J. Gärtner and F. den Hollander.
Correlation structure of intermittency in the parabolic Anderson
model.
Technical report, Univ. Nijmegen.
J. Gärtner and W. König.
Moment asymptotics for the continuous parabolic Anderson model.
Technical report, Techn. Univ. Berlin.
J. Gärtner.
On the asymptotic behavior of the first exit time from a domain.
Theory Probab. Appl., 20:169-174, 1975.MRZbl
J. Gärtner.
On the logarithmic asymptotics of large deviation probabilities.
Dissertation, Moscow, 1976.
J. Gärtner.
Theorems on large deviations for a certain class of random processes.
Theory Probab. Appl., 21:95-106, 1976.MR
J. Gärtner.
On the logarithmic asymptotics of large deviation probabilities.
Dissertation, Moscow, 1976.
J. Gärtner.
On large deviations from the invariant measure.
Theory Probab. Appl., 22:24-39, 1977.
J. Gärtner
A problem in the statistics of diffusion processes.
Mosc. Univ. Math. Bull., 32(2):34-41, 1977.MRZbl
M. Freidlin and J. Gärtner.
A new contribution to the question of large deviations for random
processes.
Mosc. Univ. Math. Bull., 33(5):42-48, 1978.Zbl
M. Freidlin and J. Gärtner.
On the propagation of concentration waves in periodic and random
media.
Sov. Math., Dokl., 20:1282-1286, 1979.MR
J. Gärtner.
Nonlinear diffusion equations and excitable media.
Sov. Math., Dokl., 22:571-574, 1980.MR
H. Gajewski and J. Gärtner.
On the asymptotic behavior of some reaction-diffusion processes.
Math. Nachr., 102:141-155, 1981.MR
J. Gärtner.
On the action functional for diffusion processes with a small
parameter in front of a part of the diffusion coefficients (in Russian).
Math. Nachr., 101:37-59, 1981.MR
J. Gärtner.
Wave front propagation in a random medium. (in Russian).
Math. Nachr., 100:271-296, 1981.MR
H. Gajewski, K. Zacharias, J. Gärtner and G. Rafler.
Zur Parameteridentifikation in
Reaktions-Transport-Gleichungen für
Schmelzepolykondensationsreaktionen.
Acta Polymerica, 33:138-141, 1982.
J. Gärtner.
Location of wave fronts for the multidimensional KPP equation and Brownian first exit
densities.
Math. Nachr. 105 (1982), 317-351MR
J. Gärtner.
Asymptotic expansion for a system of reaction-diffusion equations.
Math. Nachr., 110:309-331, 1983.MR
J. Gärtner.
Bistable reaction-diffusion equations and excitable media.
Math. Nachr., 112:125-152, 1983.MR
J. Gärtner.
Zur Ausbreitung von Wellenfronten für
Reaktions-Diffusions-Gleichungen.
Dissertation B, Berlin, 1984.
D.A. Dawson and J. Gärtner.
Large deviations and tunnelling for particle systems with mean field
interaction.
C.R. Math. Rep. Acad. Sci. Canada, 8(6):387-392, 1986.MRZbl
K. Fleischmann and J. Gärtner.
Occupation time processes at a critical point.
Math. Nachr., 125:275-290, 1986.MRZbl
D.A. Dawson and J. Gärtner.
Large deviations and long-time behavior of stochastic particle
systems.
Probability Theory and Applications, pages 651-654. Proc.
World Congr. Bernoulli Soc., Tashkent/USSR 1986, Vol. 1, 1987.MRZbl-->
D.A. Dawson and J.Gärtner.
Large deviations from the McKean-Vlasov limit for weakly
interacting diffusions.
Stochastics, 20:247-308, 1987.pdfZbl-->
D.A. Dawson and J. Gärtner.
Long-time fluctuations of weakly interacting diffusions.
In H.J. Engelbert and W. Schmidt, editors, Stochastic
Differential Systems, pages 3-10. Proc. IFIP-WG 7/1 Working Conf.,
Springer, 1987.
Zbl
D.A. Dawson and J. Gärtner.
Long time behaviour of interacting diffusions.
In J.R. Norris, editor, Stochastic Calculus in Application.
Proc. Cambridge Symp., 1987, pages 29-54. Longman, 1988.MRZbl
J. Gärtner.
Convergence towards Burgers equation and propagation of chaos for
weakly asymmetric exclusion processes.
Stochastic Processes Appl., 27:233-260, 1987.MR
J. Gärtner.
On the McKean-Vlasov limit for interacting diffusions.
Math. Nachr., 137:197-248, 1988.Zbl
D.A. Dawson and J. Gärtner.
Large deviations, free energy functional and quasi-potential for a
mean field model of interacting diffusions.
Mem. Amer. Math. Soc., 78(398):94 pp., 1989.MRZbl
J. Gärtner and S.A. Molchanov.
Parabolic problems for the Anderson model. I. intermittency and
related topics.
Commun. Math. Phys., 132:613-655, 1990.MRZbl
J. Gärtner and E. Presutti.
Schock fluctuations in a particle system.
