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1. INTRODUCTION

1.1 The parabolic Anderson problem and its interpretation

The main object of our investigation is the solution u: Rt x Z¢ — R* to the Cauchy
problem for the heat equation with random time-dependent potential:

aa:f(t,x) = rkAu(t,x) + &(t, x) u(t, z), (t,2) € RT x Z9, (1.1)
u(0,z) =1, x € 74 '

Here, k € RT is a diffusion constant and A is the discrete Laplacian acting on f: Z¢ — R
as

Yy~
while
¢ ={eta)leezty,  tert,

is an R-valued random field evolving over time that “drives” the equation. Problem (1.1) is
referred to as the parabolic Anderson model. 1t is the parabolic analogue of the Schrodinger
equation with a time-dependent random potential.

A popular heuristic interpretation of the model arises from population dynamics. In
this context the function u(¢,z) describes the mean number of particles present at x at
time ¢ when starting with one particle per site. Particles perform independent random
walks on Z? with jump rate 2dx and split into two at rate & if & > 0 (source) or die at
rate —¢ if £ < 0 (sink).

If £ is a nonnegative field, then we can interpret the problem in (1.1) also as a linearized
model of chemical reactions. In this case, the solution of the equation describes the
evolution of reactant particles under the influence of a catalyst medium £. More precisely,
u describes the expected number of reactant particles if its time evolution is governed by
the following rules:

(i) at time ¢t = 0, each lattice site is occupied by one reactant;
(ii) reactants act independently of each other;
(iii) a reactant at z jumps to a neighboring site y at rate x;
(iv) a reactant at x splits into two at rate £(¢, x).

Another example is mathematical modeling in evolution theory. Considering a fixed size
population, one may describe its evolution by the Fisher-Eigen equation of population
genetics which is a version of (1.1). Hereby 7% represents the space of phenotypes, A
describes mutation and ¢ is the fitness. See e.g. [EEEF84, Sect. 2] for such an approach.

Characteristically for the parabolic Anderson model, the two terms on the right hand
side of equation (1.1) compete with each other. The diffusion induced by A tends to make
u flat whereas ¢ tends to make u bumpy. In the context of population dynamics, there is a
competition between individuals spreading out by diffusion and clumping around sources.

Studying problem (1.1), we distinguish between the quenched setting which describes the
almost sure behaviour of u conditioned on &, and the annealed setting, where we average
over £. The present paper deals with the annealed setting.
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The theory currently available for the model covers various forms of the potential £. In
the present paper we consider the case where ¢ has the form

£(t,x) = oy, (), (t,z) e RT x z, (1.2)

where (Y;);>0 is a random walk with generator oA starting at the origin and d,(z) is the
Kronecker symbol. The corresponding expectation will be denoted by (-). The parameter
0 € [0, 00) is the diffusion constant of the catalyst. In the context of chemical reactions, we
can interpret £ as the reaction rate induced by a single catalyst particle, which performs
a random walk in Z¢ with jump rate 2do. Reactants split into two at rate 1 if they are
at the same lattice site as the catalyst. Gértner and den Hollander [GHO04] have been
investigating this kind of problem with infinitely many independently moving catalysts
starting from a homogeneous Poisson field. We describe their results in Section 1.4.

For a general discussion of the parabolic Anderson model, the reader is referred to the
survey by Gartner and Konig [GKO05].

Our main tool for the analysis of the solution to the parabolic Anderson problem is the
Feynman-Kac formula. Tt states that a solution to the differential equation (1.1) with a
bounded initial datum wug is given by

u(t,z) = EX exp {/Ot £t — 5, X,) ds} uo(Xy), (1.3)

where (X;)s>0 is a random walk on Z¢ with generator kA and expectation EX when
starting at x .

1.2 Lyapunov exponents and intermittency

The aim of the present paper is to study the p-th moment Lyapunov exponent

1
)‘P = )‘P(’iv Q) = tliglo E 10g<u(tv x)p> (14)

for p € N as a function of the model parameters &, g € [0, 00).

We will see in Theorem 1.2 below that the finite limit (1.4) exists for all p € N and is
independent of z.

Definition 1.1 (Intermittency). For p € N\ {1}, we call the parabolic Anderson problem
(1.1) p-intermittent, if the Lyapunov exponents satisfy the strict inequality
Ap— A
ool o 2 (1.5)
p—1 p

We say the system is fully intermittent, if the system is p-intermittent for all p € N\ {1}.

Note that, by Holder’s inequality, always A\p—1/(p — 1) < A\p/p.

