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1. Introduction and heuristics

1.1 Evolution of spatially distributed systems in random media

One of the often adequate and frequently used methods for studying the evolution of spatially dis-
tributed systems under the influence of a random medium is homogenization. After rescaling, the
system, modeled by partial differential equations with random coefficients, is approached by a sys-
tem with ‘properly averaged’ deterministic coefficients, see e.g. [ZKO94]. But there are simple and
important situations when random systems exhibit effects which cannot be recovered by such deter-
ministic approximations and related fluctuation corrections. This concerns, in particular, localization
effects for non-reversible random walks in random environment [S82] and for the electron transport in
disordered media [And58].

Another such effect is that of intermittency. Roughly speaking, intermittency means that the so-
lution of the system develops pronounced spatial structures on islands located far from each other
that, in one or another sense, deliver the main output to the system. One of the sources of interest
is magnetohydrodynamics and, in particular, the investigation of the induction equation with incom-
pressible random velocity fields [Z84], [ZMRS87]. Another source are simple mathematical models
such as the random Fisher-Eigen equation that have been used to derive caricatures of Darwinian
evolution principles [EEEF84].

One of the simplest and most basic models exhibiting the effect of intermittency is the Cauchy
problem for the spatially discrete heat equation with a random potential:

∂t u(t, x) = κ∆u(t, x) + ξ(t, x)u(t, x), (t, x) ∈ (0,∞) × Z
d,

u(0, x) = u0(x), x ∈ Z
d.

(1.1)

Here κ > 0 is a diffusion constant, ∆ denotes the discrete Laplacian,

∆f(x) =
∑

y : |y−x|=1

[f(y) − f(x)],

ξ is a space-time homogeneous ergodic random potential, and u0 is a nonnegative initial function.
Problem (1.1) is often called parabolic problem for the Anderson model or parabolic Anderson model
(abbreviated PAM ). As simplest localized initial datum one may take u0 = δ0, and as non-local initial
datum u0 = 1l. In the latter case, the solution u(t, ·) is spatially homogeneous and ergodic for each t.
Let us remark that the solution u(t, x) of (1.1) allows the interpretation as average number of particles
at site x at time t for branching random walks in random media given a realization of the medium ξ,
cf. [CM94] and the remarks in the next subsection.

1.2 The PAM with time-independent potential

In the particular case when the potential ξ(t, x) = ξ(x) is time-independent, the large-time behavior of
the solution u to the PAM (1.1) is determined by the spectral properties of the Anderson Hamiltonian

H = κ∆ + ξ (1.2)

and therefore closely related to the mentioned localization of the electron transport. Namely, since
(under natural assumptions on ξ) the upper part of the spectrum of H in `2(Zd) is a pure point
spectrum [FMSS85], [AM93], the solution u admits the spectral representation

u(t, ·) =
∑

i

eλit (vi, u0) vi(·) (1.3)
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with respect to the random eigenvalues λi and the corresponding exponentially localized random
eigenfunctions vi. (For simplicity we ignore the possible occurrence of a continuous central part of
the spectrum.) As t increases unboundedly, only summands with larger and larger eigenvalues will
contribute to (1.3), and the corresponding eigenfunctions are expected to be localized more and more
far from each other. Hence, for large t, the solution u(t, ·) indeed looks like a weighted superposition
of high peaks concentrated on distant islands.

A mathematically rigorous understanding of the nature of the spectrum of the Anderson Hamiltonian
and the random Schrödinger operator is still far from being complete. For an overview about some
recent developments we refer to the surveys [BKS04] and [LMW04] in this proceedings volume. The
spectral results obtained so far do not yet seem directly applicable to answer the crucial questions
about intermittency. A direct spectral approach clearly fails for space-time dependent potentials.

In this survey we present a part of the results about intermittency for the PAM which have been
obtained by use of more intrinsic probabilistic methods. In the next subsections we stick to the PAM
with time-independent potential and localized initial datum:

∂t u(t, x) = κ∆u(t, x) + ξ(x)u(t, x), (t, x) ∈ (0,∞) × Z
d,

u(0, x) = δ0(x), x ∈ Z
d.

(1.4)

We assume throughout that ξ = (ξ(x))x∈Zd is a field of i.i.d. random variables with finite positive
exponential moments. Under these basic assumptions, u(t, x) has moments of all orders.

The solution u to (1.4) describes a random particle flow in Z
d in the presence of random sources

(lattice sites x with ξ(x) > 0) and random sinks (sites x with ξ(x) < 0).4 Two competing effects are
present: the diffusion mechanism governed by the Laplacian, and the local growth governed by the
potential. The diffusion tends to make the random field u(t, ·) flat, whereas the random potential ξ
has a tendency to make it irregular.

The solution u to (1.4) also admits a branching particle dynamics interpretation. Imagine that
initially, at time t = 0, there is a single particle at the origin, and all other sites are vacant. This
particle moves according to a continuous-time symmetric random walk with generator κ∆. When
present at site x, the particle is split into two particles with rate ξ+(x) and is killed with rate ξ−(x),
where ξ+ = (ξ+(x))x∈Zd and ξ− = (ξ−(x))x∈Zd are independent random i.i.d. fields (ξ−(x) may attain
the value ∞). Every particle continues from its birth site in the same way as the parent particle, and
their movements are independent. Put ξ(x) = ξ+(x) − ξ−(x). Then, given ξ− and ξ+, the expected
number of particles present at the site x at time t is equal to u(t, x). Here the expectation is taken over
the particle motion and over the splitting resp. killing mechanism, but not over the random medium
(ξ−, ξ+).

A very useful standard tool for the probabilistic investigation of (1.4) is the well-known Feynman-
Kac formula for the solution u, which (after time-reversal) reads

u(t, x) = E0

[
exp

{∫ t

0
ξ(X(s)) ds

}
δx(X(t))

]
, (t, x) ∈ [0,∞) × Z

d, (1.5)

where (X(s))s∈[0,∞) is continuous-time random walk on Z
d with generator κ∆ starting at x ∈ Z

d

under Ex.

Our main interest concerns the large-time behavior of the random field u(t, ·). In particular, we
consider the total mass, i.e., the random variable

U(t) =
∑

x∈Zd

u(t, x) = E0

[
exp

{∫ t

0
ξ(X(s)) ds

}]
, t > 0. (1.6)

4Sites x with ξ(x) = −∞ may be allowed and interpreted as (‘hard’) traps or obstacles, sites with ξ(x) ∈ (−∞, 0) are
sometimes called ‘soft’ traps.
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Note that U(t) coincides with the value û(t, 0) of the solution û to the parabolic equation (1.4) with
initial datum û(0, ·) = 1l instead of u(0, ·) = δ0. One should have in mind that, because of this, our
considerations below also concern the large-time asymptotics of û.

We ask the following questions:

(1) What is the asymptotic behavior of U(t) as t→ ∞?
(2) Where does the main mass of u(t, ·) stem from? What are the regions that contribute most to

U(t)? What are these regions determined by? How many of them are there and how far away
are they from each other?

(3) What do the typical shapes of the potential ξ(·) and of the solution u(t, ·) look like in these
regions?

We call the regions that contribute the overwhelming part to the total mass U(t) relevant islands or
relevant regions. The notion of intermittency states that there does exist a small number of relevant
islands which are far away from each other and carry asymptotically almost all the total mass U(t) of
u(t, ·). See Section 1.3 for details.

