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mild regularity assumptions, we derive the second-order term of the almost sure
asymptotics of u(t,0) as t — oo.
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1. Introduction and main result

1.1. The continuous parabolic Anderson problem

We consider the parabolic Anderson problem

deu(t,z) = kAu(t,z) + {(z)u(t, z), (t,z) € (0,00) x RY, 11
u(0,z) = 1, zeRL, (1.1)

where k > 0 is a diffusion constant, and ¢ = {{(z);z € R?} is a random
homogeneous potential. We shall consider the two cases of a Gaussian field and
a shot noise Poisson field. In Gartner and Konig [5] (henceforth abbreviated as
GK) we investigated the second-order asymptotics of the moments of u(t,0) as
t tends to infinity for a more general class of homogeneous potentials. In the
present paper we derive the second-order asymptotics for u(t,0) almost surely
w.r.t. the field &.

* Partially supported by D. Dawson’s Max Planck Award for International Cooperation
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1.2. The Gaussian potential

We assume that £ = {£(z);z € R?} is a homogeneous centered Gaussian field
on a complete probability space. Probability and expectation w.r.t. £ will be
denoted by Prob(-) and (-), respectively. We assume that & has a spectral
density f satisfying

/ A2 F(A) dX < 0. (1.2)
Rd
Then the covariance function
B(z) = / e TAF(N) dA (1.3)
Rd

is twice continuously differentiable. In particular, £ has a version which is a-
Holder continuous for each a € (0,1) and which will be considered throughout.
Moreover, B admits the representation

B(o) = | ola=v)gu)dy. (14)
Rd
where g is the Fourier transform of /f:
glz) = 2m)" Y2 [ e /F(N)dA (1.5)
R4

Clearly, the real-valued function g belongs to L2(R?) and is a.e. symmetric.
In addition to (1.2), we assume that

/ g (x)dz =0 ((log R)_2/3) , R — oo. (1.6)
Q%
(Here and further on we use the notation Qr = (—R,R)? for the centered
cube in R? with side length 2R.) Finally, we also assume that the Hessian
B"(0) = {87;B(0)}{—, is nondegenerate.

Essentially, while (1.2) is a requirement about the smoothness of the covari-
ance function B, (1.6) is a mild supposition about the tail behavior of B(z) as
|z] — oo.

1.3. The shot noise Poisson potential

Let ®(dz) denote the realizations of a homogeneous Poisson point process on
R? with intensity A > 0. As in the Gaussian case, we denote probability and
expectation w.r.t. the Poisson process by Prob(-) resp. (-).

Given a function B: R — R, we take as potential the superposition of
Poisson shifts of the ‘cloud’ B:

&(z) = RdB(:c —y) ®(dy), r € R (1.7)
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We assume that B is twice continuously differentiable and attains its unique
global maximum at 0 with B(0) > 0. As in the Gaussian case, we require
that the Hessian B"(0) is nondegenerate. Furthermore, we impose the following
condition on the tail behavior of B:

%§x|B| =o((logR)™), R — oo. (1.8)
R

(We abbreviate max,e 4 f(z) by maxa f.)
We also impose the integrability condition

max |B(z — y)| dy < oc. (1.9)
R4 TEQ1

In particular, this ensures that the realizations (1.7) of our potential are well-
defined and continuous. For simplicity, to avoid technicalities with PDE’s, we
assume in addition that £ is (locally) Holder continuous by requiring that, for
some «a € (0,1],

sup dz < oo. (1.10)

/ |B(z —z) — B(y — 2)|
Rd z,y€Q1,z#y lz —yl|*

In Subsection 4.2 of GK we assumed that B is nonnegative and has compact
support. But an inspection of that subsection shows that all statements from
there remain true under our more general assumptions.

Note that B is not the covariance function here, but it will turn out to play
the same role in our asymptotics as the covariance in the Gaussian case.

1.4. Common features of the two fields

It turns out that a substantial part of our results and proofs can be formulated
in a unifying notation for the two random potentials. In this subsection we
introduce some more notation, simultaneously for both the Gaussian and the
Poisson field. In the sequel, the two cases are referred to as ‘Gaussian case’ resp.
‘Poisson case’.

Abbreviate

0?=B(0) and X*=-B"(0). (1.11)

By our assumptions, the symmetric d x d-matrix X2 is positive definite. Hence
we may assume that ¥ is also symmetric and positive definite.
We next introduce the cumulant generating function

0?0?/2, Gaussian case,

> 0.
A [(e?B(=%) —1)dy, Poisson case, ¢

H(e) = log(e®) = {

(1.12)
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Note that H is finite, H' is strictly increasing and H'(9) — oo as ¢ — co. We
also need the one-sided Legendre transform of H given by

L(h) = sup (eh — H(o)). (1.13)

For large h, the supremum in (1.13) is attained at some g(h) > 0 which is the
unique solution of

H'(g(h)) = h. (1.14)
Note that
(o) - 9022, » Gaussian case, 05 oo, (L15)
pYl (2?#) 2"’ (1 + 0(1)), Poisson case, ’

and therefore

h/o?, Gaussian case,

o(h) = L'(h) = { h—oo. (1.16)

(14 0(1)) % logh, Poisson case,

A combination of Theorem 1 in GK with the calculations made in the Sub-
sections 4.1 and 4.2 of that paper yields that

logtu(t,0) = T (v o) V@, tooo,  (117)

X = 1/%”@, (1.18)

and tr ¥ denotes the trace of the matrix ¥. In the following, the quantity x will
play an important role.

where

1.5. The main result

We define a function hy, t > 1, as the unique solution of
L(ht) = dlogt. (1.19)
Theorem 1.1. With probability one,
%logu(t,O) —hi— (x+ o))V as t— oo, (1.20)
As we will explain in Subsection 1.6, this result is closely related to the

geometry of high peaks of the potential £ and corresponding spatial peaks of
the solution. The first-order term h; is roughly equal to max|,<¢£(z), a fact
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that has already been derived by Carmona and Molchanov [3]. The dependence
of u(t,0) on the diffusion constant x enters the second-order term only (via x).
Note the analogy between (1.20) and (1.17): H'(t) ~ H(t)/t is replaced by
hy.
The numerical value of h; is

b { v/2do? log t, Gaussian case,
t =

73:&;; (14 0(1)), Poisson case,

t — oo. (1.21)

In the Poisson case this approximation is too rough for the second-order asymp-
totics. One cannot expect to find an explicit expression replacing h; in (1.20).
This asymptotics does not only depend on o2 and X, but is sensitive to changes
of the shape of the cloud B in {z: B(z) > 0?/2}. Namely, it is easy to see that
the last remark applies to the moment asymptotics (1.17) which is crucial for
our derivation of the upper bound in (1.20).

1.6. Relation to intermittency

Let us explain some aspects of the philosophy underlying our result. The actual
proof given below reflects these heuristics only marginally (see the outline in
Subsection 1.8).