So far there exists no fully satisfactory rigorous mathematical definition of intermittency.
The above definition goes back to physicists (see e.g. [ZMRS88]) and is very much in the
spirit of [GM90] and [CM94]. Generally, intermittency corresponds to a very irregular
behaviour of the solution u. In the case of a nonnegative ergodic random field &, the
solution u is also ergodic and exhibits very high, but more and more widely spaced peaks
absorbing its total mass. See [GM90, Sect. 1.1] or [GKO05, Sect. 1.3] for details.
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To illustrate intermittency, we assume that u is p-intermittent and choose a level a such
that A\p—1/(p—1) < a < A,/p. As in the above references, a simple application of Cheby-
shev’s inequality shows that, on the one hand, <]1{u(t70)>eozt}> — 0 exponentially fast as
t — 0o and, on the other hand, (u(t,0)?) ~ (u(t,0)? Ly, 0)seoty ). Hence, asymptotically
the p-th moment is ‘generated’ by the exponentially rare event that the solution exceeds
the high level e*. In our context, for lack of homogeneity, there is no direct geometric
interpretation of this fact via Birkhoff’s ergodic theorem.

For our model, we will see that p-intermittency implies g-intermittency for all ¢ > p.
We will find qualitatively different intermittency behaviour in dimension d = 1,2 on the
one hand and d > 3 on the other hand.

1.3 Results

From now on we stick to the parabolic Anderson problem (1.1) with the single catalyst
potential (1.2). Our first result establishes the existence of the limit (1.4) and provides a
spectral characterization of the Lyapunov exponents.

Given p € N, let B? denote the operator in ¢2(ZP%) given by

BPf(x1,...,xp) = Z [flxite, ... xpte)—flzr,...,xp)], [ (T, xy,...,x, € 7%

ecZd
le|=1
(1.6)
and introduce the Hamilton operator
HP ::fsAl+‘--+/£Ap+ng+5él)+...+5(()p) (1.7)

on (%(ZP?). Here A; is the discrete Laplacian acting on the i-th argument and
5[()Z)(x1, cyxp)=1ifx; =0and O else (i =1,...,p). Note that B! = A.

The following theorem links the asymptotic behaviour of (u(t,z)P) as t — oo to the
?%-spectrum Sp(HP) of the operator HP”.

Theorem 1.2 (Existence and spectral characterization). Let k,0 > 0, K+ o > 0. For
each p € N, the Lyapunov exponent
Ap = tliglo % log (u(t, z)?)
exists, is finite and independent of x € Z¢, and
Ap = sup Sp(HP). (1.8)
In the case k + o0 = 0, this is still valid for x = 0.

We prove Theorem 1.2 in Section 2.

We are interested in deriving properties of A, = A\,(k, 0) as a function of the parameters
k and p. According to Theorem 1.2, this can be done by analyzing the spectrum Sp(HP).
To this end we denote

Ga(n) = ((n— 8)"160,80) o 70y = /0 e Mp(0)dt,  peR, (1.9)

where p; is the transition function of a random walk with generator A. We will further
abbreviate G4 := G4(0). Hence, in dimension d = 1,2, G4 = oo, whereas for d > 3,
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G4 < 00. Next we introduce the quantity
p(K) == sup Sp(KA + dp). (1.10)
It is well-known that the ¢2-spectrum of kA + §y has the form
Sp(RA + 60) = [—4dk, 0] U {p(r)},

a() {: 0, ifr> Gy, 111)

where

> 0, if Kk < Gy.

In the latter case, u(x) is the unique positive solution to G4(u) = . It is the princi-
pal eigenvalue of KA + &g, which is simple and corresponds to a positive eigenfunction.
Furthermore, p(x) is convex and non-increasing in  (cf. e.g. [GHO04, Lemma 1.3.1]).

The case p = 1 can be solved completely, since
H' = (k+ 0)A + o (1.12)
and hence, by Theorem 1.2,
Ai(k, 0) = sup Sp(H') = p(k + o). (1.13)
Combining this with (1.11), we obtain the following conclusion. In dimension d = 1,2,
the first moment (u(¢,z)) always grows exponentially fast, whereas in dimension d > 3

we have exponential growth if x + p falls below the critical value G4. Otherwise (u(t,x))
grows only subexponentially.

A
< )
> ,{_l_g Gd

FIGURE 1. The qualitative behaviour of Aj.

A
3

- H—FQ

Remark. The case of an arbitrary strength v > 0 of the catalyst, where (1.2) is replaced
by
§(t,x) = 7 oy, (), (1.14)
can be reduced to v = 1 by scaling. To see this, we consider the solution u,,~ to the
parabolic Anderson problem (1.1) with potential (1.14). It follows that w ,~(t, ) and
Uy, /%Q/%l(fyt,x) have the same distribution. Consequently, the corresponding Lyapunov
exponent (K, 0,7) = limy—,co t 1 log(uy o ~(t, 7)P) satisfies

K 0
A R, 0,7 :’YA <771>'
p( ) P\ 5
Because of this, we set A\,(k, 0) = A\p(k,0,1) and study the qualitative behaviour of the

Lyapunov exponents as a function of x and p only.

We next consider the case ¢ = 0 when the catalyst is fixed to its starting position 0.
Then the random field £ is time-independent.
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Lemma 1.3 (The case o = 0). For allp € N,
Ap(k,0
p(z’) = u(k), k € [0,00). (1.15)

This result is specifically important for the analysis of A, for large p. The statement
of the lemma implies that in the setting of a fixed catalyst (0 = 0) the system is not
intermittent for any p € N. We will see that p(x) is an upper bound on A,(k, 0)/p.