This effect may also be studied from the point of view of typical paths X(s), s ∈ [0, t], giving
the main contribution to the expectation in the Feynman-Kac formula (1.6). On the one hand, the
random walker X should move quickly and as far as possible through the potential landscape to reach
a region of exceptionally high potential and then stay there up to time t. This will make the integral
in the exponent on the right of (1.6) large. On the other hand, the probability to reach such a distant
potential peak up to t may be rather small. Hence, the first order contribution to U(t) comes from
paths that find a good compromise between the high potential values and the far distance. This
contribution is given by the height of the peak. The second order contribution to U(t) is determined
by the precise manner in which the optimal walker moves within the potential peak, and this depends
on the geometric properties of the potential in that peak.

It is part of our study to understand the effect of intermittency for the parabolic Anderson model in
great detail. We distinguish between the so-called quenched setting, where we consider u(t, ·) almost
surely with respect to the medium ξ, and the annealed one, where we average with respect to ξ. It
is clear that the quantitative details of the answers to the above questions strongly depend on the
distribution of the field ξ (more precisely, on the upper tail of the distribution of the random variable
ξ(0)), and that different phenomena occur in the quenched and the annealed settings.

It will turn out that there is a universal picture present in the asymptotics of the parabolic Anderson
model. Inside the relevant islands, after appropriate vertical shifting and spatial rescaling, the potential
ξ will turn out to asymptotically approximate a universal, non-random shape, V , which is determined
by a characteristic variational problem. The absolute height of the potential peaks and the diameter
of the relevant islands are asymptotically determined by the upper tails of the random variable ξ(0),
while the number of the islands and their locations are random. Furthermore, after multiplication
with an appropriate factor and rescaling, also the solution u(t, ·) approaches a universal shape on these
islands, namely the principal eigenfunction of the Hamiltonian κ∆ + V with V the above universal
potential shape. Remarkably, there are only four universal classes of potential shapes for the PAM in
(1.4), see Section 4 for details.

For a general discussion we refer to the monograph by Carmona and Molchanov [CM94], the lectures
by Molchanov [M94], and also to the results by Sznitman about the important (spatially continuous)
case of bounded from above Poisson-like potentials summarized in his monograph [S98]. A discussion
from a physicist’s and a chemist’s point of view in the particular case of trapping problems (see
also Section 2.2 below), including a survey on related mathematical models and a collection of open
problems, is provided in [HW94]. A general mathematical background for the PAM is provided in
[GM90].
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1.3 Intermittency

As before, let û denote the solution to the equation in (1.4) with initial datum û(0, ·) = 1l, but now
with a homogeneous ergodic potential ξ = (ξ(x))x∈Zd. Assume that all positive exponential moments
of ξ(0) are finite. Let Prob (·) and 〈·〉 denote probability and expectation w.r.t. ξ.

A first, rough, mathematical approach to intermittency consists in a comparision of the growth of
subsequent moments of the ergodic field û(t, ·) as t→ ∞. Define

Λp(t) = log 〈û(t, 0)p〉 , p ∈ N,

and write f � g if limt→∞[g(t) − f(t)] = ∞.

Definition 1.1. For p ∈ N \ {1}, the homogeneous ergodic field û(t, ·) is called p-intermittent as
t→ ∞, if

Λp−1

p− 1
� Λp

p
. (1.7)

Note that, by Hölder’s inequality, always Λp−1/(p − 1) ≤ Λp/p. If the finite moment Lyapunov
exponents

λp = lim
t→∞

1

t
Λp(t), p ∈ N,

exist, then the strict inequality λp−1/(p − 1) < λp/p implies p-intermittency. Such a comparison of
the moment Lyapunov exponents has first been used in the physics literature to study intermittency,
cf. [ZMRS87], [ZMRS88]. We will use this approach in Section 5.

To explain the meaning of Definition 1.1, assume (1.7) for some p ∈ N \ {1} and choose a level
function `p such that Λp−1/(p− 1) � `p � Λp/p. Then, by Chebyshev’s inequality,

Prob
(
û(t, 0) > e`p(t)

)
≤ e−(p−1)`p(t)

〈
û(t, 0)p−1

〉
= exp{Λp−1(t) − (p− 1)`p(t)} ,

and the expression on the right converges to zero as t → ∞. In other words, the density of the
homogeneous point process

Γ(t) =
{
x ∈ Z

d : û(t, x) > e`p(t)
}

vanishes asymptotically as t→ ∞. On the other hand,
〈
û(t, 0)p 1l

{
û(t, 0) ≤ e`p(t)

}〉
≤ ep`p(t) = ep`p(t)−Λp(t) 〈û(t, 0)p〉 = o (〈û(t, 0)p〉)

and, consequently,

〈û(t, 0)p〉 ∼
〈
û(t, 0)p 1l

{
û(t, 0) > e`p(t)

}〉

as t→ ∞. Hence, by Birkhoff’s ergodic theorem, for large t and large centered boxes B in Z
d,

|B|−1
∑

x∈B

û(t, x)p ≈ |B|−1
∑

x∈B∩Γ(t)

û(t, x)p.

This means that the p-th moment 〈û(t, 0)p〉 is ‘generated’ by the high peaks of û(t, ·) on the ‘thin’ set
Γ(t) and therefore indicates the presence of intermittency in the above verbal sense. Unfortunately,
this approach does not reflect the geometric structure of the set Γ(t). This set might consist of islands
or, e.g., have a net-like structure.

Theorem 1.2. If ξ = (ξ(x))x∈Zd is a non-deterministic field of i.i.d. random variables with 〈etξ(0)〉 <
∞ for all t > 0, then the solution û(t, ·) is p-intermittent for all p ∈ N \ {1}.
This is part of Theorem 3.2 in [GM90], where, for general homogeneous ergodic potentials ξ, neces-
sary and sufficient conditions for p-intermittency of û(t, ·) have been given in spectral terms of the
Hamiltonian (1.2).
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1.4 Annealed second order asymptotics

Let us discuss, on a heuristic level, what the asymptotics of the moments of U(t) are determined by,
and how they can be described. For simplicity we restrict ourselves to the first moment.

The basic observation is that, as a consequence of the spectral representation (1.3),

U(t) ≈ etλt(ξ) (1.8)

(in the sense of logarithmic equivalence), where λt(ϕ) denotes the principal (i.e., largest) eigenvalue
of the operator κ∆ +ϕ with zero boundary condition in the ‘macrobox’ Bt = [−t, t]d ∩Z

d. Hence, we
have to understand the large-time behavior of the exponential moments of the principal eigenvalue of
the Anderson Hamiltonian H in a large, time-dependent box.

It turns out that the main contribution to 〈etλt(ξ)〉 comes from realizations of the potential ξ having
high peaks on distant islands of some radius of order α(t) that is much smaller than t. But this implies
that λt(ξ) is close to the principal eigenvalue of H on one of these islands. Therefore, since the number
of subboxes of Bt of radius of order α(t) grows only polynomial in t and ξ is spatially homogeneous,
we may expect that 〈

etλt(ξ)
〉
≈

〈
etλRα(t)(ξ)

〉

for R large as t→ ∞.

