M) (31)

with
I (M) = sup

u∈R

[
Mu−

(
eu−1

)]
= M logM−M +1. (32)

Recalling (11–12), we get from (27–31) that

λ0(κ2)≤
[
M2dκ2 log(κ2/κ1)−2d(κ2−κ1)+λ0(κ1)

]
∨
[
γ−2dκ2I (M)

]
. (33)

On the other hand, estimating J(Xκ1 ; t)≥ 0 in (27), we have

E0

(
exp
[

γ

∫ t

0
ξ (Xκ2(s),s)ds

]
δ0(Xκ2(t))

)
≥ exp[−2d(κ2−κ1)t] E0

(
exp
[

γ

∫ t

0
ξ (Xκ1(s),s)ds

]
δ0(Xκ1(t))

)
, (34)

which gives the lower bound

λ0(κ2)−λ0(κ1)≥−2d(κ2−κ1). (35)

Next, for κ ∈ (0,∞), define

D+
λ0(κ) = limsup

δ→0
δ
−1[λ0(κ +δ )−λ0(κ)],

D−λ0(κ) = liminf
δ→0

δ
−1[λ0(κ +δ )−λ0(κ)]. (36)

Then, picking κ1 = κ and κ2 = κ +δ , respectively, κ1 = κ−δ and κ2 = κ in (33)
with δ > 0 and letting δ ↓ 0, we get

D+
λ0(κ)≤ (M−1)2d ∀M > 1: 2dκI (M)− (1−ρ)γ ≥ 0 (37)

(together with λ0(κ) ≥ ργ , the latter condition guarantees that the first term in the
right-hand side of (33) is the maximum), while (35) gives

D−λ0(κ)≥−2d. (38)

We now pick

M = M(κ) = I −1
(

(1−ρ)γ
2dκ

)
(39)
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with I −1 the inverse of I : [1,∞)→ R. Since I (M) = 1
2 (M− 1)2[1 + o(1)] as

M ↓ 1, it follows that

[M(κ)−1]2d = 2d

√
γ

1−ρ

dκ
[1+o(1)] as κ → ∞. (40)

By (37), the latter implies that κ 7→ D+λ0(κ) is bounded from above outside any
neighborhood of 0. Since, by (38), κ 7→D−λ0(κ) is bounded from below, the claim
follows.

2. It remains to explain how to adapt the proof to the case where ξ is not bounded
from above by 1. In that case (30) is no longer true, but by the Cauchy-Schwarz
inequality we have

II ≤ III× IV (41)

with

III =
{

E0

(
exp
[

2γ

∫ t

0
ξ (Xκ1(s),s)ds

])}1/2

(42)

and

IV =
{

E0

(
exp
[
2J(Xκ1 ; t) log(κ2/κ1)−4d(κ2−κ1)t

]
×11{J(Xκ1 ; t) > M2dκ2t}

)}1/2

= exp
[(

dκ1−2dκ2 +d(κ2
2 /κ1)

)
t
]

×
{

E0

(
exp
[

J(Xκ1 ; t) log
(

κ2
2 /κ1

κ1

)
−2d

(
κ

2
2 /κ1−κ1

)
t
]

×11{J(Xκ1 ; t) > M2dκ2t}
)}1/2

= exp
[(

dκ1−2dκ2 +d(κ2
2 /κ1)

)
t
] {

P0

(
J
(

Xκ2
2 /κ1 ; t

)
> M2dκ2t

)}1/2

,

(43)

where in the last line we use Girsanov’s formula in the reverse direction. By Theo-
rem 2 in Kesten and Sidoravicius [19], we have III ≤ ec0t ξ -a.s. for t large enough
and some c0 < ∞. Therefore, combining (41–43), we get

II ≤ exp
[(

c0 +dκ1−2dκ2 +d(κ2
2 /κ1)

)
t
] {

P0

(
J
(

Xκ2
2 /κ1 ; t

)
> M2dκ2t

)}1/2

(44)
instead of (29). The rest of the proof goes along the same lines as in (31–40), with
M > 1 chosen such that
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d(κ +δ )2