The case k = 0 can be treated similarly. In the language of chemical kinetics, this
corresponds to fixed reactants waiting for the catalyst passing by.
Lemma 1.4 (The case k =0). For all p € N,
Ap(0,0
A0 \.0fp) = ntefp). o€ Do0). (1.16)
We prove Lemma 1.3 and Lemma 1.4 in Section 3.2.

Using properties of u, we summarize that in the case kK = 0, the system is p-intermittent
if and only if 0 < o < pGy. In particular, it is fully intermittent if 0 < o < Ggy.

As a main result for the general behaviour of A,(k, ) we obtain the following theorem.

Theorem 1.5 (Properties of \,).

(i) For each p € N, the function A\y(k,0), (k,0) € [0,00)%, is continuous, conver,
non-increasing in k and o, and

Ap(k,0) =0 for k > Gy. (1.17)
(ii) For all k,p € [0, 00),
)\p(;,g) /" (k) as p /' oo. (1.18)

The proof of Theorem 1.5 is given in Section 3.3.

Ap/p )‘p/p
As/3
A2/2 pi(k)
A\ H
s/3
K Y
Gqg—o Gq A1 A2/2

FIGURE 2. The asymptotic behaviour of \,/p for large p in dimension
d > 3. On the left the variation due to x for fixed ¢ > 0 and on the right
the variation due to p for fixed k € (0,Gq). If kK > Gy, then all curves in
the right figure coincide with the horizontal axis.

Finally, we state our result on intermittency.
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Theorem 1.6 (Intermittency). Let o > 0. If 0 < k < Ggq, then there exists p € N\ {1}
such that the system is p-intermittent, whereas for k > G4 the system is not intermaittent.
Furthermore, for k + o0 < Gg, the system shows full intermittency.

Except for the statement on full intermittency, this follows from our previous statements,
where we used that p-intermittency implies g-intermittency for ¢ > p (cf. Sect. 3.1). A
complete proof of the theorem is given in Section 3.4.

For completeness, we recall from Lemma 1.3 that, for o = 0, all curves \,(k,0)/p
coincide with u(k) and thus the system is not intermittent. Taking into account that
G4 = oo in dimension d = 1,2, we conclude from Theorem 1.6 that in these dimensions
the system shows full intermittency for all k € [0,00), o € (0, 00).

1.4 Related work

There exists a wide variety of papers on the parabolic Anderson model with a time-inde-
pendent random field &, see the survey by Gértner and Konig [GKO05]. The theory for the
time-dependent parabolic Anderson model is less developed. Let us briefly mention the
annealed results obtained in [CM94], [KS03] and [GHO04].

The monograph by Carmona and Molchanov [CM94] provides a complete analysis of
the moment Lyapunov exponents in the case of a white noise potential

E(t,x) = Wa(t),  (t,z) e RT x 24, (1.19)

with {(Wx(t));>0 |2 € 7%} being a collection of independent Brownian motions and equa-
tion (1.1) treated in the It6 sense. They show that

Ap =supSp (k(A1+ -+ Ap) +V,),

where
Vo(z1,...,2p) = Z do(xj — ), T1,. .., 1, € 29,
1<j<k<p
The intermittency behaviour is similar to our model in Figure 2 due to the similar spectral
representation. The essential difference is that A, as a function of s obeys A\i(k) = 0,
because Vi = 0. Therefore the system is p-intermittent if and only if A, > 0. Furthermore,
they obtain a different behaviour for large p: A,/p — oo as p — oo.

Kesten and Sidoravicius [KS03] consider a spatially homogenous system of two types
of particles, A (catalyst) and B (reactant), performing independent random walks on the
lattice, such that:

(i) B-particles split into two at a rate that is the number of A-particles present at
the same lattice site;
(ii) o and k are the diffusion constants of the A- and B-particles, respectively;
(ili) v and 1 are the initial intensities of the A- and B-particles, respectively;
(iv) B-particles die at a rate § > 0.

This corresponds to our model in (1.1) where the potential £ is given by

Et,x) =) do(x—Yi(t) =06,  (t,z) eRT x 2%,
k

with {Yy(t);t > 0,k € N} being a collection of independent random walks with generator
oA starting from a homogeneous Poisson field with intensity v € RT. Then, u(t,z) is



8 JURGEN GARTNER AND MARKUS HEYDENREICH

the average number of B-particles at site z at time ¢ conditioned on the evolution of the
A-particles. The main focus of Kesten and Sidoravicius is on survival versus extinction.
They have shown that in dimension d = 1, 2, for any choice of the parameters, the average
number of B-particles per site tends to infinity faster than exponential. In dimension
d > 3 with § sufficiently large, the average number of B-particles per site tends to zero
exponentially fast.