The choice of the scale function α(t) depends on asymptotic ‘stiffness’ properties of the potential,
more precisely of its tails at its essential supremum, and is determined by a large deviation principle,
see (1.15) below. In Section 2 we shall see examples of potentials such that α(t) tends to 0, to ∞, or
stays bounded and bounded away from zero as t→ ∞. In the present heuristics, we shall assume that
α(t) → ∞, which implies the necessity of a spatial rescaling. In particular, after rescaling, the main
quantities and objects will be described in terms of the continuous counterparts of the discrete objects
we started with, i.e., instead of the discrete Laplacian, the continuous Laplace operator appears etc.
The following heuristics can also be read in the case where α(t) ≡ 1 by keeping the discrete versions
for the limiting objects.

The optimal behavior of the field ξ in the ‘microbox’ BRα(t) is to approximate a certain (deter-
ministic) shape ϕ after appropriate spatial scaling and vertical shifting. It easily follows from the
Feynman-Kac formula (1.6) that

eH(t)−2dκt ≤ 〈U(t)〉 ≤ eH(t),

where

H(t) = log
〈
etξ(0)

〉
, t > 0, (1.9)

denotes the cumulant generating function of ξ(0) (often called logarithmic moment generating func-
tion). Hence, the peaks of ξ(·) mainly contributing to 〈U(t)〉 have height of order H(t)/t. Together
with Brownian scaling this leads to the ansatz

ξt(·) = α(t)2
[
ξ
(
b ·α(t)c

)
− H(t)

t

]
, (1.10)

for the spatially rescaled and vertically shifted potential in the cube QR = (−R,R)d. Now the idea is
that the main contribution to 〈U(t)〉 comes from fields that are shaped in such a way that ξt ≈ ϕ in
QR, for some ϕ : QR → R, which has to be chosen optimally. Observe that

ξt ≈ ϕ in QR ⇐⇒ ξ(·) ≈ H(t)

t
+ 1

α(t)2
ϕ
(

·
α(t)

)
in BRα(t). (1.11)

Let us calculate the contribution to 〈U(t)〉 coming from such fields. Using (1.8), we obtain
〈
U(t) 1l{ξt ≈ ϕ in QR}

〉
≈ eH(t) exp

{
tλRα(t)

(
1

α(t)2
ϕ
(

·
α(t)

))}
Prob

(
ξt ≈ ϕ in QR

)
. (1.12)
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The asymptotic scaling properties of the discrete Laplacian, ∆, imply that

λRα(t)

(
1

α(t)2
ϕ
(

·
α(t)

))
≈ 1

α(t)2
λc

R(ϕ), (1.13)

where λc
R(ϕ) denotes the principal eigenvalue of κ∆c+ϕ in the cube QR with zero boundary condition,

and ∆c is the usual ‘continuous’ Laplacian. This leads to
〈
U(t) 1l{ξt ≈ ϕ in QR}

〉
≈ eH(t) exp

{ t

α(t)2
λc

R(ϕ)
}

Prob
(
ξt ≈ ϕ in QR

)
. (1.14)

In order to achieve a balance between the second and the third factor on the right, it is necessary
that the logarithmic decay rate of the considered probability is t/α(t)2. One expects to have a large
deviation principle for the shifted, rescaled field, which reads

Prob
(
ξt ≈ ϕ in QR

)
≈ exp

{
− t

α(t)2
IR(ϕ)

}
, (1.15)

where the scale α(t) has to be determined in such a way that the rate function IR is non-degenerate.
Now substitute (1.15) into (1.14). Then the Laplace method tells us that the exponential asymptotics
of 〈U(t)〉 is equal to the one of

〈
U(t) 1l{ξt ≈ ϕ in QR} with optimal ϕ. Hence, optimizing on ϕ and

remembering that R is large, we arrive at
〈
U(t)

〉
≈ eH(t) exp

{
− t

α(t)2
χ
}
, (1.16)

where the constant χ is given in terms of the characteristic variational problem

χ = lim
R→∞

inf
ϕ : QR→R

[
IR(ϕ) − λc

R(ϕ)
]
. (1.17)

The first term on the right of (1.16) is determined by the absolute height of the typical realizations
of the potential and the second contains information about the shape of the potential close to its
maximum in spectral terms of the Anderson Hamiltonian H in this region. More precisely, those
realizations of ξ with ξt ≈ ϕ∗ in QR for large R and ϕ∗ a minimizer in the variational formula in
(1.17) contribute most to 〈U(t)〉. In particular, the geometry of the relevant potential peaks is hidden
via χ in the second asymptotic term of 〈U(t)〉.

1.5 Quenched second order asymptotics

Here we explain, again on a heuristic level, the almost sure asymptotics of U(t) as t→ ∞. Because of
(1.8), it suffices to study the asymptotics of the principal eigenvalue λt(ξ).

Like for the annealed asymptotics, the main contribution to λt(ξ) comes from islands whose radius is
of a certain deterministic, time-depending order, which we denote α̃(t). As t→ ∞, the scale function
α̃(t) tends to zero, one, or ∞, respectively, if the scale function α(t) for the moments tends to these
respective values (see also (1.20) below). However, α̃(t) is roughly of logarithmic order in α(t) if
α(t) → ∞, hence it is much smaller than α(t).

The relevant islands (‘microboxes’) have radius Rα̃(t), where R is chosen large. Let z ∈ Bt denote

the (certainly random) center of one of these islands B̃ = z+BReα(t) meeting the two requirements (1)

the potential ξ is very large in B̃ and (2) ξ has an optimal shape within B̃. This is further explained
as follows. Let ht = maxBt ξ be the maximal potential value in the large box Bt. (Then ht is a priori
random, but well approximated by deterministic asymptotics, which can be deduced from asymptotics

of H(t).) Then ξ− ht is roughly of finite order within the relevant ‘microbox’ B̃. Furthermore, ξ− ht

should approximate a fixed deterministic shape in B̃. Hence, we consider the shifted and rescaled field

in the box B̃,

ξt(·) = α̃(t)2
[
ξ
(
z + · α̃(t)

)
− ht

]
, in QR = (−R,R)d. (1.18)
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Note that

ξt ≈ ϕ in QR ⇐⇒ ξ(z + ·) ≈ ht + 1
eα(t)2

ϕ
(

·
eα(t)

)
in B̃ − z. (1.19)

A crucial Borel-Cantelli argument shows that, for a given shape ϕ, with probability one, for any

t sufficiently large, there does exist at least one box B̃ having radius Rα̃(t) such that the event
{ξt ≈ ϕ in QR} occurs if IR(ϕ) < 1, where IR is the rate function of the large deviation principle in
(1.15). If IR(ϕ) > 1, then this happens with probability 0. For the Borel-Cantelli argument to work,
one needs the scale function α̃(t) to be defined in terms of the annealed scale function α(t) in the
following way:

α̃(t)

α(α̃(t))2
= d log t, (1.20)

i.e., α̃(t) is the inverse of the map t 7→ t/α(t)2, evaluated at d log t. Note that the growth of α̃(t) is
roughly of logarithmic order of the growth of α(t), i.e., if the annealed relevant islands grow unbound-
edly, then the quenched relevant islands also grow unboundedly, but with much smaller velocity.