κ
I

(
Mκ

κ +δ

)
+ργ− c0 +dκ−2d(κ +δ )+

d(κ +δ )2

κ
≥ 0 (45)

instead of (29). ut

2.3 Proof of Theorem 1.2(ii)

Proof. The proof of Theorem 1.2(ii) is based on the following lemma providing a
lower bound for λ0(κ)−ργ when κ is small enough. Recall (20), and abbreviate

E1(T ) = E
(
|Iξ (0,T )− Iξ (e,T )|

)
, T > 0. (46)

Lemma 2.1. For κ ↓ 0 and T → ∞ such that κT ↓ 0,

λ0(κ)−ργ ≥−dκ + 1
T

[
γ

2 E1( 1
2 T )− log(1/κT )

]
[1+o(1)]. (47)

Proof. Recall (4), (11) and (12) and write

λ0(κ)−ργ = lim
n→∞

1
nT

logE0

(
exp
[

γ

∫ nT

0

[
ξ (Xκ(s),s)−ρ

]
ds
]

δ0(Xκ(nT ))
)

.

(48)

1. Split the time interval [0,nT ] into 2n pieces of length 1
2 T ,

Bi =
[
(i−1)T,(i−1)T + 1

2 T
]
, Ci =

(
(i−1)T + 1

2 T, iT
)
, 1≤ i≤ n, (49)

and define
Iξ

i (x,T ) =
∫

Ci

[
ξ (x,s)−ρ

]
ds. (50)

To obtain a lower bound for (48), let

Zξ

i = argmax
{

Iξ

i (0,T ), Iξ

i (e,T )
}

(51)

and consider the event

Aξ =

[
n⋂

i=1

{
Xκ(t) = Zξ

i ∀ t ∈Ci
}]
∩{Xκ(nT ) = 0}. (52)

Then we get
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E0

(
exp
[

γ

∫ nT

0

[
ξ (Xκ(s),s)−ρ

]
ds
]

δ0(Xκ(nT ))
)

≥ E0

(
exp
[

γ

∫ nT

0

[
ξ (Xκ(s),s)−ρ

]
ds
]

11Aξ

)
≥ P0

(
Aξ
)

exp
(

γ

n

∑
i=1

max
{

Iξ

i (0,T ), Iξ

i (e,T )
})

.

By the ergodic theorem applied to ξ (which is stationary and ergodic w.r.t. transla-
tions in Zd), we have

n

∑
i=1

max
{

Iξ

i (0,T ), Iξ

i (e,T )
}

= n[1+o(1)]E
(

max
{

Iξ

1 (0,T ), Iξ

1 (e,T )
})

. (53)

Moreover, writing pt(x) = P0(X1(t) = x), x ∈ Zd , t ≥ 0, we have

P0
(
Aξ
)
≥
(

min
{

pκT/2(0), pκT/2(e)
})n+1

e−ndκT =
(

pκT/2(e)
)n+1 e−ndκT , (54)

where in the right-hand side the first term is a lower bound for the probability that
Xκ moves from 0 to e or vice-versa in time 1

2 T in each of the time intervals Bi,
while the second term is the probability that Xκ makes no jumps in each of the time
intervals Ci.

2. Combining (48) and (53–54), and using that pκT/2(e) = ( 1
2 κT )[1+o(1)] as κT ↓

0, we obtain

λ0(κ)−ργ

≥−dκ +[1+o(1)]
1
T

[
γ E
(

max
{

Iξ

1 (0,T ), Iξ

1 (e,T )
})

+ log
( 1

2 κT
)]

.
(55)

Because Iξ

1 (0,T ) and Iξ

1 (e,T ) have the same distribution under P, and this distribu-
tion is continuous and has zero mean, we have

E
(

max
{

Iξ

1 (0,T ), Iξ

1 (e,T )
})

= 1
2 E
(∣∣Iξ

1 (0,T )− Iξ

1 (e,T )
∣∣). (56)