Ann. Inst. Henri Poincaré, Phys. Théor., 53(1):1-14, 1990.MR
P. Dittrich and J. Gärtner.
A central limit theorem for weakly asymmetric exclusion processes.
Math. Nachr., 151:75-93, 1991.MRZbl
D.A. Dawson and J. Gärtner.
Multilevel models of interacting diffusions and large deviations.
In K. Schmüdgen, editor, Mathematical Physics X, pages
370-374, Berlin, 1992. Proceedings of the X. Congress on Mathematical
Physics, Leipzig, Germany, 30 July - 9 August 1991, Springer.MR
D.A. Dawson and J. Gärtner.
Multilevel large deviations and interacting diffusions.
Probab. Theory Relat. Fields, 98:423-487, 1994.MRZbl
K. Fleischmann, J. Gärtner and I. Kai.
A Schilder type theorem for super-Brownian motion.
Canadian J. Math., 48:542-568, 1996.MR
D.A. Dawson and J. Gärtner.
Analytic aspects of multilevel large deviations.
In B.Szyszkowicz, editor, Asymptotic methods in probability and
statistics. A volume in honour of Miklos Csörg, pages 401-440. ICAMPS
97, an international conference at Carleton Univ., Ottawa, Ontario, Canada,
Elsevier, 1998.MRpdf
J. Gärtner and S.A. Molchanov.
Parabolic problems for the Anderson model II. Second-order
asymptotics and structure of high peaks.
Probab. Theory Relat. Fields, 111:17-55, 1998.MRZbl
J. Gärtner and F. den Hollander.
Correlation structure of intermittency in the parabolic Anderson
model.
Probab. Theory Ralat. Fields, 114:1-54, 1999.MR
J. Gärtner S. A. Molchanov.
Moment asymptotics and Lifshitz tails for the parabolic Anderson
model.
In L. G. Gorostiza and B. G. Ivanoff, editors, Canadian Math.
Soc. Conference Proceedings 2, pages 141-157. Amer. Math. Soc., 2000.MRpdf
J. Gärtner and W. König.
Moment asymptotics for the continuous parabolic Anderson model.
Ann. Appl. Probab., 10:192-271, 2000.MRZblpdf
W. König, J. Gärtner and S. Molchanov.
Almost sure asymptotics for the continuous parabolic Anderson model.
Probab. Theory Relat. Fields, 118:547-573, 2000.MRZblpdf
J. Gärtner and W. König.
The parabolic Anderson model.
In J-D. Deuschel and A. Greven, editors, Interacting Stochastic
Systems, pages 153-179, 2005.MRZblpdf
J. Gärtner, F. den Hollander and S. Molchanov.
Diffusions an annihilating envirenment.
Nonlinear Anal. Real World Appl. 7, No. 1, 25-64 (2006).MRZbl
J. Gärtner and M. Heydenreich.
Annealed asymptotics for the parabolic Anderson model with a moving catalyst.
Stochastic Processes and their Applications 116 (11): 1511-1529 (2006).MRpdf
J. Gärtner and F. den Hollander.
Intermittency in a catalytic random medium.
Ann. Probab., 34:2219-2287, 2006.MRZbl
J. Gärtner, S. Molchanov and W. König.
Geometric characterization of intermittency in the parabolic Anderson model.
Ann. Probab., 35:439-499, 2007.MRZblarXiv
J. Gärtner, F. den Hollander and G. Maillard.
Intermittency on catalysts: symmetric exclusion.
Electronic Journal of Probability, 12:516-573, 2007.MRZbl
F. den Hollander, J. Gärtner and G. Maillard.
Intermittency on catalysts.
In J. Blath, P. Mörters, and M. Scheutzow, editors, Trends in
Stochastic Analysis, pages 235-248. Cambridge University Press, LMS 353,
2009.MRpdf
J. Gärtner, F. den Hollander and G. Maillard.
Intermittency on catalysts: three-dimensional simple symmetric
exclusion.
Electronic Journal of Probability, 14:2091-2129, 2009.MRZbl
J. Gärtner and R. Sun.
A quenched limit theorem for the local time of random walks on Z².
Stochastic Processes and their Applications, 119:1198-1215, 2009.MR
J. Gärtner, F. den Hollander and G. Maillard.
Intermittency on catalysts: voter model.
Annals of Probability, 38:2066-2102, 2010.MRZbl
J. Gärtner and A. Schnitzler .
Time correlations for the parabolic Anderson model.
Electronic Journal of Probability, 16:1519-1548, 2011.MRarXiv
A. Drewitz, J. Gärtner, A. Ramirez and R. Sun.
Survival probability of a random walk among a Poisson system of
moving traps.
In J-D. Deuschel, B. Gentz, W. König, M. von Renesse,
M. Scheutzow, and U. Schmock, editors, Probability and Complex Physical
Systems, pages 119-157. Springer, 2012.arXiv
J. Gärtner, F. den Hollander and G. Maillard.
Quneched Lyapunov exponent for the parabolic anderson model in
dynamic random environment.
In J-D. Deuschel, B. Gentz, W. König, M. von Renesse,
M. Scheutzow, and U. Schmock, editors, Probability and Complex Physical
Systems, pages 159-193. Springer, 2012.Zblpdf