Hence, with probability one, for all large t, there is at least one box B̃ in which the potential looks

like the function on the right of (1.19). The contribution to λt(ξ) coming from one of the boxes B̃ is
equal to the associated principal eigenvalue

λ eB−z

(
ht + 1

eα(t)2
ϕ
(

·
eα(t)

))
≈ ht +

1

α̃(t)2
λc

R(ϕ), (1.21)

where we recall that λc
R(ϕ) is the principal Dirichlet eigenvalue of the operator κ∆c + ϕ in the ‘con-

tinuous’ cube QR. Obviously, λt(ξ) is asymptotically not smaller than the expression on the right of
(1.21). In terms of the Feynman-Kac formula in (1.5), this lower estimate is obtained by inserting the

indicator on the event that the random path moves quickly to the box B̃ and stays all the time until
t in that box.

It is an important technical issue to show that, asymptotically as t → ∞, λt(ξ) is also estimated
from above by the right hand side of (1.21), if ϕ is optimally chosen, i.e., if λc

R(ϕ) is optimized over
all admissible ϕ and on R. This implies that the almost sure asymptotics of U(t) are given as

1

t
logU(t) ≈ λt(ξ) ≈ ht −

1

α̃(t)2
χ̃, t→ ∞, (1.22)

where χ̃ is given in terms of the characteristic variational problem

χ̃ = lim
R→∞

inf
ϕ : QR→R,IR(ϕ)<1

[−λc
R(ϕ)] . (1.23)

This ends the heuristic derivation of the almost sure asymptotics of U(t). Like in the annealed case,
there are two terms, which describe the absolute height of the potential in the ‘macrobox’ Bt, and the

shape of the potential in the relevant ‘microbox’ B̃, more precisely the spectral properties of κ∆+ξ in
that microbox. The interpretation is that, for R large and ϕ∗ an approximate minimizer in (1.23), the

main contribution to U(t) comes from a small box B̃ in Bt, with radius Rα̃(t), in which the shifted
and rescaled potential ξt looks like ϕ∗. The condition IR(ϕ∗) < 1 guarantees the existence of such a
box, and λR(ϕ∗) quantifies the contribution from that box.

Let us remark that the variational formulas in (1.23) and (1.17) are in close connection to each other.
In particular, it can be shown that the minimizers of (1.23) are rescaled versions of the minimizers
of (1.17). This means that, up to rescaling, the optimal potential shapes in the annealed and in the
quenched setting are identical.
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1.6 Geometric picture of intermittency

In this section we explain the geometric picture of intermittency, still on a heuristic level.

The heuristics for the total mass of u(t, ·) in Section 1.5 makes use of only one of the relevant islands

B̃ in which the potential is optimally valued and shaped. In order to describe the entire function u(t, ·),
one has to take into account a certain (random) number of such islands. Let n(t) denote their number,
and let z1, z2, . . . , zn(t) ∈ Bt denote the centers of these relevant microboxes B1, B2, . . . , Bn(t), whose
radii are equal to Rα̃(t). Then, almost surely,

U(t) =
∑

x∈Zd

u(t, x) ≈
n(t)∑

i=1

∑

x∈Bi

u(t, x), as t→ ∞, (1.24)

i.e., asymptotically the total mass of the random field u(t, ·) stems only from the unions of the relevant
islands, B1, . . . , Bn(t). These islands are far away from each other. On each of them, the shifted and

rescaled potential ξt, see (1.18)), looks approximately like a minimizer ϕ∗ of the variational problem
in (1.23). In particular, it has an asymptotically deterministic shape. This is the universality in the
potential landscape: the height and the (appropriately rescaled) shape of the potential on the relevant
islands are deterministic, but their location and number are random.

The shape of the solution, u(t, ·), on each of the relevant islands also approaches a universal de-
terministic shape, namely a time-dependent multiple of the principal eigenfunction of the operator
κ∆ + ϕ∗.

2. Examples of potentials

2.1 Double-exponential distributions

Consider a distribution which lies in the vicinity of the double-exponential distribution, i.e.,

Prob (ξ(0) > r) ≈ exp
{
−er/%

}
, r → ∞, (2.1)

with % ∈ (0,∞) a parameter. It turns out [GM98] that this class of potentials constitutes a critical
class in the sense that the radius of the relevant islands stays finite as t → ∞. This is related to the
characteristic property of the double-exponential distribution that

Prob (ξ(x) > h) ≈ Prob (ξ(y) > h− % log 2, ξ(z) > h− % log 2),

meaning that single-site potential peaks of height h � 1 occur with the same frequency as two-site
potential peaks with height of the same order. Hence, no spatial rescaling is necessary, and we put
α(t) = 1. In Sections 3.1–3.3 below we shall describe our results for this type of potentials more
closely.

For the boundary cases % = ∞ and % = 0 (‘beyond’ and ‘on this side of’ the double-exponential
distribution, respectively), [GM98] argued that the boundary cases α(t) ↓ 0 and α(t) → ∞ occur.
In other words, the fields beyond the double-exponential (which includes, e.g., Gaussian fields) are
simple in the sense that the main contribution comes from islands consisting of single lattice sites.
Unbounded fields that are in the vicinity of the case % = 0 are called ‘almost bounded’ in [GM98].

2.2 Survival probabilities

The case when the field ξ assumes the values −∞ and 0 only has a nice interpretation in terms
of survival probabilities and is therefore of particular importance. The fundamental papers [DV75]
and [DV79] by Donsker and Varadhan on the Wiener sausage contain apparently the first substantial
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annealed results on the asymptotics for the parabolic Anderson model. In the nineties, the thorough
and deep work by Sznitman (see his monograph [S98]), pushed the rigorous understanding of the
quenched situation much further.

2.2.1 Brownian motion in a Poisson field of traps. We consider the continuous case, i.e., the version of
(1.4) with Z

d replaced by R
d and the lattice Laplacian replaced by the usual Laplace operator. The

field ξ is given as follows. Let (xi)i∈I be the points of a homogeneous Poisson point process in R
d,

and consider the union O of the balls Ba(xi) of radius a around the Poisson points xi. We define a
random potential by putting

ξ(x) =

{
0 if x /∈ O,
−∞ if x ∈ O.

(2.2)

(There are more general versions of this type of potentials, but for simplicity we keep with that.) The
set O receives the meaning of the set of ‘hard traps’ or ‘obstacles’. Let TO = inf{t > 0: X(t) ∈ O}
denote the entrance time into O for a Brownian motion (X(t))t∈[0,∞). Then we have the Feynman-Kac
representation

u(t, x) = P0 (TO > t, X(t) ∈ dx) /dx,

i.e., u(t, x) is equal to the sub-probability density of X(t) on survival in the Poisson field of traps
by time t for Brownian motion starting from the origin. The total mass U(t) = P0(TO > t) is the
survival probability by time t. It is easily seen that the first moment of U(t) coincides with a negative
exponential moment of the volume of the Wiener sausage

⋃
s∈[0,t]Ba(X(s)).

Donsker and Varadhan analyzed the leading asymptotics of 〈U(t)〉 by using their large deviation
principle for Brownian occupation time measures. The relevant islands have radius of order α(t) =
t1/(d+2). To handle the quenched asymptotics of U(t), Sznitman developed a coarse-graining scheme
for Dirichlet eigenvalues on random subsets of R

d, the so-called method of enlargement of obstacles
(MEO). The MEO replaces the eigenvalues in certain complicated subsets of R

d by those in coarse-
grained subsets belonging to a discrete class of much smaller combinatorial complexity such that
control is kept on the relevant properties of the eigenvalue.

Qualitatively, the considered model falls into the class of bounded from above fields introduced in
Section 2.3 with γ = 0.

Related potentials critically rescaled with time have been studied in particular by van den Berg et
al. [BBH01] and by Merkl and Wüthrich [MW02].