The almost sure asymptotics of u(t,0) is closely related to the intermit-
tent behavior of the parabolic Anderson model. Intermittency means that, as
t — 00, the solution exhibits a spatially extremely irregular structure consisting
of islands of high peaks which are located far from each other. A simple man-
ifestation of intermittency is that the first moment (u(t,0)) grows much faster
than the realizations u(t,0) as t — oo, compare (1.17) with (1.20).

In our context, the key observation is that, by duality,

u(t,0) = /Rdv(t,w) dz, (1.22)

where v is the solution of problem (1.1) but with localized initial condition
v(0,z) = do(z) instead of u(0,z) = 1. Hence, we in fact study the ‘total mass’
of the solution v(t,-) as t — oo. It may be seen, e.g. by use of the Feynman-Kac
formula, that this mass is essentially contained in a centered cube @; of side
length of order roughly ¢:

u(t,0) ~ / o(t,z) dz. (1.23)

But the main contribution to the last integral is believed to come from spatially
sparsely distributed high peaks of the solution v(t, -) which are generated locally
by corresponding high peaks of the potential £(-). One expects that their height
and their shape (but not their location) are essentially nonrandom and that
their number grows moderately as t — oo. The logarithmic asymptotics (up to
second order) of u(t, 0) is therefore fully determined by the mass of one of these
local peaks of v(t, -).
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A Borel-Cantelli argument shows that, almost surely as t — oo, the highest
peaks of £ in @; have height of order h; given by (1.19), see also (1.21). As
we shall explain later for the Gaussian case, these peaks have approximately a
nonrandom parabolic shape

Vizo (T) = hyp(z — T0), where p(z) =1 — — |Ea;| and ¥? = —B"(0), (1.24)

in a microbox of radius O(h; 1/4 ) around their random center zo € @Q; and
Vi,z0(z) & 0 further away from zo. Hence, ignoring other peaks of £ outside this
microbox, we may replace locally v(t,-) by w(t,-), where w(s, z) solves

Osw = KAw + Vi 5w, (s,z) € (0,00) x R,

w(0,z) = do(x), z € Re. (1.25)

A small but sufficient part of the unit mass imposed at the origin at time 0
reaches the microbox around o until time #/log®¢t. From then on, the local
mass creation in this microbox dominates the solution, which therefore may be
approximated by the first term in the Fourier expansion associated with the
harmonic oscillator kA + hyp:

Ats

w(s,z) = e ’ey(x — 3), s> t/log’t, (1.26)

where )\; and e; denote the principal eigenvalue and the corresponding normal-
ized (Gaussian) eigenfunction, respectively. In particular,

—xVhe (1.27)

with x given by (1.18). Thus, we finally arrive at

1
Elog/ (t,z)dz ~ hy — XV e (1.28)

in accordance with Theorem 1.1.

Let us now explain why in the Gaussian case the potential peaks have the
parabolic shape (1.24) and why the second derivative of the covariance function
B, but not the fourth derivative (which describes the covariances of the field £")
enters this formula. For simplicity we restrict ourselves to the one-dimensional
case and assume that the realizations of £ are sufficiently smooth.

Fix zop € R One easily checks that &(xg), £'(x0) and n(xo) = £" (o) —
B"(0)£(z0)/0? are independent Gaussian variables. In particular, £(zo) and
&"(xo) are highly correlated, and large values of £(zo) enforce large values of
—£&" (). More precisely, given that £ has a large local maximum &(zg) = h; at
o, we have £'(zo) = 0, |n(z0)| < hy, and

£(@)  E(an) + 3€"(@0)(z = 70’

= a0) + 5 (2 ean) + ) ) (2 - 07
~ hip(z — x0) (1.29)

2
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in a neighborhood of .

1.7. Bibliographical remarks

For a general discussion of intermittency and related topics we refer to Carmona
and Molchanov [2], the lectures by Molchanov [7], and also to the monograph
by Sznitman [8] in which ‘negative’ Poisson clouds are treated thoroughly.

For Gaussian and Poisson fields, rough logarithmic asymptotics for the mo-
ments and the almost sure behavior of u(t,0) have been derived by Carmona
and Molchanov [3]. In [5], Gartner and Konig investigate the second-order term
of the moment asymptotics for a larger class of potentials.

For the spatially discrete Anderson model with i.i.d. potential £ = {{(z);z €
Z%}, the second-order almost sure asymptotics of u(t,0) and the second-order
moment asymptotics (u(t,0)?) with p € N have been investigated by Gértner
and Molchanov [6]. The field £ under investigation there (the so-called double-
exponential distribution) does not lead to a spatial scaling (in contrast to the
present paper); the main contribution comes from peaks of fixed finite size.
The correlation structure of the solution has been studied by Gartner and den
Hollander [4].

1.8. Outline of the paper

In Section 2 we provide some technical preparations for the proof of Theo-
rem 1.1. In particular, we explain how we shall approximate £ by potentials
with finite radii of correlation, and we put down some notation about initial-
boundary value problems and the Feynman-Kac formula. In Section 3 and Sec-
tion 4 we derive the lower and upper bound for the second-order asymptotics
(1.20), respectively.

A short outline of our strategy is the following. In Section 3 we indeed
show that £ is bounded below by the parabola h;p locally in a certain randomly
located microbox of size h; '/*, where as before p(z) = 1 — |Sz|?/(202) is a
second-order approximation of B/B(0). This enables us to bound ¢! logu(t,0)
from below by the (non-random) principal eigenvalue A*?(R?) = h; — xv/hy
of the harmonic oscillator kA + h;p on R? which implies the lower bound in
Theorem 1.1.

In our proof of the upper bound, we essentially bound ¢~!logu(t,0) from
above by the principal Dirichlet eigenvalue A\¢(Q;) of the random operator kA +¢
in the macrobox Q; = [~t,#]?. Using a crucial result from GK, we further
estimate this eigenvalue from above in terms of the largest Dirichlet eigenvalue
of kA + £ in microboxes of size h, /4 that are contained in the box Q;. Using
the moment asymptotics (1.17) from GK, a Borel-Cantelli argument shows that
this maximum has indeed the asymptotics that are given on the r.h.s. of (1.20),
and this implies the upper bound.
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2. Preparations

2.1. Gaussian remainder term

In order to obtain lower bounds for u(t,0) in Section 3 by applying the first
Borel-Cantelli lemma, we need to cut the Gaussian field to finite correlation
length. We are going to explain how we will do that.