The expectation in the right-hand side equals E1( 1
2 T ) because |C1|= 1

2 T , and so we
get the claim. ut

Using Lemma 2.1, we can now complete the proof of Theorem 1.2(ii). By condi-
tion (19), there exists a c > 0 such that E1(T ) ≥ c logT for large enough T . There-
fore, picking T = T (κ) = κ−3/(3+cγ) in (47) and letting κ ↓ 0, we obtain

λ0(κ)−ργ ≥ [1+o(1)] cγ

2(3+cγ) κ
3/(3+cγ) log(1/κ). (57)

Since λ0(0) = ργ , (57) implies that κ 7→ λ0(κ) is not Lipschitz at 0. ut
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2.4 Proof of Theorem 1.2(iii)

Proof. The upper bound is a direct consequence of condition (6).

1. To prove the lower bound, fix T > 0 and consider the expression

λ0 = lim
n→∞

1
nT

E
(

logu(0,nT )
)
, (58)

where we recall that E denotes expectation w.r.t. ξ . By splitting the time-interval
[0,nT ] into n pieces of length T and using the Markov property of Xκ at the end of
each piece, we obtain

u(0,nT )

= E0

(
exp
[

γ

∫ nT

0
ξ
(
Xκ(s),s

)
ds
]

δ0(Xκ(nT ))
)

= ∑
x1,...,xn−1∈Zd

n

∏
i=1

Exi−1

(
exp
[

γ

∫ T

0
ξ
(
Xκ(s),(i−1)T + s

)
ds
]

δxi(X
κ(T ))

) (59)

with x0 = xn = 0. Next, let E(T )
x,y denote the conditional expectation Xκ given that

Xκ(0) = x and Xκ(T ) = y, and abbreviate, for 1≤ i≤ n,

E(T )
x,y (i) = E(T )

x,y

(
exp
[

γ

∫ T

0
ξ
(
Xκ(s),(i−1)T + s

)
ds
])

. (60)

Then we can write

Exi−1

(
exp
[

γ

∫ T

0
ξ
(
Xκ(s),(i−1)T + s

)
ds
]

δxi(X
κ(T ))

)
= pT (xi−1,xi)E(T )

xi−1,xi(i),

(61)
which, combined with (59), gives

u(0,nT ) = ∑
x1,··· ,xn−1∈Zd

(
n

∏
i=1

pT (xi−1,xi)

)(
n

∏
i=1

E(T )
xi−1,xi(i)

)

= pnT (0,0)E(nT )
0,0

(
n

∏
i=1

E(T )
X(i−1)T ,XiT

(i)

)
.

(62)

2. To estimate the last expectation in (62), we apply Jensen’s inequality to write, for
x,y ∈ Zd and 1≤ i≤ n,

E(T )
x,y (i) = exp

[
γ

∫ T

0
E(T )

x,y

(
ξ
(
Xκ(s),(i−1)T + s

))
ds+Cx,y

(
ξ[(i−1)T,iT ],T

)]
(63)

with, for I ⊂ [0,∞) finite, ξI = (ξt)t∈I and T > 0,
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Cx,y(ξI ,T ) > 0 ξ -a.s., (64)

where the strict positivity is an immediate consequence of the fact that ξ is not
constant and u 7→ eu is strictly convex. Combining (62–63) and again using Jensen’s
inequality, this time w.r.t. E(nT )

0,0 , we obtain

E
(

logu(0,nT )
)

≥ log pnT (0,0)+E

(
E(nT )

0,0

(
n

∑
i=1

E(T )
X(i−1)T ,XiT

(
γ

∫ T

0
ξ
(
Xκ(s),(i−1)T + s

)
ds

+CX(i−1)T ,XiT

(
ξ[(i−1)T,iT ],T

))))
= log pnT (0,0)+nργT

+E

(
E(nT )