2.2.2 Simple random walk among Bernoulli traps. This is the discrete version of Brownian motion
among Poisson traps. Consider the i.i.d. field ξ = (ξ(x))x∈Zd where ξ(x) takes the values 0 or −∞
only. Again, u(t, x) is the survival probability of continuous-time random walk paths from 0 to x
among the set of traps O = {y ∈ Z

d : ξ(y) = −∞}.
In their paper [DV79], Donsker and Varadhan also investigated the discrete case and described the

logarithmic asymptotics of 〈U(t)〉 by proving and exploiting a large deviation principle for occupation
times of random walks. Later Bolthausen [B94] carried out a deeper analysis of 〈U(t)〉 in the two-
dimensional case using refined large deviation arguments. Antal [Ant94], [Ant95] developed a discrete
variant of the MEO and demonstrated its value by proving limit theorems for the survival probability
U(t) and its moments.

2.3 General fields bounded from above

In [BK01a] and [BK01b], a large class of potentials with esssup ξ(0) < ∞ is considered. Assume for
simplicity that esssup ξ(0) = 0 and that the tail of ξ(0) at 0 is given by

Prob
(
ξ(0) > −x

)
≈ exp

{
−Dx−

γ
1−γ

}
, x ↓ 0, (2.3)
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with D > 0 and γ ∈ [0, 1) two parameters. The case γ = 0 contains simple random walk among
Bernoulli traps as a particular case. The cumulant generating function is roughly H(t) ≈ −const tγ ,
and the annealed scale function is α(t) ≈ tν where ν = (1− γ)/(2+ d− dγ). The power ν ranges from
0 to 1/(d+ 2) as the parameter γ ranges from 1 to 0.

It turns out in [BK01a] that the rate function IR (see (1.15)) is given by

IR(ϕ) = const

∫

QR

|ϕ(x)|−
γ

1−γ dx, (2.4)

where in the case γ = 0 we interpret the integral as the Lebesgue measure of the support of ϕ. The
characteristic variational formula for the annealed field shapes in (1.17) has been analyzed in great
detail in the case γ = 0. In particular it was shown that the minimizer is unique and has compact
support, and it was characterized in terms of Bessel functions. However, in the general case γ ∈ (0, 1),
an analysis of (1.17) has not yet been carried out.

2.4 Gaussian fields and Poisson shot noise

Two important particular cases in the continuous version of the parabolic Anderson model are con-
sidered in [GK00] and [GKM00] (see also [CM95] for first rough results). The continuous version of
(1.4) replaces Z

d by R
d and the discrete lattice Laplacian by the usual Laplace operator. Unlike in

the discrete case, where any distribution on R may be used for the definition of an i.i.d. potential, in
the continuous case it is not easy to find examples of fields that can be expressed in easily manage-
able terms. Since a certain degree of regularity of the potential is required, the condition of spatial
independence must be dropped.

In [GK00] and [GKM00], two types of fields are considered: a Gaussian field ξ whose covariance
function B has a parabolic shape around zero with B(0) = σ2 > 0, and a so-called Poisson shot-noise
field, which is defined as the superposition of copies of parabolic-shaped positive clouds around the
points of a homogeneous Poisson point process in R

d (in contrast to the trap case of Section 2.2).
A certain (mild) assumption on the decay of the covariance function (respectively of the cloud) at
infinity ensures sufficient independence between regions that are far apart.

Both fields easily develop very high peaks on small islands (the Poisson shot noise field is large

where many Poisson points are close together). The annealed scale function is α(t) = t−1/4 for the

Gaussian field and α(t) = td/8e−σ2t/4 for the Poisson field [GK00].

3. Results for the double-exponential case

In this section, we formulate our results on the large-time asymptotics of the parabolic Anderson
model in the particularly important case of a double-exponentially distributed random potential, see
Section 2.1. We handle the annealed asymptotics of the total mass U(t) in Section 3.1, the quenched
ones in Section 3.2, and the geometric picture of intermittency in Section 3.3. The material of the
first two subsections is taken from [GM98], that of the last subsection from [GKM04].

3.1 Annealed asymptotics

As before, we assume that ξ = (ξ(x))x∈Zd is a field of i.i.d. random variables. We impose the following
assumption on the cumulant generating function of ξ(0) defined by (1.9).

Assumption (H). The function H(t) is finite for all t > 0. There exists % ∈ [0,∞] such that

lim
t→∞

H(ct) − cH(t)

t
= %c log c for all c ∈ (0, 1).
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Note that the vicinity of the double-exponential distribution (2.1) corresponds to % ∈ (0,∞). If
% = ∞, then the upper tail of the distribution of ξ(0) is heavier than in the double exponential case,
whereas for % = 0 it is thinner.

Let P(Zd) denote the space of probability measures on Z
d. We introduce the Donsker-Varadhan

functional Sd and the entropy functional Id on P(Zd) by

Sd(µ) =
∑

{x,y}⊂Zd

|x−y|=1

(√
µ(x) −

√
µ(y)

)2
and Id(µ) = −

∑

x∈Zd

µ(x) logµ(x),

respectively, and set

χd = inf
µ∈P(Zd)

[κSd(µ) + %Id(µ)] , % ∈ [0,∞]. (3.1)

As before, let U(t) denote the total mass of the solution u(t, ·) to the PAM (1.4).

Theorem 3.1. Let Assumption (H) be satisfied. Then, for any p ∈ N,

〈U(t)p〉 = exp {H(pt) − χdpt+ o(t)} as t→ ∞.

It turns out that χd = 2dκχ0(%/κ), where χ0 : [0,∞) → [0, 1) is strictly increasing and concave,
χ0(0) = 0, and χ0(%) → 1 as % → ∞. Moreover, for % ∈ (0,∞), each minimizer µ of the variational
problem (3.1) has the form µ = const v2, where v = v1 ⊗ · · · ⊗ vd and each of the factor v1, . . . , vd is a
positive solution of the equation

κ∆v + 2%v log v = 0 on Z

with minimal `2-norm. Uniqueness of v modulo shifts holds for large %/κ but is open for small values
of this quantity.

Recall that U(t) = û(t, 0), where û is the solution to (1.4), but with non-localized initial datum 1l
instead of δ0. A much deeper question is the computation of the asymptotics of the ‘correlation’

c(t, x) =
〈û(t, 0)û(t, x)〉

〈û(t, 0)2〉
of the spatially homogeneous solution û of the PAM. Assuming additional regularity of the cumulant
generating function H and uniqueness modulo spatial shifts of the minimizer µ of the variational
problem (3.1), it was shown in [GH99] that

lim
t→∞

c(t, x) =

∑
z v(z)v(z + x)∑

z v(z)
2

.

This indicates that the second moment (considered as limR→∞ |BR|−1
∑

x∈BR
û2(t, x)) is generated by

rare high peaks of the solution û(t, ·) with shape v(·).

3.2 Quenched asymptotics

Here we again consider i.i.d. random potentials (ξ(x))x∈Zd in the vicinity of the double-exponential
distribution (2.1) but formulate our assumptions in a different manner.