Note that Assumption (1.2) ensures that g in (1.5) has generalized derivatives
of first order which belong to L?(R?). As a consequence, differentiating (1.3)
twice and using Parseval’s identity, one finds that

4B = [ ol —n)og)d,  KI=1...d @1

Let ¢: RY — [0,1] be a smooth symmetric function such that ¢ = 1 on the
cube @1/, and ¢ = 0 on QY. Given R > 0, we split g into g = gr + gr, where

gr(@) =¥ (F)9@), =z eR. (2:2)

Then gr and §r both belong to L?(R?) and have generalized first order deriva-
tives also belonging to L2(R?).
Given a standard Brownian sheet W on R¢, we may assume that

£(z) = /R ey W(dy)  as. for cach 7 € B, (2.3)

Then we may split £ into £ = £ + ER where, correspondingly,
o) = [ onle—9)Wdy) and  En@)= [ Gnlo—9) Wiy,
(2.4)

Both &g and §~ r are homogeneous centered Gaussian fields with covariance func-
tion

Br(z) = /Rdga(w—y)gn(y) dy and Bg(z) =/Rd§R(w—y)§R(y) dy, (2.5)

respectively. In particular, £z has a finite correlation radius of order R.
Moreover, using their spectral representations and Parseval’s identity, one
easily checks that Bg and Bpg are twice continuously differentiable and

8% Br(z / Okgr(z —y) Oigr(y) dy, (2.6)

cf. (2.1). In particular, we may and shall assume that &g and &g are Holder
continuous.
Note that, because of Assumption (1.6),

5% = (€r(0 / y)dy < /Q (W) dy=o ((log R)‘m) .27

c
R/2
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Lemma 2.1. For any K > 0, there ezists Ry = Ro(K) > 0 such that
Prob (m%x |Er(z)] > a) < exp{—Ka?(log R)*/?} (2.8)
reQ1

forallaa>1 and R > Ry.

Proof. Recall that our fields §~R have continuous sample paths. According to
Borell’s inequality (see e.g. Adler [1], Theorem 2.1), (maxg, &g) is finite, and

for any a > (maxg, £€g) we have

2
Prob (;Ié%i |Er ()| > a) <4dexp {—% (a - <néing>> } (2.9)

In view of (2.7), our assertion will follow if we prove that

lim <%a}xER> =0. (2.10)

R—o0

But, according to Adler [1], Corollary 4.15, one has the entropy bound
~ oo ~ 1/2
<maX§R> < c/ (1ogNR(e)) de, (2.11)
Q1 0

where C is a positive constant that does not depend on R, and Ng(e) is the
smallest number of e-balls covering the cube @; in the pseudo-metric

tute) = (@) ~Eaw[') =2 (B0 ~ Bnte ) < ule
(2.12)

with g = max,eq, |Bj(x)['/>.

By comparison with the Euclidean metric, one finds that 1 < Ng(e) <
1V (2VdBg/e)? for all €, R > 0. Therefore the r.h.s. of (2.11) is not bigger than
O(Br) as R — 0.

We derive from (2.6) that, for all , R and k,l =1,... ,d,

1/2
\%ER(w)\s(/ (akaR(y»Zdy) (/Q

But
) = (1—w (2 _1 Yy
e = (1-v (%)) 09 w) - 0w (%) 9(v) (2.14)
has an L%-majorant that is independent of R > 1. Hence the r.h.s. of (2.13)
vanishes as R — oco. This implies that limp o Sr = 0, and we arrive at (2.10)
which ends the proof. O

1/2
(09r(v))° dy) . (213)

c c
R/2 R/2
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Corollary 2.2. Fiz v > 0 and define R, = e’ for n € N. Then, with
probability one,

max IR, | <o <n1/4) ) n — 00. (2.15)
Proof. Fix § > 0 arbitrarily and estimate, for any n € N,
Prob (rélax Er,| > 6n1/4> < 2™ Prob (né)ax|§~Rn| > 6n1/4) . (2.16)
2n 1

Now apply Lemma 2.1 with R = R,,, a = én'/4, and sufficiently large K > 0
to see that the r.h.s. of (2.16) is summable over n € N. Hence the first Borel-

Cantelli lemma implies our assertion. O

Lemma 2.3. With probability one, as R — 0o,

max |€(z)| < v/2do?log R(1 + o(1)). (2.17)
x R

Proof. The proof is well-known and sketched for completeness only. Recall
that our field £ has continuous paths. Therefore, Borell’s inequality (Adler [1],
Theorem 2.1) implies that (maxg, &) is finite, and for every a > (maxg, &) we
have the inequality

2
Prob (Héﬁx|§| > a) < 4dexp {—% (a - <rrga:x§>) } . (2.18)

Now (2.17) follows from a standard application of the first Borel-Cantelli lemma
for the sequence of cubes Qon. O

2.2. Poisson remainder term

We explain how we will approximate the shot noise Poisson field (1.7) by fields
having finite correlation radii. This subsection is superfluous if B is assumed to
have compact support.

As in the preceding subsection, let 1): R? — [0,1] be a smooth symmetric
function such that ¢ = 1 on @, /» and ¢ = 0 on Q5. Split B into B = Bg + Bp,
where

x

Br(z) = (E) B(z), ze€R:. (2.19)

Furthermore, split the potential into £ = &g + 2 R, where

(@)= | Bala-y)o(d), vcR. (2.20)

Note that the field £g has finite correlation radius of order R. Define

5% = max |Bg)|. (2.21)
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Recall (1.8) to see that
o5 =o0((logR)™), R — . (2.22)
We are going to derive a bound on the a.s. growth of ER for large R.

Lemma 2.4. For each K > 0, there is an Ry = Ro(K) > 0 such that
Prob (%ax|gR| > a) < exp{—Kalogalog R} (2.23)
1

for all o > 1 and R > Ry.

Proof. Define ER(y) = mMaXzeQ, |§R(m —y)| for y € R, Then, for all 3 > 0,
we estimate

Prob (rr(lﬁx@ﬂ > a) < Prob (/ Br(y) ®(dy) > a)

<o (o {s [ Bt ot} )

< e Pexp {)\/(eﬁﬁ’*(y) -1) dy}

8 S
=e “Pexp {/\/ dv/e"’BR(y)BR(y) dy}
0

< e P exp {Aﬂeﬁg% /ER(y) dy} . (2.24)
Now choosing 8 = 55 log a, we obtain that the last line of (2.24) equals
1 ~
exp {—O‘;’# (1 _ ,\/BR(y) dy) } : (2.25)
R

Because of (1.9) and (2.19), the last integral vanishes as R — oo, and our
assertion follows from (2.22). O

Corollary 2.5. Fiz v > 0 and define R, = exp{y+v/nlogn} for n € N. Then,
with probability one,

~ n
< — 0. 2.26
maxlin| <o (i) noveo (2.26)

Proof. Analogous to the proof of Corollary 2.2. O

Lemma 2.6. With probability one,

do?log R

max <
nax [¢

2

where 0% = max|B].
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Proof. Use that maxg, [£] < fg(y) &(dy) where B(y) = maxgeq, |Blx — y)l|.

Now proceed as in (2.24) with £g replaced by &, Bg replaced by B and 6% by
2. Then choose 3 =G 2log to obtain

log o

al
Prob (r%ax € > a> < exp{ Ogo‘(1 + (1))} . a—oo.  (2.28)
1
Now the assertion follows from a standard application of the first Borel-Cantelli
lemma for the sequence of cubes Qon. O

Let us finally remark that high peaks of the field £ correspond to areas
of high concentration of the underlying Poisson point process ®. In particular,
formulas (2.23), (2.27), and (2.28) can be interpreted in terms of large deviations
for Poisson random variables.