0,0

(
n

∑
i=1

E(T )
X(i−1)T ,XiT

(
CX(i−1)T ,XiT

(
ξ[(i−1)T,iT ],T

))))
,

where in the last line the middle term is obtained after computing the expectation
w.r.t. ξ . By inserting the indicator of the event {X(i−1)T = XiT} for 1≤ i≤ n in the
last expectation in (65), we get

E

(
E(nT )

0,0

(
n

∑
i=1

E(T )
X(i−1)T ,XiT

(
CX(i−1)T ,XiT

(
ξ[(i−1)T,iT ],T

))))

≥
n

∑
i=1

∑
z∈Zd

p(i−1)T (0,z) pT (z,z) p(n−i)T (z,0)
pnT (0,0)

E
(

Cz,z
(
ξ[(i−1)T,iT ],T

))
≥ nCT pT (0,0), (65)

where we abbreviate

CT = E
(

Cz,z
(
ξ[(i−1)T,iT ],T

))
> 0. (66)

Note that the latter does not depend on i or z. Therefore, combining (58) and (65–
66), and using that

lim
n→∞

1
nT

log pnT (0,0) = 0, (67)

we arrive at λ0 ≥ ργ +(CT /T )pT (0,0) > ργ . ut

2.5 Proof of Theorem 1.3

The proof borrows from Carmona and Molchanov [6], Section IV.3.
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Proof. Recall (4), (11) and (12), and write

λ0(κ)≤ lim
n→∞

1
nT

logE0

(
exp
[

γ

∫ nT

0
ξ (Xκ(s),s)ds

])
, (68)

where we pick
T = T (κ) = K log(1/κ), K ∈ (0,∞). (69)

Split the time interval [0,nT ) into n disjoint time intervals I j = [( j−1)T, jT ), 1 ≤
j ≤ n. Define N j, 1 ≤ j ≤ n, to be the number of jumps of Xκ in the time interval
I j, and color I j black when N j > 0 and white when N j = 0. Using Cauchy-Schwarz,
we can split λ0 into a white part and a black part, and estimate

λ0(κ)≤ λ
(b)
0 (κ)+λ

(w)
0 (κ), (70)

where

λ
(b)
0 (κ) = limsup

n→∞

1
2nT logE0

(
exp

[
2γ

n
∑
j=1

Nj>0

∫
I j

ξ (Xκ(s),s)ds

])
, (71)

λ
(w)
0 (κ) = limsup

n→∞

1
2nT logE0

(
exp

[
2γ

n
∑
j=1

Nj=0

∫
I j

ξ (Xκ(s),s)ds

])
. (72)

Lemma 2.2. If ξ is bounded, then

limsup
κ↓0

λ
(b)
0 (κ)≤ 0. (73)

Lemma 2.3. If ξ satisfies condition (21), then

limsup
κ↓0

log(1/κ)
log log(1/κ)

[λ (w)
0 (κ)−ργ] < ∞. (74)

Theorem 1.3 follows from (70) and Lemmas 2.2–2.3. ut

We first give the proof of Lemma 2.2.

Proof. Let N(b) = |{1 ≤ j ≤ n : N j > 0}| be the number of black time intervals.
Since ξ is bounded, say ξ ≤ 1, we have
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1
2nT

logE0

(
exp

[
2γ

n

∑
j=1

Nj>0

∫
I j

ξ (Xκ(s),s)ds

])

≤ 1
2nT

logE0

(
exp
[
2γT N(b)])

=
1

2T
log
[(

1− e−2dκT
)

e2γT + e−2dκT
]

≤ 1
2T

log
[
2dκTe2γT +1

]
≤ 1

2T
2dκTe2γT

= dκ
1−2γK ,

(75)

where the first equality uses that the distribution of N(b) is BIN(n,1− e−2dκT ), and
the second equality uses (69). It follows from (71) and (75) that λ

(b)
0 (κ)≤ dκ1−2γK .

The claim therefore follows by picking 0 < K < 1/2γ and letting κ ↓ 0. ut

We next give the proof of Lemma 2.3.

Proof. The proof comes in 4 steps.