To be precise, let F denote the distribution function of ξ(0). Provided that F is continuous and
F (r) < ∞ for all r ∈ R (i.e., ξ is unbounded from above), we may introduce the non-decreasing
function

ϕ(r) = log
1

1 − F (r)
, r ∈ R. (3.2)
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Its left-continuous inverse ψ is given by

ψ(s) = min{r ∈ R : ϕ(r) ≥ s}, s > 0. (3.3)

Note that ψ is strictly increasing with ϕ(ψ(s)) = s for all s > 0. The relevance of ψ comes from
the observation that ξ has the same distribution as ψ ◦ η, where η = (η(x))x∈Zd is an i.i.d. field of
exponentially distributed random variables with mean one.

We now formulate our main assumption.

Assumption (F). The distribution function F is continuous, F (r) < 1 for all r ∈ R, and, in

dimension d = 1,
∫ −1
−∞ log |r|F (dr) <∞. There exists % ∈ (0,∞] such that

lim
s→∞

[ψ(cs) − ψ(s)] = % log c, c ∈ (0, 1). (3.4)

If % = ∞, then ψ satisfies in addition

lim
s→∞

[ψ(s+ log s) − ψ(s)] = 0. (3.5)

The crucial supposition (3.4) specifies that the upper tail of the distribution of ξ(0) is close to the
double-exponential distribution (2.1) for % ∈ (0,∞) and is heavier for % = ∞. Assumption (3.5)
excludes too heavy tails. Note that (3.5) is fulfilled for Gaussian but not for exponential tails.

The reader easily checks that (3.4) implies that ψ(t) ∼ % log t as t→ ∞. Let

ht = max
x∈Bt

ξ(x), t > 0, (3.6)

be the height of the potential ξ in Bt = [−t, t]d∩Z
d. It can be easily seen that, under Assumption (F),

almost surely,

ht = ψ(d log t) + o(1) as t→ ∞. (3.7)

Let us remark that it is condition (3.5) which ensures that the almost sure asymptotics of ht in (3.7)
is non-random up to order o(1).

One of the main results in [GM98], Theorem 2.2, is the second order asymptotics of the total mass
U(t) defined in (1.6).

Theorem 3.2. Under Assumption (F), with probability one,

logU(t) = t [ht − χ̃d + o(1)] as t→ ∞. (3.8)

Here 0 ≤ χ̃d ≤ 2dκ. An analytic description of χ̃d is as follows. Define I : [−∞, 0]Z
d → [0,∞] by

I(V ) =

{∑
x∈Zd eV (x)/%, if % ∈ (0,∞),

|{x ∈ Z
d : V (x) > −∞}|, if % = ∞.

(3.9)

One should regard I as large deviation rate function for the fields ξ − ht (recall (1.15) and note that
α(t) = 1 here). Indeed, if the distribution of ξ is exactly given by (2.1), then we have

Prob
(
ξ(·) − h > V (·) in Z

d
)

= exp
{
−eh/%I(V )

}

for any V : Z
d → [−∞, 0] and any h ∈ (0,∞). For V ∈ [−∞, 0]Z

d
, let λ(V ) ∈ [−∞, 0] be the top

of the spectrum of the self-adjoint operator κ∆ + V in the domain {V > −∞} with zero boundary
condition. In terms of the Rayleigh-Ritz formula,

λ(V ) = sup
f∈`2(Zd) : ‖f‖2=1

〈
(κ∆ + V )f, f

〉
, (3.10)
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where 〈·, ·〉 and ‖ · ‖2 denote the inner product and the norm in `2(Zd), respectively. Then

−χ̃d = sup
{
λ(V ) : V ∈ [−∞, 0]Z

d

, I(V ) ≤ 1
}
. (3.11)

This variational problem is ‘dual’ to the variational problem (3.1) and, in particular, χ̃d = χd.

3.3 Geometry of intermittency

In this section we give a precise formulation of the geometric picture of intermittency, which was
heuristically explained in Section 1.6.

We keep the assumptions of the last subsection. For our deeper investigations, in addition to
Assumption (F), we introduce an assumption about the optimal potential shape.

Assumption (M). Up to spatial shifts, the variational problem in (3.11) possesses a unique maxi-
mizer, which has a unique maximum.

By V∗ we denote the unique maximizer of (3.11) which attains its unique maximum at the origin.
We will call V∗ optimal potential shape. Assumption (M) is satisfied at least for large %/κ. This
fact as well as further important properties of the variational problem (3.11) are stated in the next
proposition.

Proposition 3.3. (a) For any % ∈ (0,∞], the supremum in (3.11) is attained.

(b) If %/κ is sufficiently large, then the maximizer in (3.11) is unique modulo shifts and has a
unique maximum.

(c) If Assumption (M) is satisfied, then the optimal potential shape has the following properties.
(i) If % ∈ (0,∞), then V∗ = f∗ ⊗ · · · ⊗ f∗ for some f∗ : Z → (−∞, 0). If % = ∞, then V∗ is

degenerate in the sense that V∗(0) = 0 and V∗(x) = −∞ for x 6= 0.
(ii) The operator κ∆+V∗ has a unique nonnegative eigenfunction w∗ ∈ `2(Zd) with w∗(0) = 1

corresponding to the eigenvalue λ(V∗). Moreover, w∗ ∈ `1(Zd). If % ∈ (0,∞), then w∗ is
positive on Z

d, while w∗ = δ0 for % = ∞.

We shall see that the main contribution to the total mass U(t) comes from a neighborhood of the set
of best local coincidences of ξ−ht with spatial shifts of V∗. These neighborhoods are widely separated
from each other and hence not numerous. We may restrict ourselves further to those neighborhoods
in which, in addition, u(t, ·), properly normalized, is close to w∗.

Denote by BR(y) = y +BR the closed box of radius R centered at y ∈ Z
d and write

BR(A) =
⋃

y∈A

BR(y) (3.12)

for the ‘R-box neighborhood’ of a set A ⊂ Z
d. In particular, B0(A) = A.

For any ε > 0 and any sufficiently large % ∈ (0,∞], let r(ε, %) denote the smallest r ∈ N0 such that

‖w∗‖2
2

∑

x∈Zd\Br

w∗(x) < ε. (3.13)

Note that r(ε,∞) = 0, due to the degeneracy of w∞. Given f : Z
d → R and R > 0, let ‖f‖R =

supx∈BR
|f(x)|.

The main result of [GKM04] is the following.



THE PARABOLIC ANDERSON MODEL 15

Theorem 3.4. Let the Assumptions (F) and (M) be satisfied. Then there exists a random time-
dependent subset Γ∗ = Γ∗

t log2 t
of Bt log2 t such that, almost surely,

(i) lim inf
t→∞

1

U(t)

∑

x∈Br(ε,%)(Γ
∗)

u(t, x) ≥ 1 − ε, ε ∈ (0, 1); (3.14)

(ii) |Γ∗| ≤ to(1) and min
y,ey∈Γ∗ : y 6=ey

|y − ỹ| ≥ t1−o(1) as t→ ∞; (3.15)

(iii) lim
t→∞

max
y∈Γ∗

∥∥ξ(y + ·) − ht − V∗(·)
∥∥

R
= 0, R > 0; (3.16)

(iv) lim
t→∞

max
y∈Γ∗

∥∥∥
u(t, y + ·)
u(t, y)

− w∗(·)
∥∥∥

R
= 0, R > 0. (3.17)

Theorem 3.4 states that, up to an arbitrarily small relative error ε, the islands with centers in
Γ∗ and radius r(ε, %) carry the whole mass of the solution u(t, ·). Locally, in an arbitrarily fixed R-
neighborhood of each of these centers, the shapes of the potential and the normalized solution resemble
ht + V∗ and w∗, respectively. The number of these islands increases at most as an arbitrarily small
power of t and their distance increases almost like t. Note that, for % = ∞, the set Br(ε,%)(Γ

∗) in (3.14)
is equal to Γ∗ and, hence, the islands consist of single lattice sites.