The qualitative behaviour of the moments is different from the above in the model
considered by Gértner and den Hollander [GHO04]. They show that there is a strongly
catalytic regime where the moments (u(t,0)P) grow superexponentially fast. This is always
the case in dimension d = 1,2, and also in dimension d > 3 for o/p < G4 (independent of
k). Otherwise, the finite moment Lyapunov exponents (1.4) exist. It is shown that their
intermittency behaviour as a function of « is different for d = 3 and for d > 4. For d = 3,
the moment Lyapunov exponents are expressed via the Polaron variational problem.

Our model (1.1) itself is similar to that by Gértner and den Hollander, but our methods
and results are more closely related to those by Carmona and Molchanov. Their analysis
is triggered by the disturbed potential V},, whereas in our model, we have disturbances of
the jump term caused by BP. This leads to a qualitatively different behaviour of \,/p as
p — oo (see Figure 2). In particular, there exists a uniform upper bound p.

The quenched Lyapunov exponent for variations of the model with the white noise
potential (1.19) has been studied in [CM95], [CMV96], [CMS02] and [KS03].

1.5 Open problems and extensions of the model
For p e N, let
Fper(0) := inf {k > 0|\, (s, 0) = 0}

denote the critical value for x above which A,(x, 0) vanishes. It is clear from our results
that

Hp,cr(@) / Gd as p / 00,
but it is open whether k, (0) is strictly increasing in p for p > 0.

Next, one can extend the setting to a multiple catalyst model with a finite number n of
catalyst particles. Then the potential £ has the form

£(t,x) = Zn:(so (:c - Yt(”) . (t,z) e R* x Z¢,
=1

with Y, ..., Y™ being a collection of n independent random walks with generator pA.
The degenerate cases k = 0 and ¢ = 0 can be solved easily, but the general case is more
complex than the single catalyst setting. However, the Feynman-Kac formula applied to
the solution u(™ of (1.1) with n catalysts yields

vl n t .
(W™ (t,0)) =B 5" exp { / » 6o(Xs - Y;_S)ds} .
0

=1

)

Hence the corresponding Lyapunov exponent )\](Ln satisfies the equation

A (5, 0) = A1 (o, )
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(cf. (2.5) below). Note that the roles of x and p are exchanged. Again there exists an
operator replacing the role of HP in our work, but the study of the upper boundary of its
spectrum may turn out to be more complex.

2. EXISTENCE AND SPECTRAL CHARACTERIZATION OF THE LYAPUNOV EXPONENTS

The aim of this section is to prove Theorem 1.2, which links the asymptotic behaviour of
(u(t,x)P) as t — oo to the (2-spectrum Sp(HP) of the operator HP.

Let X} (i = 1,...,p) and Y; be independent random walks on 7% with generators kA
and pA, respectively. Taking notation from (1.6)-(1.7), we note that KA1+ - - +xA,+oBP
is the generator of a random walk on ZP¢ having the form

(Z},...,20) = (X] = Y,.... X7 = Y)). (2.1)

Here X/ corresponds to a single jump caused by xA;, whereas Y; corresponds to “diagonal”
jumps caused by ¢BP. Hence we obtain the Feynman-Kac representation of the ¢2(ZP%)-
semigroup {e'"” |t > 0} generated by HP as

t P
(™ f) (21, .., 2p) = BEZ 2" exp {/0 > " 60(Z1) ds} 1zt z20. (2.2)
=1

A natural start for the analysis of (u(t,z)P) is the Feynman-Kac formula (1.3) with
ug = 1. For the potential (1.2) we get

u(t, z) = BX exp { /0 by (X.) ds} . (2.3)

Together with Fubini’s theorem we obtain

t P ,
(ult,2)") = Eifiz;;;é”?"exp{ / Zayt_xxz)ds}
0 i=1

t P
= Ef,.l.?;;;gf“y exp {/ Z So(XE—Y;_y) ds} 5.(Y3),
0

z€74 i=1

where (X}, ... , XPY;)i>0 is the joint process of the previously introduced independent
1 .

random walks th, . ,Xf ,Y: and Ea);(l,,’jj;’g;’y denotes its expectation when starting at

(x1,...,2p;y). For convenience we abbreviate

t.P '
Ay ::/0 Zéo(Xs—YS)ds. (2.4)

A time reversion of Y yields

w(t,z)?) = 3 EX XY exp {4} 60(Y7). (2.5)

T,..., ;2
2€74
Proceeding from the representation formula (2.5), we prepare the proof of Theorem 1.2.
We first show that, although the random field £(¢) is not spatially shift-invariant, the
moment Lyapunov exponents are independent of x.
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Lemma 2.1. Let k + 0 > 0, and assume that the limit

1
tlim glog (u(t,0)P) (2.6)
exists. Then, for all z € 79,
1 1
tlim i log (u(t, z)?) = tlim Zlog (u(t,0)P). (2.7)

Proof. Fix yy,y2 € Z% arbitrarily. We first consider the case x > 0. We start with (2.5)
and only consider paths X',..., XP? that start in y; and are at y, at time 1 and paths
Y that are again at the starting site at time 1. Then we use the Markov-property (MP).
This yields