1. We begin with some definitions. To each time interval I j, we associate the set of
increments of Xκ occuring on I j by putting

Γj =

{
/0 if I j is white,
{∆1, . . . ,∆N j} if I j is black.

(76)

Here, {∆i : 1≤ i≤ N j} is the increment sequence of Xκ on the (black) time interval
I j, i.e., ∆i, 1 ≤ i ≤ N j, are random variables taking values in Zd and satisfying
|∆i|= 1. Next, we define the set of T -skeletons by putting

Ψ = {χ : Γ = χ} with χ = (χ1, . . . ,χn), Γ = (Γ1, . . . ,Γn), (77)

which corresponds to the set of increments of Xκ on the time interval [0,nT ]. Since
Xκ is stepping at rate 2dκ , the T -skeleton random variable Γ has distribution

P0(Γ = χ) = e−2dκnT
n

∏
j=1

(2dκT )|χ j |

|χ j|!
, χ ∈Ψ . (78)

For a given realization {n j : 1≤ j ≤ n} of {N j : 1≤ j ≤ n}, we define the event

A(n)(χ;λ ) =

{
n

∑
j=1

n j=0

∫
I j

[
ξ (x j,s)−ρ

]
ds≥ λ

}
, χ ∈Ψ , λ > 0, (79)

where, for χ j = {x j,1, . . . ,x j,n j} with 1≤ j ≤ n and n j > 0,
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x j =
j−1

∑
i=1

n j

∑
k=1

xi,k (80)

is the starting point of the T -skeleton χ in the time interval I j. Finally, we abbreviate

fδ (T ) = sup
η∈Ω

Pη

(∫ T

0
ξ (0,s)ds > (ρ +δ )T

)
, δ > 0. (81)

2. With the above definitions, we can now start our proof. Fix χ ∈Ψ , and let k0(χ) =
|{1≤ j ≤ n : |χ j|= 0}| be the number of white intervals associated to χ . Then

n

∑
j=1

n j=0

∫
I j

[
ξ (x j,s)−ρ

]
ds� LT +(k0(χ)−L)δT, δ > 0, (82)

where�means “stochastically dominated”, and L is the random variable with distri-
bution BIN(k0(χ), fδ (T )). By (79), (82) and the exponential Chebychev inequality,
we have

P
(
A(n)(χ;λ )

)
≤ P
(
LT +(k0(χ)−L)δT ≥ λ

)
≤ inf

c>0
e−cλ E

(
ec[LT+(k0(χ)−L)δT ]

)
= inf

c>0
e−cλ

{
fδ (T )ecT +[1− fδ (T )]ecδT

}k0(χ)
.

(83)

Using condition (21), which implies that there exists a C = C(δ ) ∈ (0,∞) such that
fδ (T ) ≤ e−CT (see Liggett [23], Section I.3), and choosing c = Cλ/2k0(χ)T , we
obtain from (83) that

P
(
A(n)(χ;λ )

)
≤ exp

[
− Cλ 2

2k0(χ)T

]{
exp
[

Cλ

2k0(χ)
−CT

]
+ exp

[
Cλδ

2k0(χ)

]}k0(χ)

.

(84)

3. Our next step is to choose λ . Recall (69), and put

λ =
∞

∑
l=0

alkl(χ) (85)

with
a0 = K′ log log(1/κ), K′ ∈ (0,∞), al = lT, l ≥ 1, (86)

and
kl(χ) = |{1≤ j ≤ n : |χ j|= l}|, l ≥ 0. (87)

Then, using that λ > k0(χ)T and choosing 0 < δ � λ/2k0(χ)T , we obtain

r.h.s. (84)≤ exp
[
− Cλ 2

4k0(χ)T
+

Cλδ

2

]
≤ exp

[
− C′λ 2

2k0(χ)T

]
(88)
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for some C′ = C′(δ ) ∈ (0,∞). Recalling (79), combining (82), (84) and (88), and
using (85) and (87), we get

∑
χ∈Ψ

P
(

A(n)(χ;λ )
)
≤ ∑

χ∈Ψ

exp

[
− C′

2k0(χ)T

(
∞

∑
l=0

alkl(χ)
)2
]