It is an open problem under what assumptions on the potential ξ the number |Γ∗| of relevant peaks
stays bounded as t→ ∞; we have made no attempt to choose Γ∗ as small as possible.

4. Universality

In this section we explain that, under some mild regularity assumptions on the tails of ξ(0) at its
essential supremum, there are only four universality classes of asymptotic behaviors of the parabolic
Anderson model. Three of them have already been analyzed in the literature: the double-exponential
distribution with % ∈ (0,∞) respectively % = ∞ [GM98], [GH99], [GK00], [GKM00], [GKM04]) (see
Sections 2.1 and 3) and general fields bounded from above [BK01a], [BK01b], [S98], [Ant94], [Ant95]
(see Section 2.3). A fourth and new universality class is currently under investigation, see [HKM04].
This class lies in the union of the boundary cases % = 0 of the double-exponential distribution (‘almost
bounded’ fields) and γ = 1 for the general bounded from above fields. Examples of distributions that
fall into this class look somewhat odd, but it turns out that the optimal potential shape and the
optimal shape of the solution are perfectly parabolic, respectively Gaussian, which makes this class
rather appealing. In particular, the appearing variational formulas can be easily solved explicitly and
uniquely.

We now summarize [HKM04]. Our basic assumption on the logarithmic moment generating function
H in (1.9) is the following.

Assumption (Ĥ): There are a function Ĥ : (0,∞) → R and a continuous auxiliary function
η : (0,∞) → (0,∞) such that

lim
t↑∞

H(ty) − yH(t)

η(t)
= Ĥ(y) 6= 0 for y 6= 1. (4.1)

The function Ĥ extracts the asymptotic scaling properties of the cumulant generating function H.
In the language of the theory of regular functions, the assumption is that the logarithmic moment

generating function H is in the de Haan class, which does not leave many possibilities for Ĥ:

Proposition 4.1. Suppose that Assumption (Ĥ) holds.
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(i) There is a γ ≥ 0 such that limt↑∞ η(yt)/η(t) = yγ for any y > 0, i.e., η is regularly varying of

index γ. In particular, η(t) = tγ+o(1) as t→ ∞.
(ii) There exists a parameter ρ > 0 such that, for every y > 0,

(a) Ĥ(y) = ρ
y − yγ

1 − γ
if γ 6= 1,

(b) Ĥ(y) = ρy log y if γ = 1.

Our second regularity assumption is a mild supposition on the auxiliary function η. This assumption
is necessary only in the case γ = 1 (which will turn out to be the critical case).

Assumption (K): The limit η∗ = limt→∞ η(t)/t ∈ [0,∞] exists.

We now introduce a scale function α : (0,∞) → (0,∞), by

η
(
tα(t)−d

)

tα(t)−d
=

1

α(t)2
. (4.2)

The function α(t) turns out to be the annealed scale function for the radius of the relevant islands in
the parabolic Anderson model. We can easily say something about the asymptotics of α(t):

Lemma 4.2. Suppose that Assumptions (Ĥ) and (K) hold. If γ ≤ 1 and η∗ <∞, then there exists a
unique solution α : (0,∞) → (0,∞) to (4.2), and it satisfies limt→∞ tα(t)−d = ∞. Moreover,

(i) If γ = 1 and 0 < η∗ <∞, then limt→∞ α(t) = 1/
√
η∗ ∈ (0,∞).

(ii) If γ = 1 and η∗ = 0, then α(t) = tν+o(1) as t→ ∞, where ν = (1 − γ)/(d+ 2 − dγ).

Now, under Assumptions (Ĥ) and (K), we can formulate a complete distinction of the PAM into
four cases:

(1) η∗ = ∞ (in particular, γ ≥ 1).
This is the boundary case % = ∞ of the double-exponential case. We have α(t) → 0 as t→ ∞,
as is seen from (4.2), i.e., the relevant islands consist of single lattice sites.

(2) η∗ ∈ (0,∞) (in particular, γ = 1).
This is the case of the double-exponential distribution in Section 2.1. By rescaling, one can
achieve that η∗ = 1. The parameter % of Proposition 4.1(ii)(b) is identical to the one in
Assumption (H) of Section 3.1.

(3) η∗ = 0 and γ = 1.
This is the case of islands of slowly growing size, i.e., α(t) → ∞ as t → ∞ slower than any
power of t. This case comprises ‘almost bounded’ and bounded from above potentials. This
class is the subject of [HKM04], see also below.

(4) γ < 1 (in particular, η∗ = 0)
This is the case of islands of rapidly growing size, i.e., α(t) → ∞ as t → ∞ at least as fast
as some power of t. Here the potential ξ is necessarily bounded from above. This case was
treated in [BK01a]; see Section 2.3.

Let us comment on the class (3), which appears to be new in the literature and is under investigation
in [HKM04]. One obtains examples of potentials (unbounded from above) that fall into this class by
replacing % in (2.1) by a sufficiently regular function %(r) that tends to 0 as r → ∞, and other examples
(bounded from above) by replacing γ in (2.3) by a sufficiently regular function γ(x) tending to 1 as
x ↓ 0. According to Lemma 4.2, the scale function α(t) defined in (4.2) tends to infinity, but is slowly
varying. The annealed rate function for the rescaled potential shape, IR, introduced in (1.15) turns
out to be

IR(ϕ) = const

∫

QR

eϕ(x)/% dx. (4.3)
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The characteristic variational problem for the annealed potential shape in (1.17), χ, turns out to be
uniquely minimized by a parabolic function ϕ∗(x) = const−%‖x‖2

2, and the principal eigenfunction v∗
of the operator κ∆ + ϕ∗ is the Gaussian density v∗(x) = const e−%‖x‖2

2 .

5. Time-dependent random potentials

In this section we study the intermittent behavior of the parabolic Anderson model (PAM) with a
space-time homogeneous ergodic random potential ξ:

∂t u(t, x) = κ∆u(t, x) + [ξ(t, x) − 〈ξ(t, x)〉]u(t, x), (t, x) ∈ (0,∞) × Z
d,

u(0, x) = 1, x ∈ Z
d.

(5.1)

Note that for time-dependent potentials the direct connection to the spectral representation of the
Anderson Hamiltonian (1.2) is lost. Our focus will be on the situation when the potential ξ is given
by a field {Yk(t); k ∈ N} of independent random walks on Z

d with diffusion constant % in Poisson
equilibrium with density ν:

ξ(t, x) = γ
∑

k∈N

δYk(t)(x), (5.2)

where γ denotes a positive coupling constant. Clearly

〈ξ(t, x)〉 = νγ.

This deterministic correction to the potential in (5.1) has been added for convenience to eliminate
non-random terms.