1 p.
t,y)?) = D g kY6, (X]) -6y, (XT) 6.(V1)
z€Z4

X exp {/1 > (X} - ) ds} b (1)

1
S Py (X! =) PRU(XY =) PY (V1 = 2)

2€7Z4
t—1 P
1 . .
X E;gy.;(ZY exp {/ Z do(X: —Y5) ds} do (Y1) .
0 =1

In the last step, we took into account that X}, ..., X}, Y; are independent. As X},..., X7
are identically distributed and PY (Y] = z) > e~2d,

(it y)7) = [P (1 = )] o2 u(t = 1,17,

Thus, for y; = z,y2 = 0,

(MP)

1 1
liminf — log (u(t, z)P) > lim - log (u(t, 0)P),
t—oo t—oo ¢
whereas, for y; = 0,y2 = x,
1 1
lim —log (u(t,0)?) > limsup — log (u(t, z)P).
t—oo ¢ t—oo Ut
Hence the limit lim;_.o, t~* log (u(t, z)P) exists and coincides with (2.6).

The case £ = 0 (and hence p > 0) follows the same line of arguments. Since X; = x in
the Feynman-Kac representation (2.3),

u(t,y1)” = exp {p/ot do(y1 — Y;)dS} :

Consequently,

t
Eyu(t,y1)? > Ej exp {p / So(y1 —Y;>ds}6o(y1 — 1y — Y1)
1
(MP)

-1
= Py(Mi=y1—y2) B}, exp {p/ do(y1 — Ys) ds}
0

t—1
= PY(Yi=uy1—y2) E) exp {p/ do(y2 — Ys)ds},
0
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where the last line comes from the spatial shift y — y — (y1 — y2). Therefore,
(u(t,y1)P) > Py (Y1 =1 —y2) (u(t — 1,y2)"),

and, after substituting 0 and x for y; and y» and taking limits as before, we are done. [

Given [ > 0, let Q; := [, l]d N Z*. We need the following lemma to derive the upper
bound in the proof of Theorem 1.2. It states that on the right of (2.5) we can restrict to
paths that start and end in the finite box Q) with

((t) = tlog?t. (2.8)

Lemma 2.2. Ast — oo,

1 p.
(u(t,07) = (1+0(1)) Y Eg 5o " exp{A} so(Ys) Lxz .. xpyeq
Z€Qyt)

(2.9)

D .
ot)

Proof. 1t will be sufficient to check that

X1, XPY A X1 XPY A
® > eza By o e oo(Yy) — ZzeQm Eq. on et oY) ﬂ(xg,...,xf)ecgg@)
r(t) =
X1, . XPY
> sezd Eq o et 0o (Yz)

tends to 0 as ¢ — oo. Obviously, 7(t) > 0. Splitting the first sum as > ;0 =
Zz?ﬁ@e(t) + EzeQm) and then using that 1 < et < eP! we obtain

X1 XP:Y X! XP:Y
ot Zzé@g(t) IEO,...,O;z 50(}/15) + ZzEQZm IE:0,‘..,0;2 50(}/2) ]l(th,...,Xf)gQg(t)
X1,..,XPY
Eq o0 Y 60(Y)

X1..,XP
S PY = 0) + B (XE L XD) ¢ Q)

r(t)

et
B Py (Y: = 0)
1
BV (M Quy) + B (0 XD ¢ Qfy) 210
-t Py (¥ = 0) |

In the last two transformations we used again a time reversal for Y. For sufficiently large
values of ¢t and our choice of £(t),

Po (Vi ¢ Quzy) < e

(cf. [GM90, Lemma 4.3]). The same is true for X!, ... XP instead of Y. On the other
hand, the transition function of a simple random walk decays at most polynomial in time.
Hence, on the right hand side of (2.10), the numerator is superexponentially decreasing,
but the denominator is (at most) polynomial decreasing. This yields lim; oo 7(t) = 0. O

The next lemma is needed to derive the lower bound in the proof of Theorem 1.2.
Roughly speaking, it ensures that paths ending outside the finite box Q) are asymptot-
ically negligible. It can be seen as a counterpart to Lemma 2.2 with a somewhat modified
choice of indicators.
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Lemma 2.3. Ast — oo,

1 .
S BN Y exp{Ad) 6,(X)) - 8,(XP) 8,(Yo) (2.11)
YEQe(t)
= (1+o(1 ZIED oY exp{ A} 8, (X)) -+ 8,(XP) 6, (V7).
y€Z4

Proof. The proof is similar to that of the previous lemma. We have to show that
St Foo i exp{ Ak 8,(XE) -6, (X]) 0,(V2)
SyenaBo i exp{Ad6y(X]) -6y (X7) 8y (V2)
tends to 0 as t — co. Again, because of 1 < e/t < eP!, we obtain
Py (kXD ¢ Qif(t)) Py (¥i ¢ Qu)
Py et (X =0, XP=0) PY(Y;=0)

gosey

r(t) :=

0 < r(t) < e

The expression on the right converges to zero as ¢ — oo by the same arguments as in the
previous proof. O

Now we have collected all ingredients for the proof of Theorem 1.2.