≤ ∑
χ∈Ψ

exp
[
− C′

2T
a2

0k0(χ)− C′a0

T

∞

∑
l=1

alkl(χ)
]

≤
(

e−
C′
2T a2

0 +
∞

∑
l=1

(2d)le−
C′
T a0al

)n

,

(89)

where in the last line we perform the sum over χ ∈Ψ as a sum over all integers
kl(χ), l ≥ 0, that sum up to n, and we take into account that there are (2d)l different
χ j with |χ j|= l, 1≤ j≤ n. By (69) and (86), a0→∞ and a2

0/T ↓ 0 as κ ↓ 0. Hence,
picking K′ > 1/C′ and κ small enough, we have

e−
C′
2T a2

0 +
∞

∑
l=1

(2d)le−
C′
T a0al = e−

C′
2T a2

0 +
∞

∑
l=1

(
2de−C′a0

)l

= e−
C′
2T a2

0 +
2de−C′a0

1−2de−C′a0
≤
(

1− C′

4T
a2

0

)
+4de−C′a0

=
(

1− C′[K′ log log(1/κ)]2

4K log(1/κ)

)
+4d[log(1/κ)]−C′K′ < 1.

(90)

It follows from (89–90) and the Borel-Cantelli lemma that P-a.s. there exists an
n0 = n0(ξ ) ∈ N such that, for all n≥ n0,

n

∑
j=1

n j=0

∫
I j

[
ξ (x j,s)−ρ]ds≤

∞

∑
l=0

alkl(χ). (91)

4. The estimate in (91) allows us to proceed as follows. Combining (78) and (91),
we obtain, for n≥ n0,

E0

(
exp

[
2γ

n

∑
j=1

Nj=0

∫
I j

[
ξ (Xκ(s),s)−ρ]ds

])

≤ e−2dκnT
∑

χ∈Ψ

n

∏
j=1

(2dκT )|χ j |

|χ j|!
exp
[

2γ

∞

∑
l=0

alkl(χ)
]
.

(92)

Now, for any sequence {n j : 1 ≤ j ≤ n} such that ∑
n
j=1 n j = n, the number of T -

skeletons χ such that k j(χ) = n j+1, 0 ≤ j ≤ n−1, equals n!/∏
n
j=1 n j!. Hence, for

any χ ∈Ψ ,
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n

∏
j=1

(2dκT )|χ j |

|χ j|!
=

n!
∏

∞
l=0 kl(χ)!

∞

∏
l=0

(
(2dκT )l)

l!

)kl(χ)

. (93)

Combining (92–93), we get

E0

(
exp

[
2γ

n

∑
j=1

n j=0

∫
I j

[
ξ (Xκ(s),s)−ρ]ds

])

≤ e−2dκnT
∑

χ∈Ψ

n!
∏

∞
l=0 kl(χ)!

∞

∏
l=0

(
(2dκT )l

l!
e2γal

)kl(χ)

≤ e−2dκnT

(
∞

∑
l=0

(4d2κT )l

l!
e2γal

)n

,

(94)

where in the last line we do the same computation as in the last line of (89). Using
(69) and (86), we have

1
2nT

logE0

(
exp

[
2γ

n

∑
j=1

Nj=0

∫
I j

[
ξ (Xκ(s),s)−ρ]ds

])

≤−2dκ +
1
T

log

(
∞

∑
l=0

(4d2κT )l

l!
e2γal

)
.

(95)

Note that the r.h.s. of (95) does not depend on n. Therefore, letting n→ ∞ and
recalling (75), we get

λ0(κ)≤−2dκ +
1
T

log

(
∞

∑
l=0

(4d2κT )l

l!
e2γal

)
. (96)

Finally, by (69) and (86), if 0 < K < 1/2γ , then

∞

∑
l=0

(4d2κT )l

l!
e2γal = [log(1/κ)]2γK′ +

∞

∑
l=1

(4d2κ1−2γK)l

l!