2.8. Initial-boundary value problem

We are going to introduce the solution to the parabolic problem (1.1) in a
finite box with zero boundary condition, for general potential. Recall that
Q,=(-r,r)d

Let V: R? — R be an arbitrary Hélder continuous potential. For r > 0, let
uY be the solution of the initial-boundary value problem for the operator kA+V
in the box @, with zero boundary condition and initial datum identically equal
to one, i.e.,

oY (t,x) = kAuY (t,z) + V(z)u) (t,z), (t,x) € (0,00) X Q,
uy (0,2) = 1, z € Qy, (2.29)
U,Y(t,flf) =0, (t,IL') € (0,00) X 0Q.

We trivially extend u) to a function on [0,00) x R? vanishing outside of
[0,00) x Q. In the sequel, in order to stress the dependence on the potential,
we shall write u® instead of u for the solution of (1.1). Note that a.s. for
0 < r < R (picking V =¢),

ub < % < b, on (0,00) X Qp. (2.30)

Let Ay > A2 > A3z > ... be the eigenvalues of the operator kA + V with
zero boundary condition in L*(Q,). We also write A, = A} (Q,) for the k-
th eigenvalue to emphasize its dependence on the potential V' and the box
Q.- Let (ex)ren be an orthonormal basis of L2((Q,) consisting of corresponding
eigenfunctions ey = e} (Q).

We also need the fundamental solution pY (¢,-,y) of our initial-boundary
value problem, i.e., the solution of (2.29) with the initial condition u) (0,-) = 1
replaced by pY (0,-,y) = d,(-) for each y € Q,. We have the Fourier expansion

Vit z,y) Ze”"“ek (y)- (2.31)
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According to Mercer’s theorem, this series converges uniformly in z,y € Q. In
particular, we also have the Fourier expansion

uy (t,-) = i e"* (ex, I)pex (), (2.32)

where we write (-, -), for the inner product in L?(Q,.). Using this, one obtains
the estimate

(U:/(t, ')a ]l)r = Z et/\k (eka ]1)%
k=1

o0
<N Y (er M2 = N @ = N @ 2n)!, (233)
k=1

where || - || is the norm in L2(Q,).

2.4. Feynman-Kac formula

We are going to express the solutions ué of (1.1) and u} of the initial-boundary
value problem (2.29) in terms of the Feynman-Kac formula. Still we assume
that V: R? — R is some Holder continuous potential.

Let {W:}t>0 be Brownian motion in R? with generator kKA. Denote the
underlying probability and expectation by P, resp. E, when Wy, = = € Re.
Then we have the Feynman-Kac formula

us(t,r) = B, exp {/Otf(Ws) ds} , (t,z) € (0,00) x R?. (2.34)

In order to represent the solution u) of (2.29) in terms of Brownian motion
we introduce the stopping time of the first exit from @,

T =inf{t > 0: W; ¢ Q,}. (2.35)
Then, for all » > 0 and (¢,7) € (0,00) x R?, we have

u) (t,z) = E; exp { /0 t V(Ws) ds} 7. > t}. (2.36)

The analogous Feynman-Kac representation for the fundamental solution
pY (t,x,y) is in terms of Brownian bridge instead of free Brownian motion:

py(t,x,y) =E, exp {/0 V(Ws) ds} {7 >t} 6,(Wy). (2.37)
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3. The lower bound

In this section we derive the lower bound in (1.20). Our key observation is that,
asymptotically as t — oo, the following holds true with probability one. In the
centered macrobox of length 2¢/logt one finds a microbox having side length of
order h; /4 in which the potential £ is uniformly close to the (correspondingly
shifted) function h;B/o?. Since the microbox is sufficiently small, B(z)/o?
can be replaced by its parabolic approximation p(z) = 1 — |Xx|?/(202). Then,
within the Feynman-Kac formula (2.34), we first force Brownian motion to
reach the mentioned microbox in a short proportion of time and then to stay in
that box until time ¢. It will turn out that the fast motion to the microbox is
asymptotically negligible. But, after replacing £ by the shifted parabola hyp, the
Feynman-Kac expression in the microbox corresponds to the harmonic oscillator
and can easily be calculated. This yields directly the desired asymptotics.

In Subsection 3.1, after introducing some notation, we will start to exploit
the Feynman-Kac formula. The details for the proof of existence of a microbox
with the mentioned properties will be carried out afterwards in Subsection 3.2.

3.1. Proof of the lower bound

Let t > 2 and choose n = n(t) € N so that 2" < t < 2"*!; thus n = |logt/log2].
Recall that Qr = (—R, R)? and that p(h) and h; are defined by (1.14) and
(1.19), respectively.

We fix two parameters r > 0 and v > 0 arbitrarily. At the very end of the
proof we then let  — oo and «y | 0. Abbreviate

R, = exp {7 hzng(hzn)} : (3.1)

This is the correlation length of the fields £, by which we will approximate &.
We will see from (3.14) below that this R, has the same order of magnitude as
the R,’s in Corollaries 2.2 resp. 2.5.

Besides of the ‘macrobox’ Q2n /p,, we also need ‘microboxes’

Qusz=2+Q s and  Qn.=2+2Q,, -1 (3.2)

for z € 4R,Z°N Q2 /- Thus, in the macrobox of size 2"/n, we have placed

about [2"/(4R,,n)]? microboxes of size rh;nl/ * having distance of at least R, to
each other. In (3.14) below it will turn out that the number of our microboxes
grows exponentially in n.

We shall use the Feynman-Kac representation and obtain a lower bound by
requiring that Brownian motion stays all the time until ¢ in the macrobox Q2~,
reaches soon a suited microbox @,., and then stays in its neighborhood @y, .
for the rest of the time until ¢. In order to formalize this, we introduce

_2”

n?’

S (3.3)
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This is the time we give to the Brownian motion to reach a suited microbox
Qn,.- The stopping time

Tnz = inf{s > 6n: Wy ¢ Qn..} (3.4)

is the first exit time from Q\n,z after time 6,,. Recall that 7 denotes the first
exit time from Qg.

Now, applying the Feynman-Kac formula (2.34), we proceed as follows. For
every z € 4Rp,Z%N Qan /., we have

ul (t,0) > Egelo €W 0y > 8, Wi, € Q2 } 17y > t}

> ¢~ 0n maxqyn [¢ PO(TQH > 0, Ws, € Qn,z) Elgf uf ( - 6”7'7:)7 (35)

n,z

where in the last step, we have used the Markov property at time 6,. We write
,, for the solution of (2.29) in Qn » rather than in some centered box.
Wlth probability one, the first factor on the r.h.s. of (3.5) does not decay
exponentially fast toward zero as t — 00; see Lemma, 2.3 resp. 2.6.
The second factor is estimated from below as follows. For large n € N resp.
t and every z € 4R,ZN Qan /n,

]PO(TZ" > 5naW6n € Qn,z)
> I[DO(I/V(M € Qn,z) - P0(7_2" < (Sn)

n d o\ 2 1
—o(2™) __ % e _ _
e xp { 4K6, ( n ) } xp { 4K6, } ’ (3.6)

where, in the third line, we have used the reflection principle. Observe that
1(2"/n)? = 2" ~ t. This proves that the second factor on the r.h.s. of (3.5)
is of order e M as t — oo.
In the following lemma, we give the appropriate lower bound on the last
factor in (3.5), which is the crucial one. Recall (3.1) and 2" < ¢t < 27+,

Lemma 3.1. With probability one, for sufficiently large t resp. n = n(t), there
is a 2 € 4R, 2N Qan /. such that, as t — oo,

%log{ inf ug L(t— 6n,m)} > hy — (x + ¢(r, ) + 0(1)) v/ by, (3.7)

TEQn, =

where ¢(r,7y) is a positive number that vanishes as r — oo and v — 0. (Note
that the l.h.s. of (3.7) depends on r and vy via Qn, . resp. Ry.)