Proof of Theorem 1.2. The proof will be split into two parts:

(i) h?iigp ; log< (t,0)P) < sup Sp(H?), (2.12)
(ii) hm 1nf log< (t,0)?) > sup Sp(HP). (2.13)
This together with Lemma 2.1 then proves Theorem 1.2.
(i) Upper bound. Since 1 x; W XD)EQY,, <0p(Yy) < H(XE*%waf*Yt)EQ’Z(t)’ we conclude
from Lemma 2.2 that
(u(t,00") < (1+o0(1) > Eg e exp{A) Vxi Vi xp-vieqr,,
2€Qu)

Now we apply the transformation (2.1) and the semigroup (2.2) to obtain

t P ,
(u(t,0) < (1+o1) 3 EZ vZ"exp{ / 250(22)615}]1@, e,

2€Qq(t)

< (+o(r) Y EBEY exp{/ 250 } (2} ZD)EQY

215-2p€Qu(t)
_ tHP
= (1+0(1)) (e gy, - ]1%) , (2.14)

where (-,-) denotes the inner product in ¢2(ZP%) with corresponding norm || - |. Set
w := sup Sp(HP) and let {E)\; A < u} denote the family of spectral projectors associated
with the bounded and self-adjoint operator H?. Using the spectral representation

e = / e dEy,

(7007:“]
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we find that

tHP _ t>\
( ]lQe(z)’ ﬂQ/(ﬂ) - / d (EA ]lQe(t ﬂQ?(t))
(7007/4

oth dHE 1, |
AR

= oM H]lQe( )HQ. (2.15)

IN

Combining (2.14) and (2.15) we get
(u(t,007) < (1+o0(1)) ™ [Qf, |-

Since |Q§( t)| increases only polynomial, this yields the upper bound (2.12).

(ii) Lower bound. Restricting the expectation on the right of (2.5) to paths of X1, ...,
XP_ Y starting and ending at 0, we get

(u(t,0)P) > ng o M So (X)) - - o (XT) Go(Yr)
= > R Y e 6y (X ) 8y (XD) 6y (Vi)
T1yeeyTp,YyELE
x e A2 5o (XY - 8o (XP) 6o (V7). (2.16)

An application of the Markov property at time ¢/2 transforms the expression on the right
of (2.16) into

Z Eé(’o’é( v At/25m1(Xt/2) O, ( t/2)5 (Yi/2)

20ty

Ty, Tp,YELY

X BN Y e 8o(X ) - 0(XT),) S0(Yipa).

$py

After a time reversion in the second line, we may bound this expression from below by

2
S (B e 6y (Xg) -0, (X0)) 0, (Vo))

-----
T1seesTps
yez?

2
X1 .. XPy
> > (B Y et 6y (Xha) 0y (XD5) (Vi)

YEQu(t)

Using the inequality

2
Z;$22n<z;xz> , T1,...,Tp € R,
i= i=



14 JURGEN GARTNER AND MARKUS HEYDENREICH

and Lemma 2.3, the last expression can further be bounded from below by
2

1 X, XPY
Qe Yo Eooh et 8y (X ) e 8y(X]),) 6y (Yiga)
YEQ(
2
1+o(1
_ S BN Y e 5, (X)) 0,(X7) 6,(Yiga) |
Q| t)\ 5
14+o0(1) /_xt. . xry A ) ,
- EYNE 0 /2 e _
Qe (i e Bo(Xy = Yipa) -+ ol(Xf 1y = Vi)

As before, applying the transformation (2.1) and collecting the above bounds, we arrive
at

0 1 t/2 P 2
(u(t,0)") = W( 5o exp{ 250 }50(Zt/2) "50(Zf/g)> - (217)

Again, expressing (2.17) with the help of the semigroup (2.2), we obtain

(u(t, 0)P) > 1@0(8 (25, 5) . (2.18)

In order to find a lower bound for the expression on the right of (2.18), we restrict the
??-operator ‘HP to a finite box with Dirichlet boundary condition and apply the Perron-
Frobenius theory for nonnegative irreducible matrices. This is done as follows.

By killing the process (Z}, ..., ZF) upon leaving the box Q5 = [—n,n]P N ZP4, we get
a new semigroup in £2(Qh) with generator H5 acting on f € ?(Qh) as

where (z1,...,2,) € Q) and 7¢ = inf{{| (Zél, ., Z%) ¢ @b} denotes the first exit time
from the box Q. Accordingly, for all f € £2(Q%),

HPf(21,. . 2) = HP (21, - 5 2p), (21,...,2) € QY, (2.20)
where
J/c\ o f on Q?:“
" 10 on zP?\ Q.