= [log(1/κ)]2γK′ +o(1), κ ↓ 0,

(97)

and hence

λ0(κ)≤ [1+o(1)]
2γK′ log log(1/κ)

K log(1/κ)
, κ ↓ 0, (98)

which proves the claim. ut
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3 Proof of Theorems 1.4–1.6

The proofs of Theorems 1.4–1.6 are given in Sections 3.1–3.3, respectively.

3.1 Proof of Theorem 1.4

Proof. For ISRW, SEP and SVM in the weakly catalytic regime, it is known that
limκ→∞ λ1(κ) = ργ (recall Section 1.3.2). The claim therefore follows from the fact
that ργ ≤ λ0(κ)≤ λ1(κ) for all κ ∈ [0,∞). ut

3.2 Proof of Theorem 1.5

Proof. Recall (20) and define

Ek(T ) = E
(
|Iξ (0,T )− Iξ (e,T )|k

)
,

Ēk(T ) = E
(
|Iξ (0,T )|k

)
,

T > 0, k ∈ N. (99)

The proof is based on the following lemma.

Lemma 3.1. For ISRW and SEP in the weakly catalytic regime,

liminf
T→∞

T−1E2(T ) > 0, limsup
T→∞

T−2Ē4(T ) < ∞. (100)

Before proving Lemma 3.1, we complete the proof of Theorem 1.5. Estimate, for
N > 0,

E1(T ) = E
(
|Iξ (0,T )− Iξ (e,T )|

)
≥ 1

2N E
(
|Iξ (0,T )− Iξ (e,T )|2 11{|Iξ (0,T )|≤N and |Iξ (e,T )|≤N}

)
= 1

2N

[
E2(T )−E

(
|Iξ (0,T )− Iξ (e,T )|2 11{|Iξ (0,T )|>N or |Iξ (e,T )|>N}

)]
.

(101)
By Cauchy-Schwarz,

E
(
|Iξ (0,T )− Iξ (e,T )|2 11{|Iξ (0,T )|>N or |Iξ (e,T )|>N}

)
≤ [E4(T )]1/2

[
P
(
|Iξ (0,T )|> N or |Iξ (e,T )|> N

)]1/2
.

(102)

Moreover, E4(T )≤ 16Ē4(T ) and

P
(
|Iξ (0,T )|> N or |Iξ (e,T )|> N

)
≤ 2

N2 Ē2(T )≤ 2
N2 [Ē4(T )]1/2. (103)
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By (100), there exist an a > 0 such that E2(T )≥ aT and a b < ∞ such that Ē4(T )≤
bT 2 for T large enough. Therefore, combining (101–103) and picking N = cT 1/2,
we obtain

E1(T )≥ AT 1/2 with A = 1
2c

(
a−25/2b3/4 1

c

)
, (104)

where we note that A > 0 for c large enough. Inserting this bound into Lemma 2.1
and picking T = T (κ) = B[log(1/κ)]2, we find that

λ0(κ)−ργ ≥C [log(1/κ)]−1 [1+o(1)] with C = 1
B

(
γAB1/2

23/2 −1
)

. (105)

Since C > 0 for A > 0 and B large enough, this proves the claim. ut

We finish by proving Lemma 3.1.

Proof. Let

C(x, t) = E
(
[ξ (0,0)−ρ][ξ (x, t)−ρ]

)
, x ∈ Zd , t ≥ 0, (106)

denote the two-point correlation function of ξ . By the stationarity of ξ , we have

E2(T ) =
∫ T

0
ds
∫ T

0
dt E

(
[ξ (0,s)−ξ (e,s)][ξ (0, t)−ξ (e, t)]

)
= 4

∫ T

0
ds
∫ T−s

0
dt [C(0, t)−C(e, t)].

(107)

Recall that Gd = Gd(0,0) denotes the Green function at the origin of simple random
walk stepping at rate 1.