From the proof of this lemma we isolate the following lower bound for the cut-off
potential {g, which will be proven in the next subsection. At least partially, the
following proposition states that, in one of the microboxes that can be reached
by Brownian motion by time 4, without too much effort, the field £ looks like
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the parabola hs-p. In order to formulate it, we introduce the second-order
approximation of the function B/B(0),

1
p(z) =1- ﬁ|§]x|2, reRY, (3.8)

(recall (1.11)) and the numbers
Ton = hon — dy\/han. (3.9)
Recall the definitions of £g in (2.4) resp. (2.20).

Proposition 3.2. With probability one, for sufficiently large n € N, there is a
2z €4R,7.9N Q2n /n, such that

¢, (x) > ?an(;c —2), € @n,z. (3.10)
Proof. See Subsection 3.2. O

Before proving Lemma 3.1, let us make some technical remarks about the
asymptotic behavior of h; as t — oo which will be used frequently. It is clear
from (1.19), L' = p, and the monotonicity of ¢ and h. that

dllogt —log¥(t)] > (h¢ — hyy)o(hos)) (3.11)

for any ¥(t) € (0,t). It may be seen from (1.16) and (1.21) that g(h;) is bounded
from below by const x loglogt asymptotically as ¢ — co. Hence,

t

- if 12
hi — hy@y = 0 i 50 stays bounded (3.12)

and
h¢ — hy(s) remains bounded if # = O(logt) (3.13)

as t — co. Moreover, from (1.16) and (1.21) we deduce that

/higm 0(han ) = 1+0(1) y (2do?log 2)%/*n%/4,  Gaussian case, e
@) = 5 v/ do?log2+/nlogn, Poisson case, ’
(3.14)

Proof of Lemma 8.1. Choose n large and pick z as in Proposition 3.2. It is
clear from (3.12) that hy — hy_5, — 0 as t — oo. Hence, we may and will prove
(3.7) with u§, ,(t — 6,,z) replaced by u§_,(t,z).

Because of (3.14), Corollaries 2.2 resp. 2.5 are applicable for our choice (3.1)
of R,. Together with (1.21) they yield almost surely that maxg,. |€r,| =
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o(v/hy) as t — oo. Hence, with the help of the Feynman-Kac formula, one
estimates

Ll (e) 2 e VR il Wil (ta), o oo (3.15)

Now use (3.10) to get
uil (6,2) 2 M (te),  w€ Qs (3.16)

where the potential V, is given by V,(z) = —|X(z — 2)[*/(20%). Because of
(3.12), hy — han — 0 as t — oo and therefore

ethn = exp {t (ht — (dy + 0(1))\/@} . t— oo (3.17)

Apply the Brownian scaling property to the Feynman-Kac representation of
the second factor on the r.h.s. of (3.16) to get

. An Ve _ Fon Ve
zelgfnlz Yn.z (t,2) = welgfnl,o Hn.0 "(t2)
= inf Yo t\/ﬁ x
er?+o(1) 2@ to) ( " )
= inf Wl (t\/hl 1 ) t = oo.
zeérrl+o(1)u2Qr+o(1) t(1+o(1)),z), &

(3.18)

As t — oo, the r.h.s. of (3.18) is equal to exp{tv/h:(\. +0(1))}, where \,. is the
principal eigenvalue of kA + V4 in the cube 2@Q), with zero boundary condition.
It is well known that A, tends to the principal eigenvalue Ao, of the harmonic
oscillator kA + Vp, and Ao = —x.

Summarizing, we obtain (3.7) with ¢(r,v) = Ao — Ar + dy, which ends the
proof. O

Proof of Theorem 1.1, lower bound. Combining Lemma 3.1 with (3.5), taking
into account the remarks below (3.5), and letting » — oo and v | 0, we arrive
at >’ in (1.20). O

3.2. Lower bounds for the field

In this subsection we prove Proposition 3.2. First we make a step toward a
lower bound for the probability of the event in (3.10). Recall Subsection 1.4.

Lemma 3.3. For anyr >0 and d >0, as h = oo,

Prob( max  |£(z) — hp(z)| < 5\/5) > exp{—L(h) - g(h)o(\/ﬁ)}. (3.19)

TEQ,,—1/4
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Proof. Given h > 0, we introduce a transformed probability measure Proby by
Proby(G) = <11G eQ(h>€<0)> e He), (3.20)

We denote expectation w.r.t. Proby by (- ). Then we have

(£(0))n = H'(o(h)) = h. (3.21)

Choosing ¢§' € (0,6) arbitrarily, the probability on the left of (3.19) can be
estimated from below by

Prob ( max | — hp| < (5'\/5)

rh—1/4

—e_L(h)<]l{ max |€ — hp|<5\/_} —e(h) (0)_h)>
h

Q,p-1/4

> e~ LW =8 eWVE prop,. ( max

rh—1/4

€ — hp| < 6’\/E> : (3.22)

It remains to show that the probability on the r.h.s. stays bounded away
from zero as h — oo. Since ¢’ can be chosen arbitrarily small, this then ends
the proof. For doing this, we distinguish between the Gaussian and the Poisson
case. First we turn to the

Gaussian case. Calculating the Laplace transforms of the finite dimensional
distributions of £ under Proby, one finds that, under this measure, ¢ is a Gaus-
sian field with mean function hB(-)/o? and covariance function B. In other
words, under Proby, the field £ — hB/o? has the same distribution as ¢ under
Prob. Note that maxq _, , [hp — hB/a?| = o(vh) as h — co. Therefore the

probability on the r.h.s. of (3.22) tends to one as h — oo.

Poisson case. Let us first remark some features of Prob,. Note that

<e(<1>,¢>>h — exp { / (e = 1) reetWECw dy} (3.23)

for suitable test functions . This shows that, under Proby, ® is an inhomoge-
neous Poisson process with intensity measure

pn(dy) = Ae?MWB(Y) gy (3.24)
Using (1.14) and differentiating (1.12) with respect to g, we find that

h=H'(o / B(—y) pn(dy). (3.25)

Since B attains its unique global maximum at zero and B(0) = o2, an applica-
tion of the Laplace method combined with (3.25) yields

[ 10 mtan) = 550 +o), o, (3.20)
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for all Lebesgue-integrable continuous functions f: R? — R.

