Some Geometric Properties oF the Roots of the Steiner Polynomial

M.A. Hernández Cifre
(joint work with E. Saorín)

Let K be a compact convex set in the Euclidean space. It is well known that the volume of the outer parallel body $K+\rho \mathbb{B}^{n}$ can be expressed as a polynomial of degree the dimension n in the parameter ρ,

$$
V\left(K+\rho \mathbb{B}^{n}\right)=\sum_{i=0}^{n}\binom{n}{i} W_{i}(K) \rho^{i}
$$

which is known as the Steiner polynomial of the body K. The coefficients $W_{i}(K)$ so defined are called the quermassintegrals of the set K. In particular, $W_{0}=V$ is the volume, $n W_{1}=S$ is the surface area, $n W_{2}=M$ is the integral mean curvature and $W_{n}=\kappa_{n}$ is the volume of the n-dimensional unit ball. Thus, it is a natural question to study the roots of this polynomial, and to try to find out wether they have any geometric meaning.

On the other hand, Blaschke (1916) considered a compact convex set K in the Euclidean 3-space \mathbb{R}^{3}, with volume $V=V(K)$, surface area $S=S(K)$, and integral of the mean curvature $M=M(K)$. He asked for a characterization of the set of all points in \mathbb{R}^{3} of the form $(V(K), S(K), M(K))$ as K ranges over the family of all compact convex sets in \mathbb{R}^{3}, or, equivalently, for a characterization of the set of all points (x, y) in the unit square $[0,1]^{2} \subset \mathbb{R}^{2}$ of the form

$$
x=\frac{4 \pi S}{M^{2}} \quad \text { and } \quad y=\frac{48 \pi^{2} V}{M^{3}}
$$

The latter set is called the Blaschke diagram.
In this talk we intend to analyze the relationship between these two problems: first, studying the roots of the three dimensional Steiner polynomial from a geometric point of view, in the sense of characterizing convex bodies according to the type of roots of its Steiner polynomial; then, showing that there is a close relationship with the famous Blaschke problem, for which we can obtain interesting consequences. In particular, it will provide a precise classification of the points of the unit square depending on the convex sets which are mapped into them.