Furthermore, for any ¢ > 0, Hh + (2dk + €) I is a positive operator that obeys the pre-
requisites of the Perron-Frobenius theorem, where I is the identical operator. Hence there
exists a strictly positive eigenfunction v, with ||v,| = 1, corresponding to the largest
eigenvalue of H}, + (2dk + €) I having multiplicity 1. Then v, is also an eigenfunction to
the largest eigenvalue p,, of H% and an eigenfunction to the largest eigenvalue e(*/2)tn of
e(t/2 M5 having multiplicity 1. Denote by {E¥; A < pn} the family of spectral projectors
associated with the operator H},. Using again the spectral representation, we obtain

(2M50,50) = e/ (5,552 4 / 112N d (B350, 60)
(—OO,Mn)
> et/Drny, (0)2.
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Since v, (0) is positive, the above inequality implies that
1
liminf - log (e“/m%o,&o) > Hn. (2.21)
t—oo t 2

We combine the inequalities (2.18) and (2.21) with the semigroups (2.2) and (2.19) to
obtain for all » € N that

.. 1 .. 1 1+0(1) 2 2
liminf = 1 £,0?) > liminf - log{ —— 2 (e®/DH 5, 5
iminf - log (u(t,0)") = liminf - og{ o (e 0; o)

|
= 2liminf - log (e(t/ DH 5, 50)

v

1
2 litm inf n log (e(t/z)Hﬁéo, 50)

Y

Hn-

It remains to show that

lim p, = p.
n—oo

By the Rayleigh-Ritz formula for u, and (2.20),

in=  swp (HOLf)=  sup  (HPLf). (2.22)
re2(Q), I fll=1 fe(zrd), | fl=1
supp(f)CQn

Here supp(f) denotes the support of f. We see from (2.22) that p, is nondecreasing in
n. Let f € ¢2(ZP?). Then f loe — f in the norm sense and, since H? is a bounded linear
operator, (H?(flgr), flge) — (HPf, f). This validates

sup (HPf,f)= sup (HPf,[).

I flI=1 | f]I=1
[supp(f)|<oo

Together with (2.22), we obtain the desired equality

p = sup (H'f,f)=sup sup (H'f,f)
[Ifl=1 neN | fl=1
supp(f)CQh

= supp, = lim puy,.
neN n—oo

This completes the proof. ]

3. ANALYSIS OF THE LYAPUNOV EXPONENTS AND INTERMITTENCY

In this section we study the behaviour of A, for varying p € N under the influence of the
system parameters k and ¢ and analyse the intermittency behaviour of the system to prove
Theorems 1.5 and 1.6. In Section 3.1 we prove some standard statements that hold quite
generally for any (nonnegative) version of the potential £. In Section 3.2 we prove some
preliminary results for the degenerate cases ¢ = 0 and k = 0, being of crucial importance
for Section 3.3, where we prove Theorem 1.5. Finally, Section 3.4 is devoted to the proof
of Theorem 1.6.

3.1 General relations between Lyapunov exponents

In this section we study the general situation where we assume that £ is any nonnegative
potential and that the Lyapunov exponents (1.4) exist for all p € N.
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Lemma 3.1 (General properties of Lyapunov exponents).

(i) For allp € N,

A /\p+1;
p  p+l
(ii) the mapping p — Ay is convez, i.e., for all p,q € N and a € (0,1) with ap+ (1 —

a)q € N,
Aapt(1—a)g < @Ap + (1 — a)Ag;
(iii) if \p/p < Ap1/(p+ 1) for some p € N, then N\;/q < Ag+1/(q+ 1) for all ¢ € N
with ¢ > p.
Proof.

(i) The first assertion is obvious from the moment inequality
(ult,2)")> < (u(t, xp )
and the definition (1.4) of the Lyapunov exponents.
(ii) Let o € (0,1) and p,q,ap + (1 — a)q € N. By Holder’s inequality,
(ult, 2) P07 < (u(t,2)P)* (ult,z)?)' .
This implies the desired inequality.

(iii) It is sufficient to show the assertion for ¢ = p+1. We proceed indirectly by assuming
that A\p/p < Aps1/(p+ 1) but Apy1/(p+ 1) = Apy2/(p + 2). Then, by assertion (ii),

1 1 1/ p p+2
Apt1 S 5Ap+ SApe2 < 5 <p+1/\l’+1 + p+1/\p+1> = Apt1,

which is a contradiction. O

Remark. We had to restrict the convexity to those a € (0,1) with ap + (1 — a)q € N,
because we only know existence of A\, for p € N.

3.2 The degenerate cases Kk =0 and 9o =0

We now return to the case that the random potential £ has the form (1.2). We will first
prove Lemma 1.3 treating the degenerate case o = 0.