Our first step towards the proof that the probability on the r.h.s. of (3.22)
stays bounded away from zero as h — oo is to show that we may replace hp by
(&) in this assertion. For this, we claim that, uniformly in z € Q,j,-1/4,

(@), = hp(x) +0(VR)  ash - o, (3:27)

where, as before, p(z) = 1 4 52z (z, B"(0)z). Clearly,

@)y = / B(z — ) pn(dy). (3.28)

It is immediate from (3.28) and (3.25) that (£(0)), = h. Thus, in order to
prove (3.27), it remains to check that, uniformly in z € Q,.,-1/4,

[ 1B =) = B mnldy) = 550, B @) 40 (VE), b
(3.29)

To this end, we fix a centered cube @ that contains the set {y: B(—y) >
02 /3}. Taking into account (1.16) and (1.9), we obtain

J

uniformly in € @)1. On the other hand, a Taylor expansion of B yields

B~ y) — B(~y)] mn(dy) =0 (Vh),  h—ox, (3.30)

c
L

[B(z —y) — B(—y)] pn(dy)

- / (2, B (—y)) pun(dy) + / / (1 - )(z, B" (9 — y)) 9 pun (dy).
(3.31)

Together with the definition of @1, and (1.16), an explicit integration shows
that the first integral on the right is of order o(v/h), uniformly in z € Q. By
an application of the Laplace method and a comparison with (3.25), one readily
verifies that the last integral on the right behaves like

N2 B (0)2) + 0 (\/ﬁ) : (3.32)

202

uniformly in z € ;. In this way we arrive at (3.29). We thus have proved
(3.27).
It remains to show that, for every § > 0, the probability

Probh( max |§(x)—<§(x)>h|<5\/ﬁ) (3.33)

TEQ ,_1/4
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stays bounded away from zero as h — oo. This probability may be estimated
from below by

Proby (16(0) — bl < 3VA) — Prob  max |6 = (0) = (€ - €Ol > SV ).
(3.34)

We shall finish the proof by showing that (i) under Proby, (£(0) — h)/v/h con-
verges in distribution toward a centered normal variable with variance o2, and
(ii) the second term in (3.34) actually vanishes as h — oo.

In order to verify (i), we compute the Laplace transform of (£(0) — h)/vVh
to obtain, for any a € R,

)

a a
—H (g<h) n ﬁ) - H(o(h) = - H' (1)
a? [ " a
- T/0 (1-9)H (g(h) +0ﬁ> 9. (3.35)

Here we have used again that h = H'(p(h)). Using (1.12), we find that
H" ( h) + ﬁi) = /32 —y)e? T 1 (dy). 3.36
o(h) NG (=) pin (dy) (3.36)

A uniform version of (3.26) yields that the last expression behaves like o2h(1 +
o(1)) as h — oo, uniformly in ¥ € (0,1). Hence, the r.h.s. of (3.35) converges to
o%a?/2 as h — co.

To prove (ii), we first remark that

§(x) = &(0) — (¢(z) — €(0))n = /[B(w —y) = B(=y)] (2 — pn)(dy). (3.37)

Similar as in the proof of (3.27), we split the integral into two parts by separately
integrating over ()¢, and @)1, respectively. But

max
TEQRh—1/4

/Q [B(z — y) — B(~y)] ( — un) (dy)

c
L

<2 max[B(z-y)|[(®—pn)(dy) +4 [ max|B(z—y)|pn(dy).
Qs zEQ1 Q: TEQ1

(3.38)

Using the definition of Qr, (1.16) and (1.9), one finds that the last integral is
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of order o(v/h). But, according to Chebyshev’s inequality,

Proby, ( max |B(z — y)| ( — pp)(dy) > 6h>
Q: z€Q1

1
< — B%(x — .
< h g max (z —y) pa(dy), (3.39)

and the expression on the right also tends to zero as h — oo for every § > 0.
Now we use a Taylor expansion for B to obtain

e | [ (B =9 = B (- m)a)
<ot [ ey - uhxdy)‘ w2 [ B ) (@ = )y
o V2 [ max Bz — ) ~ B (~y)| (@ — ) (dy)
QL T€A
+ 12/ / max |B"(z —y) — B"(=y)| pn(dy). (3.40)
Qr TEQrh~1/4

Similarly to (3.26), one easily checks that the last (non-random) summand is
of order o(v/h). For every § > 0, the probability w.r.t. Proby, of each of the other
summands to exceed dh may be estimated from above by use of Chebyshev’s
inequality. The asymptotics of the associated variances may then be computed
with the help of (3.26). In this way one finds that each of the mentioned
probabilities tends to zero as h — 00, and we are done. [

Now one easily sees that also the cut-off field £ = € — §~ R satisfies a bound
like in the preceding lemma. Recall (2.4) resp. (2.20).

Corollary 3.4. Fiz r,v,6 > 0, and define R(h) = exp{(1 + o(1))yvho(h)}.
Then, as h — oo,

Prob (wemax |€r(ny (z) — hp(z)| < 6\/5) > exp{—L(h) — g(h)o(\/ﬁ)} .

rh—1/4

(3.41)

Proof. Because of Lemma 3.3 (with § replaced by §/2) it is clearly enough to
show that

Prob ( max

TEQ, ,—1/4

Erem) (;c)‘ > g\/ﬁ) (3.42)

is asymptotically much smaller than the r.h.s. of (3.19). But, according to our
choice of R(h), this follows from Lemma, 2.1 resp. 2.4 (in the Gaussian case one
must choose K large enough). O
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Proof of Proposition 3.2. Put

h = h + 27\/ hzn = h2n — _’)’ hzn (343)

and observe that p is close to one in Qn,z. Therefore, it will be enough to
show that, with probability one, for sufficiently large n € N, there is a z €
4R, 7N Qan /r, such that

€R, (z) > hnpl(z — 2) — % han, %€ Qns. (3.44)
According to the first Borel-Cantelli lemma, we only need to check that
g
Prob | =2)|> 2 V/har 3.45
o <z€4R gllérrﬁleﬂ/n :crenQanxz §R np(flf Z) 4 2 ) ( )

is summable over n € N. Note that the correlation length of g, is 2R, but
neighboring microboxes @n,z have distance of 4R,,. Thus, the fields {¢g, (2);z €
Q\n,z} are shifts of i.i.d. fields for z € 4R,Z%N Q27 /n- Therefore, using the
inequality 1 — a < e~ * and Corollary 3.4, we may bound the probability in

(3.45) from above by
1 2m\?
exp {— (m ?) Prob (rgﬂaic h2n> }
< exp {—2"d exp {—'yd han 0(han) — L(hy) — o(hn)o (\/}Z) }} . (3.46)

Here we have also used that R, = exp {(1 + 0(1))7\/7Lng(ﬁn)} in accordance

§Rn _%np <-

with the definition of R(h,).
Use the monotonicity of L' = p (see (1.16)), (1.19) and (3.43) to see that

L(hn) < L(han) — (—l’)’\/hQn L'(hy) = ndlog?2 — %l’y han 0(ha).- (3.47)

Since hyp/hon — 1 and o(hn)/0(han) — 1 asn — oo (use (1.16)) one hence finds
that the last line of (3.46) is not bigger than

oo { o (Vs (o)

which is summable over n € N because of (3.14). O

4. The upper bound

In this section we prove the upper bound in (1.20). A rough outline of the proof
is as follows. We estimate ¢ !logu(t,0) from above by the (random) principal
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eigenvalue of kKA + ¢ in a large (t-dependent) box (‘macrobox’). Then we es-
timate this eigenvalue from above by the maximal eigenvalue in the subboxes
(‘microboxes’) of length 2. The almost sure asymptotics for this maximal one
will be derived by use of the Borel-Cantelli lemma. To this end we need to
estimate the upper tail of the distribution of each such eigenvalue. This will
be done with the help of the moment asymptotics (1.17) taken from GK via
the exponential Chebyshev inequality. The details will be carried out in reverse
order starting with the investigation of the tail behavior of principal eigenvalues.