The form (5.2) of the potential is motivated by the following particle model. Consider a system of two
types of independent particles, A andB, performing independent continuous-time simple random walks
with diffusion constants κ and % and Poisson initial distribution with densities ν and 1, respectively.
Assume that the B-particles split into two at a rate that is γ times the number of A-particles present
at the same location and die at rate νγ. Hence, the A- and B-particles may be regarded as catalysts
and reactants in a simple catalytic reaction model. Then the (spatially homogeneous and ergodic)
solution u(t, x) of the PAM (5.1) is nothing but the average number of reactants at site x at time t
given a realization of the catalytic dynamics (5.2). Such a particle model (with arbitrary death rate)
has been considered by Kesten and Sidoravicius [KS03]. We will come back to the results in [KS03] at
the end of this section. We further refer to the overview papers by Dawson and Fleischmann [DF00]
and by Klenke [Kl00] for continuum models with singular catalysts in a measure-valued context where
questions different from ours have been addressed.

Our aim is to study the moment Lyapunov exponents

λp = lim
t→∞

1

t
log 〈u(t, 0)p〉

as well as the quantities

λ∗p = lim
t→∞

1

t
log log 〈u(t, 0)p〉

(p = 1, 2, . . . ) as functions of the model parameters. The phase diagram will turn out to be different
in dimensions d = 1, 2, d = 3, and d ≥ 4.

Definition 5.1. a) For p ∈ N, we will say that the PAM (5.1)–(5.2) is strongly p-catalytic if λ∗p > 0.
Otherwise the PAM will be called weakly p-catalytic.

b) For p ∈ N \ {1} and λp <∞, we will say that the PAM is p-intermittent if λp/p > λp−1/(p− 1).
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We believe that strongly catalytic behavior is related to heavy tails of the Poisson distribution of
the catalytic point process {Yk(t); k ∈ N} and may occur if the main contribution to the p-th moment
comes from realizations with a huge number of catalysts at the same lattice site. Recall that p-
intermittency means that, for large t, the p-th moment, considered as limR→∞ |BR|−1

∑
x∈BR

u(t, x)p,

is ‘generated’ by high peaks of the solution u(t, ·) located far from each other.

For potentials of the form

ξ(t, x) = γẆx(t)

with (Wx(t))x∈Zd being a field of i.i.d. (or correlated) Brownian motions and (5.1) understood as a sys-
tem of Itô equations, the moment Lyapunov exponents have been shown by Carmona and Molchanov
[CM94] to exhibit the following behavior. In dimensions d = 1, 2 there is p-intermittency for all
p ∈ N \ {1} and all choices of the model parameters κ and γ. If d ≥ 3, then there exist critical
points 0 < c2 < c3 < · · · such that p-intermittency holds if and only if κ/γ < cp. For this model, the
asymptotics of the almost sure (‘quenched’) Lyapunov exponent as κ → 0 has been investigated in
[CM94], [CMV96], [CKM01], and [CMS02].

In the following we present the results for catalytic potentials of the form (5.2) obtained in [GH04].

Our analysis of the moment Lyapunov exponents is based on the following probabilistic represen-
tation of the p-th moment which is easily derived from the Feynman-Kac formula for u(t, 0):

〈u(t, 0)p〉 = E
(p)
0 exp

{
νγ

∫ t

0

p∑

i=1

w(s,Xi(s)) ds

}
, (5.3)

where E
(p)
0 denotes expectation with respect to p independent random walks X1, . . . , Xp on Z

d with
generator κ∆ starting at the origin, and w is the solution of the random initial value problem

∂tw(t, x) = %∆w(t, x) + γ
∑p

i=1 δXi(t)(x) (1 + w(t, x)) , (t, x) ∈ (0,∞) × Z
d,

w(0, x) = 0, x ∈ Z
d.

One of the main difficulties in analyzing (5.3) is related to the observation that w(t,Xi(t)) depends
in a nontrivial way on the whole past {Xj(s); 0 ≤ s ≤ t}, j = 1, . . . , p, of our random walks (although
our notation does not reflect this).

For r ≥ 0, let µ(r) denote the upper boundary of the spectrum of the operator ∆ + rδ0 in `2(Zd).
It is well-known that, in dimensions d = 1, 2, µ(r) > 0 for all r and, in dimensions d ≥ 3, µ(r) = 0 for
0 ≤ r ≤ rd and µ(r) > 0 for r > rd, where

rd = 1/Gd(0)

and Gd denotes the Green function associated with the discrete Laplacian ∆.

Theorem 5.2. For any choice of the parameters of the PAM (5.1)–(5.2), the limit λ∗p exists, and

λ∗p = %µ(pγ/%), p ∈ N.

Hence, for d = 1, 2, the PAM (5.1)–(5.2) is always strongly p-catalytic, whereas for d ≥ 3 this is
true only if pγ/% exceeds the critical threshold rd. Note that λ∗p does not depend on κ nor on ν.

We next study the behavior of the moment Lyapunov exponents λp = λp(κ) as a function of the
diffusion constant κ in the weakly catalytic regime 0 < pγ/% < rd for d ≥ 3. We will mainly describe
their behavior for small and for large values of κ.

Theorem 5.3. Let d ≥ 3, p ∈ N, and 0 < pγ/% < rd. Then the limit λp exists and is finite for all κ
and ν. Moreover, κ 7→ λp(κ) is strictly decreasing and convex on [0,∞) and satisfies

lim
κ↓0

λp(κ)

p
=
λp(0)

p
= νγ

pγ/%

rd − pγ/%
.
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Hence, in any dimension d ≥ 3, the PAM (5.1)–(5.2) is p-intermittent in the weakly catalytic regime
for small values of the diffusion constant κ.

To formulate the behavior of the moment Lyapunov exponents for κ → ∞, we introduce the
variational expression P for the polaron problem analyzed in [L77], [DV83], and [BDS93]:

P = sup
f∈C∞

c (R3)
‖f‖2=1

[∥∥∥(−∆)−1/2f2
∥∥∥

2

2
− ‖∇f‖2

2

]
.

Theorem 5.4. Let d ≥ 3, p ∈ N, and 0 < pγ/% < rd. Then

lim
κ→∞

κ
λp(κ)

p
=





νγ2

r3
+

√
p
√

νγ2

% P, if d = 3,
νγ2

rd
, if d ≥ 4.

In other words, in dimensions d = 3 for p in the weakly catalytic regime, the PAM (5.1)–(5.2) is
p-intermittent also for large values of κ. We conjecture intermittent behavior for all κ. In dimensions
d ≥ 4, the leading term in the asymptotics of λp(κ)/p as κ → ∞ is the same for all p in the weakly
catalytic regime. We in fact conjecture that there is even no intermittency in high dimensions for
large κ.

Let us remark that in [KS03] Kesten and Sidoravicius obtained the following results for the above
mentioned catalytic particle model with arbitrary death rate δ instead of νγ. If d = 1, 2, then for
all choices of the parameters, the average number of B-particles per site tends to infinity faster than
exponential. If d ≥ 3, γ small enough and δ large enough, then the average number of B-particles per
site tends to zero exponentially fast. The first of these two results is covered by Theorem 5.2, since
the death rate δ does not affect λ∗1. The second result is covered by Theorem 5.3, since 0 < λ1 <∞ in
the weakly catalytic regime and the death rate δ shifts λ1 by γν − δ. Kesten and Sidoravicius further
show that in all dimensions for γ large enough, conditioned on the evolution of the A-particles, there
is a phase transition. Namely, for small δ the B-particles locally survive, while for large δ they become
locally extinct. In [GH04] there are no results for the quenched situation. The analysis in [KS03]
does not lead to an identification of Lyapunov exponents, but is more robust under an adaption of
the model than the above analysis based on the Feynman-Kac representation.
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