Lemma 3.2. For x ∈ Zd and t ≥ 0,

C(x, t) =


ρ pt(0,x), d ≥ 1 ISRW,

ρ(1−ρ)pt(0,x), d ≥ 1 SEP,

[ρ(1−ρ)/Gd ]
∫

∞

0 pt+s(0,x)ds, d ≥ 3 SVM.

(108)

Proof. For ISRW, we have

ξ (x, t) = ∑
y∈Zd

Ny

∑
j=1

δx
(
Y y

j

)
, x ∈ Zd , t ≥ 0, (109)

where {Ny : y ∈ Zd} are i.i.d. Poisson random variables with mean ρ ∈ (0,∞), and
{Y y

j : y ∈ Zd ,1≤ j ≤ Ny} is a collection of independent simple random walks with
jump rate 1 (Y y

j is the j-th random walk starting from y ∈ Zd at time 0). Inserting
(109) into (106), we get the first line in (108). For SEP and SVM, the claim fol-
lows via the graphical representation (see [14], Eq. (1.5.5) and [17], Lemma A.1,
respectively). ut

Combining (107) and Lemma 3.2, we obtain
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lim
T→∞

1
T

E2(T ) =


4ρ[Gd(0,0)−Gd(0,e)], d ≥ 3 ISRW,

4ρ(1−ρ)[Gd(0,0)−Gd(0,e)], d ≥ 3 SEP,

4ρ(1−ρ)[G∗d(0,0)−G∗d(0,e)]/Gd(0,0), d ≥ 5 SVM,
(110)

where G∗d(0,x) =
∫

∞

0 t pt(0,x)dt. By using the strong Markov property at the first
jump time of simple random walk stepping at rate 1, we get

Gd(0,0)−Gd(0,e) = 1,

G∗d(0,0)−G∗d(0,e) = Gd(0,0). (111)

Hence (110) gives

lim
T→∞

1
T

E2(T ) =

{
4ρ, d ≥ 3 ISRW,

4ρ(1−ρ), d ≥ 3 SEP and d ≥ 5 SVM,
(112)

which proves the first part of (100).
Let

C(x, t;y,u;z,v) = E
(
[ξ (0,0)−ρ][ξ (x, t)−ρ][ξ (y,u)−ρ][ξ (z,v)−ρ]

)
,

x,y,z ∈ Zd , 0≤ t ≤ u≤ v,
(113)

denotes the four-point correlation function of ξ . Then

Ē4(T ) = 4!
∫ T

0
ds
∫ T−s

0
dt
∫ T−s

t
du
∫ T−s

u
dv C(0, t;0,u;0,v). (114)

To prove the second part of (100), we must estimate C(0, t;0,u;0,v). For ISRW, this
can be done by using (109). For SEP, the proof uses the Markov property and the
graphical representation. In both cases the computations are long but straightfor-
ward, with leading terms of the form

C(ρ)pa(0,0)pb(0,0) (115)

with a,b linear in t, u or v, and C(ρ) a positive constant depending on ρ . Each of
these leading terms, after being integrated as in (114), can be bounded from above
by a term of order O(T 2) in d ≥ 3.

We expect the second part of (100) to hold also for SVM. However, the graph-
ical representation, which is based on coalescing random walks, seems a bit too
complicated to carry through the computations. ut
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3.3 Proof of Theorem 1.6

Proof. For ISRW in the strongly catalytic regime, we know that λ1(κ) = ∞ for all
κ ∈ [0,∞) (recall Fig. 3), while λ0(κ) < ∞ for all κ ∈ [0,∞) (by Theorem 2 in Kesten
and Sidoravicius [19]). ut
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17. Gärtner J., den Hollander F., Maillard G.: Intermittency on catalysts: voter model. Ann.
Probab. 38, 2066–2102 (2010)

18. Greven A., den Hollander F.: Phase transition for the long-time behavior of interacting diffu-
sions. Ann. Probab. 35, 1250–1306 (2007)

19. Kesten H., Sidoravicius V.: Branching random walk with catalysts. Electr. J. Prob. 8, 1–51
(2003)
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