4.1. Asymptotics of the principal eigenvalue

We derive the second-order asymptotics for the tails of the distribution of the
principal eigenvalue X (Q,) of KA+ € in the cubes Q, = (—r,r)? for fixed r > 0.
Using this and the first Borel-Cantelli lemma, we then also obtain an a.s. upper
bound for the maximum of many copies of this random variable.

Lemma 4.1. For anyr > 0,
(@) <exp{HB) —(x—oWBVE B}, pooo. (A1)

Proof. Let X(Q,) = X5(Qr) > A5(Qr) > A5(Q,) > ... be the eigenvalues of
kA + £ with zero boundary condition in L?(Q,). Use the Fourier expansion
(2.31) to get

o
(8@ < <Zemi<9r>> - </
k=1 Q

Before applying the Feynman-Kac formula to the r.h.s. of (4.2), we introduce
the normalized occupation time measures of Brownian motion:

py (B, z, ) da:> : (4.2)

»

B
Lg(dz) = %/0 W, € dx} ds, 8> 0. (4.3)

Each Lg is a random element of the set P. = P.(R?) of probability measures
on R? having compact support. We also need the functionals

1 (€8 J &(@) n(dz))y
Ja(p) = —B log Wa p € Pe. (4.4)

As a consequence of Jensen’s inequality and Fubini’s theorem resp. Holder’s
inequality, Jg is nonnegative and concave.

Now we may use the Feynman-Kac representation (2.37) and Fubini’s theo-
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rem to obtain

([ (a0 iz

= < 0. dz E, exp {B/Rd &(x) Lg(dx)} 7 > B}JE(W5)>
= ; dzE, exp {H(B) — BJs(Lg)} 1{rr > f},(Wp). (4.5)

We estimate the r.h.s. of (4.5) as follows. Pick o = a(3) = H'(8) /2. Use that
1{r, > B} < 1{r, > B — a}. Observing that Lg is a convex combination of
Lg_, and L, time-shifted by 8 — a and using the concavity and nonnegativity
of Jg, we get

—BJp(Lg) < —(B — @) Jg(Lg_a)- (4.6)

Taking this into account and applying the Markov property at time 8 — «, we
find that the r.h.s. of (4.5) is bounded from above by

| B e {68) = (8= ) (L)} U > 8= i, 0.(We). (47)

In this expression, we want to neglect the last expectation and replace H(f)
and Jg by H(f — a) and Jg_,, respectively. Clearly

Ew,_. 6,(Wa) < (drra) 42 = (BVE' D) (4.8)
and
H(B) - H(B— ) < aH'(8) = o (Bv/H'(B)) . (4.9)

Moreover, in GK, Subsection 4.1 resp. 4.2, we proved that Jg converges to some
finite functional J as f — oo, uniformly on compacts in the weak topology of
P.. In particular,

Js(Lp-a) = Jp—a(Lp—a) = 0 (4.10)

uniformly on {r, > 8 —a} = {suppLg_o C @r} as B — co. From the last
remarks we conclude that the expression (4.7) does not exceed

L (BVE(B)) /Q dvE, exp {H(B — a) — (B — a)Js_a(Ls_o)} 1{rr > B — al}.
" (4.11)

But an analog of formula (4.5) shows that the integral in (4.11) equals

</,u£(6_a’x)dw> < 1Qr| (u* (8 — 2, 0)) . (4.12)
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Putting together all the above estimates (see (4.2), (4.5), (4.7), (4.11), and
(4.12)), we find that

<eﬁz\‘(Qr)> < 2 (BVI ) (ué(8 — a,0)). (4.13)

Now a combination of this with the moment asymptotics (1.17) yields

<eaxf (Qr)>

<exp{H(8—a) = (x = o(1))(8 - a) VH'(B— ) +0 (8VH'B)) }
(4.14)

Clearly H(f — @) < H(B) and H'(8 — a) ~ H'(B), see (1.15). Hence, on the
r.h.s. of (4.14) we may replace 8 — « by f to arrive at the desired bound (4.1).
O

Corollary 4.2. Fiz r > 0 arbitrarily. Then, as a — oo,

Prob(A(Q,) > a) < exp {~L(a) — (x — o(1))e(a)v/a} . (4.15)

Proof. For any 8 > 0, the exponential Chebyshev inequality yields
Prob(A£(Q,) > a) < e~@F(fX (@), (4.16)

Our assertion now follows from (4.1) by picking f = o(«) and using (1.14). O

Corollary 4.3. Fizr > 0. Let M,\a,... be a sequence of random variables
which are each distributed as X¢(Q..). Then, with probability one,
max Ai <hy — (x — o))V by, N — 0. (4.17)
i=1,...,

Proof. Set N, = 2". Because of the monotonicity of the maximum and the
estimate hyn, — hn,_, = o(y/hn,) (see (3.13)), it is enough to prove (4.17)
for the subsequence N, = 2". To this end, pick € > 0 arbitrarily small and
abbreviate

Qon = h2n - XV hzn (1 - 6). (418)
Then, using Corollary 4.2, we obtain
Prob ( max A > a2n> < 2™ Prob(A*(Q,) > asn)
i=1,...,27

< 2™ exp {—L(azn) — (x — o(1))o(azn)y/azn} . (4.19)
Using the monotonicity of L' = g and recalling (1.19), we see that
L(azn) > L(han) — L' (han) (han — azn)
=1og(2"%) — (1 — &)xo(han )/ han. (4.20)
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Because of (1.16),

o(azn)y/az = (1+ o(1))o(han)v/ o (4.21)
Hence, the r.h.s. of (4.19) does not exceed
exp { (1 + o(1))exe(har) V/hor } (422)

But (3.14) shows that this is summable over n € N, and our assertion follows
by an application of the first Borel-Cantelli lemma. O

4.2. Completion of the proof

First we replace u(¢,0) by the solution of the initial-boundary value problem
in some large, t-dependent macrobox. Then we estimate this from above in
terms of the principal eigenvalue of kKA + £ in that box. Using a result from
GK, we bound this from above by the maximal principal eigenvalue in the sub-
microboxes of fixed length. But its a.s. asymptotics (as ¢ — oo or, equivalently,
as the number of microboxes increases unboundedly) has been derived in the
preceding subsection.