Proof of Lemma 1.3. If o = 0, then £(¢,x) = do(x) and the solution u to (1.1) is determin-
istic. Hence A\, (k,0) = pAi(k,0), and the assertion of the lemma follows with (1.13). O

We now consider the case K = 0.
Proof of Lemma 1.4. We use the Feynman-Kac formula (1.3) with X, = 0 and a simple

time-scaling to see that A, (0, 0) = pA1(0, o/p). Combining this with (1.13), we arrive at
the desired assertion. g

3.3 Properties of the Lyapunov exponents \,(k, 0)

In this subsection we will prove Theorem 1.5.
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Proof of Theorem 1.5. (i) Fix p € N. With the help of Theorem 1.2 and the Rayleigh-
Ritz-Formula we can write

Ap(k,0) = supSp(HP) = sup (H'f, f)
fee?(zrd)
I£1=1
—  sup /<;<(A1 e A f) + g(BPf, f) n ((56” +o 40PNy, f)]
feu?n(zid)

(3.1)

Hence, as a supremum of linear functions of x and p, A\y(k, 0) is convex and lower semicon-
tinuous. Since every finite convex function on [0, 00)2 is upper semicontinuous, we get the
desired continuity. Monotonicity follows directly, because the first two inner products in
(3.1) are nonpositive. It remains to show that A\, vanishes if £ > G4. By monotonicity and
Lemma 1.3, 0 < A\y(k, 0) < Ap(k,0) = pp(k), but the right hand side equals 0 if £ > Gy,
by (1.11).

(ii) Fix k, o > 0 arbitrarily. By Lemma 3.1, A\,(k, 0)/p is nondecreasing in p. As in (i),
Theorem 1.2 and the Rayleigh-Ritz formula yield

Mio) = swp [((sAr 4 md, 000+ o)) + (0B )] (32)
fe?(zrd)
llFll=1

On the other hand, by Lemma 1.3,

pu(k) = Ap(k,0) = sup ((/@'Al + +RA, + (551) +- 5[()p))f, f) . (3.3)

fe?(zrd)

I£lI=1
From (3.2) and (3.3) we conclude that

Ap(K, 0

B0 | <2 sp |87, (34)
p P fee?(zrd)

I1£lI=1

Hence, to prove the convergence (1.18), it suffices to show that the supremum on the
right stays bounded as p — co. We write e; for the i-th unit vector in Z?. For arbitrary
f € 2(ZP1), we obtain

d
BPf(z,...omp) = Y [f(mtei..,mpte)— fan,...,2p)]

~
—_

_|_Z [f(q:l—ei,...,.%'p—ei)—f($1;-~-7xp)]'

Using a spatial shift in the second line we can compute the Dirichlet form associated with
the operator BP:

— (BPf, f) = Z Yo @i tenapte) = flan. .., (3.5)
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In particular, (BPf, f) < 0. Using the inequality (a — b)? < 2a? + 2b% we conclude from
(3.5) that

sup |(BPf, f)| < 4d,
1=

and we are done. O

3.4 Intermittency

Finally, we want to analyse the intermittency behaviour of the system by proving Theorem
1.6. To this end, we need the following lemma.

Lemma 3.2. If o > 0 and k + 0 < Ggq, then \o/2 > A1, i.e., the system shows full
intermittency.

Proof. Since A\ (k, 0) = p(k+0) and k+ 0 < G4, A1 is positive and the largest eigenvalue of
the operator H! = (k+ 0)A -+ & corresponding to a positive eigenfunction v with [|v| = 1.
Then (v ® v)(z,y) = v(x)v(y) is an eigenfunction of the operator

H2 =1 @ H! = (5 + 0)(A1 + Ag) + (35 + 67).
corresponding to the eigenvalue 2\;. Using the Rayleigh-Ritz formula, we conclude that
A2 —2\;1 = supSp(H?) —sup Sp(?fi\é)

= sup (H°f,f) - (@v@v,v@v)
Il Fll=1

(2 -12)vevveu).

v

But
<<H2—7f'ﬁ)v®v,v®v)
Q((Bz_Al_AQ)U®U,U®U)

d
= 20 > > [p@)u(y+e) —v(@)y)] [o(z —e)v(y) — v(@)v(y)]
z,yeZd i=1
d
= 20 > > (@) ol —e) —v(@)] o) [y + &) —v(y)]
z,yezd i=1
d
= 0 Y. D [ —e)—v@)] oy +e) — o)
wyezd i=1
d ) 2
= o) [ D @ —e) —v(@)?
=1 \zxeZzZd

Assume that the above expression vanishes. Then v is constant. Since v € ¢2(Z%), this
implies v = 0, which contradicts ||v|| = 1. Therefore, Ao — 21 > 0. O

Proof of Theorem 1.6. Let ¢ > 0. We first consider the case k + ¢ < G4. Then A\y/2 > )\
by Lemma 3.2. Hence, \,11/(p+1) > X\p/p for all p € N by Lemma 3.1, and the system
is fully intermittent.
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Next, consider the case Gy — 0 < k < Gg. By Theorem 1.2 and (1.11), we see that in
this case A\ (k, 0) = u(k + o) = 0, whereas p(x) > 0. Theorem 1.5 yields the convergence
Mp(K,0)/p /" (k) as p — oo. Hence, there exists p € N such that A\,(k,0) > 0. Set
p* :=min {p € N|A,(k, 0) > 0}. Then the system is p*-intermittent.

It remains the case k > G4. Then Ai(k, 0) = Aa(k, 0) = - -+ = 0 by Theorem 1.5 (i), and
the system is not intermittent. O
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