Lemma 4.4. Put R(t) = ctlogt for some constant ¢ > 0. Then, with probability
one,

ub(t,0) = u;(t) (t,00(1+0(1))  as t— oco. (4.23)

Proof. Define R, (t) = nR(t). Recall that 7, is the exit time from the box Q.
Then the Feynman-Kac formula yields

0 < uf(t,0) — ulyy) (£,0) = D Eoeho €Wy () <t <7}

n=1
oo

< Zexp {t max §} Po(Tr, (1) < t)- (4.24)
n=1 Ry 41(t)

As we know from the lower bound in Theorem 1.1, ué(¢,0) tends to infinity as
t — oo. Hence, the assertion of the lemma will follow if we show that, with
probability one, the r.h.s. of (4.24) vanishes as t — oo.

We know from Lemma 2.3 resp. 2.6 that there exists a constant C' > 0 such
that, with probability one,

max £(xz) < ClogR (4.25)
TEQR

for all sufficiently large R > 0. On the other hand, an application of the reflec-
tion principle yields

R? R?
Po(tr <t) <exp {_4_&75} , e > 1. (4.26)
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Thus, with probability one, for sufficiently large ¢ and all n, we obtain the
estimate

exp {t max E} Po(Tr, (1) < t)

QRn+1(t)
n’t 2
< exp { Ot (logt + loglogt +log(c(n + 1)) — ——(log)

2n?logt loglogt log(c(n + 1))
_ ,—Ctlogt —Ctl cn logt o 1081081 108 ‘
¢ exp{ ct ogt( 4kC logt logt
(4.27)

For t > e™rC)V1 the term in round brackets is not smaller than ¢*n? — 3 —
log(c(n + 1)). Therefore, the second factor on the r.h.s. of (4.27) is summable
over n, uniformly in those t. Hence, the r.h.s. of (4.24) indeed vanishes as
t—o00. O

Lemma 4.5. Fiz R(t) = ctlogt for some ¢ > 0. Then, with probability one,
u%(t) (t,0) < O Ulogt) (u%(t) (t-1,-), ]l)R(t); t — oo. (4.28)
Proof. We use the Feynman-Kac formula and apply the Markov property at

time 1 to get

u%(t) (t,0) < exp { sup f(x)} / dz p1(x) ui(t) (t—1,x), (4.29)
QR(t)

TEQR(t)

where p; is the centered Gaussian kernel with variance 2x. Now use Lemma, 2.3
resp. 2.6 to see that the first factor is not bigger than e©(°8%) a.s. Furthermore,
estimate p; (z) < (4nk)~%? and absorb this factor in et [

In the following lemma, we write ®’ for the shift of a function & defined by
& (z) = ®(z — ).

Lemma 4.6. There exists a continuous periodic function ®: R? — [0, 00) with
period 2 in each coordinate such that

IN

. 1 _ ¢
(i) Uy (t:2) eKtm /Q 1 dous, )y (t,x),

ji ¢~ < X 9
(44) A (Qrp) < zezzggﬁmﬂ (Q2 + 2), € Q1,
(4.30)

for all t > 0 and © € Qgy), where K = le ®(z)dx.
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Proof. Assertion (i) is formulated and proved as Step 1 in the proof of Proposi-
tion 2 in GK. Part (ii) is taken from Proposition 2 in GK. (In both assertions
we replaced the box @,for some r > 2 by @;.) For the reader’s convenience let
us describe the nature of assertion (ii) in more detail.

Let V: R¢ — R be any Holder continuous potential. Roughly speaking, for
any R > 1, we derived an upper bound for AV (Qr) in terms of the maximum of
the eigenvalues A (Q2+2) in the small subboxes Q2+z of Qg with z € 2ZINQg.
In order to do this properly, we needed to let these boxes overlap each other
slightly, and we needed to lower the potential V' in the overlapping area, which
will be a neighborhood of the grid (2Z%+ 8Q;) N Qg.

More precisely, we constructed a smooth periodic function ®: R? — [0, c0)
with period 2 in each coordinate whose support is contained in a small neigh-
borhood of the grid 2Z¢+8Q; such that for all R > 1 and all Holder continuous
potentials V: R* — R,

AMW72Qr) < max  A(Q2+2). (4.31)

T 2€2ZNQR+1

Now we complete the derivation of the upper bound.

Proof of Theorem 1.1, upper bound.  As before, put R(t) = ctlogt. As a
consequence of the Lemmas 4.4 and 4.5 and since hy — hy_1 — 0 by (3.12), it is
sufficient to prove the upper bound for (u%( " (t,-), 1) p(y) instead of uf(t,0) with
the constant ¢ taken slightly larger as in the above lemmas.

Integrate (4.30)(i) over z € Qg() and apply the spectral bound (2.33) (with
r = R(t) and V = ¢ — ®%) to obtain

1 0
€ . Kt -9,
(uR(t)(ta )a ]I)R(t) S € |Q1| /Q1 do (uR(t) (ta )5 ]1)

< eKtR($) [ db exp {tAf—‘I’g ©Q R(t))} : (4.32)
@

R(t)

An application of the eigenvalue estimate (4.30)(ii) yields that the r.h.s. of (4.32)
does not exceed

e9® exp {t max Qs + z)} . (4.33)
ZEZZdﬂQR(t)+2

Now apply Corollary 4.3 for r = 2 and N = N; = [R(t) + 2] to arrive at
3 . _ _
(), n)R(t) <exp{t (hw, = (x—o)VAn) ). (434)

According to (3.13), hn, — h; stays bounded as t — oco. Therefore we may
replace in (4.34) hy, by hy which yields the desired upper bound. O



Almost sure asymptotics for the continuous parabolic Anderson model 29

Acknowledgement. J.G. and W. K. gratefully acknowledge the hospitality of The Fields In-
stitute Toronto in fall 1998 where a part of the research was carried out.

References

1. Adler, R. J.: An introduction to continuity, extrema, and related topics for general
Gaussian processes. Hayward: Inst. Math. Stat. 1990

2. Carmona, R. A., Molchanov, S. A.: Parabolic Anderson problem and intermittency. AMS
Memoir 518. Providence RI: Amer. Math. Soc. 1994

3. Carmona, R. A., Molchanov, S. A.: Stationary parabolic Anderson model and intermit-
tency. Probab. Theory Relat. Fields 102, 433-453 (1995)

4. Girtner, J., den Hollander, F.: Correlation structure of intermittency in the parabolic
Anderson model. Probab. Theory Relat. Fields 114, 1-54 (1999)

5. Gaértner, J., Konig, W.: Moment asymptotics for the continuous parabolic Anderson
model. 1999 To appear in Ann. Appl. Prob.

6. Gartner, J., Molchanov, S. A.: Parabolic problems for the Anderson model. II. Second-
order asymptotics and structure of high peaks. Probab. Theory Relat. Fields 111, 17-55
(1998)

7. Molchanov, S. A.: Lectures on random media. In: D. Bakry, R.D. Gill, and S.A.
Molchanov, Lectures on Probability Theory, Ecole d’Eté de Probabilités de Saint-Flour
XXII-1992, Lect. Notes in Math. 1581, pp. 242-411. Berlin: Springer 1994

8. Sznitman, A.-S.: Brownian motion, obstacles and random media. Berlin: Springer 1998



